The role of dark matter in supermassive black hole mergers

Gonzalo Alonso-Álvarez

Based on [2401.14450] with Caitlyn Dewar & Jim Cline

Supermassive black holes

Jets (M87)

Image credit: HST

Stellar dynamics (Sgr A*)

Image credit: ESO

AGNs (3C 273)

Image credit: SDSS

Direct imaging (Sgr A*)

Image credit: EHT

Galaxies are built via mergers

Structure formation

Image credit: EAGLE simulations

Galaxy merger

Image credit: HST

Supermassive black holes mergers

Galaxy Merger

NGC5331

Dynamical friction drives massive objects to central positions **Binary Formation**

Stellar and gas interactions may dominate binary inspiral? **Continuous GWs**

Gravitational radiation provides efficient inspiral. Circumbinary disk may track shrinking orbit.

Adapted from NANOGrav (designed by Sarah Spolaor)

Dynamical friction

SMBH creates stellar/gas overdensity behind it

Gravitational pull of the wake slows down SMBH

Image credit: J. Schombert (adapted)

- 1. Dynamical friction shrinks binary
- 2. Decay only through close encounters
- 3. "Loss cone" depleted

Loss cone: region of phase space in which stars have close encounters with the binary black hole

- 1. Dynamical friction shrinks binary
- 2. Decay only through close encounters
- 3. "Loss cone" depleted
- 4. Bottleneck: slow refilling of loss cone

- 1. Dynamical friction shrinks binary
- 2. Decay only through close encounters
- 3. "Loss cone" depleted
- 4. Bottleneck: slow refilling of loss cone
- 5. GW radiation

Gravitational wave astronomy

THE SPECTRUM OF GRAVITATIONAL WAVES

Image credit: ESA

eesa

June 2023: Evidence for GW signal

Agreement between 4 main PTA collaborations:

- NANOGrav
- Parkes Pulsar Timing Array
- European + Indian Pulsar Timing Array
- Chinese Pulsar Timing Array

Astrophysical explanation: SMBH mergers

Supermassive black holes DO merge

Image credit: NASA

Final parsec problem must be addressed

- Axisymmetry of galactic halo
- Accretion disk
- Multiple black holes
- ... what else is in the BHs environment?

Dark matter spikes around SMBH

Image credit: M. Powell

DM density enhanced by gravity of SMBH

SMBH orbit decay & Cold Dark Matter

DM-BH dynamical friction shrinks binary

SMBH orbit decay & Cold Dark Matter

DM-BH dynamical friction shrinks binary

SMBH orbit decay & Cold Dark Matter

DM-BH dynamical friction shrinks binary

Injected heat evaporates DM spike: binary stalls

Self-interacting Dark Matter

DM-BH dynamical friction shrinks binary

Self-interactions prevent dispersion: BHs coalesce

Self-interacting Dark Matter

DM-BH dynamical friction shrinks binary

Self-interactions prevent dispersion: BHs coalesce

Self-interacting Dark Matter

DM-BH dynamical friction shrinks binary

Self-interactions prevent dispersion: BHs coalesce

Velocity-dependent self interactions

Velocity-dependent self interactions

OUTLINE

1. Reconstruct the spike profile

2. Calculate BH merger dynamics

3. Predict the GW spectrum

OUTLINE

1. Reconstruct the spike profile

2. Calculate BH merger dynamics

3. Predict the GW spectrum

Observational & semi-analytical correlations

Cold DM spike

(

Self Interacting DM spike

CDM & SIDM spikes

OUTLINE

1. Reconstruct the spike profile

2. Calculate BH merger dynamics

3. Predict the GW spectrum

BH merger dynamics

BH merger dynamics

BH merger dynamics

Dynamical friction timescale

Binary *hardens* (shrinks) due to dynamical friction

 $t_{\rm DF} = \Delta t \,(10 \, {\rm pc} \rightarrow 0.1 \, {\rm pc})$ $\propto 1/\rho_{\rm spike}$

Favours dense spikes

Demand $t_{\rm DF} < 1 \, {\rm Gyr}$ **–**> **Upper** limit on σ_0/m

Back-reaction destroys CDM spike CDM: $\Delta E_{\text{orbit}} \gg U_{\text{spike}}$

Spike evaporates and only replenished gravitationally

Self interactions replenish SIDM spike

Spike evaporates and only replenished gravitationally

CDM: $\Delta E_{\text{orbit}} \gg U_{\text{spike}}$

SIDM:

Whole core is in equilibrium with spike

 $U_{\rm core} \gg U_{\rm spike}$

The core acts as a particle & energy reservoir

Minimum size of core —> lower limit on σ_0/m

Dark matter self-interaction cross section

- Lower limit: large enough core
- Upper limit: fast enough merger

OUTLINE

1. Reconstruct the spike profile

2. Calculate BH merger dynamics

3. Predict the GW spectrum

Single-merger GW spectrum

GW frequency is twice the orbital frequency

"Branching ratio" of orbital energy into GW / DF

Stochastic gravitational wave spectrum

Add contributions from all SMBH mergers:

Merger rate: observational + semi analytical models

Compatible with small-scale structure

Conclusions

• Self-interacting dark matter solves the final parsec problem of supermassive black holes.

Correlated softening of the gravitational wave spectrum at pulsar timing arrays.

• Compatible with small scale structure hints.

Work in progress

 Gravothermal simulation of merger & backreaction on spike.

 Upgraded characteristic strain calculation including finite inspiral duration.

• Improved statistical analysis of PTA data.

Work in progress

 Gravothermal simulation of merger & backreaction on spike.

 Upgraded characteristic strain calculation including finite inspiral duration.

• Improved statistical analysis of PTA data.

Backup material

SIDM massive mediator

Pulsar timing arrays

GW

Pn

Very Large Array radio telescope

New physics explanations

Inflationary GW

Image credit: NAOJ

Cosmic strings

Image credit: Kitajima et al (2023)

Phase transitions

Image credit: Weir et al (2016)

Domain Walls

Image credit: Hiramatsu et al (2013)

SMBH mergers

From NANOGrav (designed by Sarah Spolaor)

New physics explanations

Self-interacting dark matter

Constraints

Galaxy cluster mergers

[astro-ph/0608407]

Halo shape

[1201.5892]

SIDM parametrization

Power law vs. velocity transfer cross section

DM spike dynamical friction

Crucial impact on SMBH binary evolution

BH-to-halo mass relation

Stellar-to-halo mass relations

Stellar-to-halo mass relations

Stellar-to-halo mass relations

Fig. 10. Best-fit SHMR compared to previous results at $z \sim 1$ (left) and $z \sim 3$ (right). Symbols are the same as in Fig. 9.

Orbital radius evolution

Orbital radius evolution

Back-reaction on the spike

Orbital energy lost: $M_{\rm spike} \sim M_1 + M_2$ $\Delta E_{\rm orbit} \sim \frac{GM_1^2}{R_{\rm gw}}$ Binding energy of spike: M_1 $U_{\rm spike} \sim \frac{GM_1^2}{r_{\rm spike}}$ Since $r_{\rm spike} \gg R_{\rm gw}$: M_2 $\Delta E_{\rm orbit} \gg U_{\rm spike}$

Spike is quickly disrupted

SIDM core absorbs orbital energy

$M_{\rm core} \gg M_1 + M_2$ M_1 M_{2}

Orbital energy lost:

$$\Delta E_{\rm orbit} \sim \frac{GM_1^2}{R_{\rm gw}}$$

Binding energy of the core:

$$U_{\rm core} \sim \frac{GM_{\rm core}^2}{r_{\rm core}}$$

Minimum size of core —> lower limit on σ_0/m

DF timescale & energy ratio

Core relaxation timescale

Timescale at which the SIDM spike is replenished

$$t_{\rm r} \sim \left(\rho_c \frac{\sigma v_0}{m}\right)^{-1} \cong t_{\rm age}$$

- Must be $t_{\rm r} \lesssim t_{\rm df}$ for spike in equilibrium
- The core is at least that old: $t_{age} \gtrsim t_{df}$

Demand
$$t_{age} = t_{df}$$

Characteristic strain

Add contributions from all SMBH mergers:

$$\int_{z} f_{c}(f) = \frac{4G}{\pi f} \int dz \, dM_{1} \, dq \, \frac{d^{3}n}{dz \, dM_{1} \, dq} \, \frac{dE}{df_{s}} \int_{z} \frac{f_{s}}{f = \frac{f_{s}}{1+z}}$$

SMBH merger rate

Relate to galaxy merger rate

Input: observational + semi analytical models

