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Cosmological tensions: A hint for something new?

H0

?
S8

S8 tension:
persistent tension of 2 − 3σ
between early and late universe
measurements in the clustering on
small scales

S8 = σ8
√

Ωm/0.3

σ2
R =

∫∞
0

dk
k ∆m(k)W̃R(k)2
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Cosmological tensions: A hint for something new?

H0

?
S8

S8 tension:
persistent tension of 2 − 3σ
between early and late universe
measurements in the clustering on
small scales

[Abdalla et. al., arXiv:2203.06142]
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Decaying Cold Dark Matter
DM model that generates suppression on small scales

→ Decaying Cold Dark Matter (DCDM)
DCDM → WDM + DR

2 parameters: lifetime τ , mass splitting ϵ = 1
2

(
1 − m2

M2

)

˙̄ρdcdm = − 3Hρ̄dcdm−aΓρ̄dcdm
˙̄ρwdm = − 3(1 + ω)Hρ̄wdm

+(1 − ϵ)aΓρ̄dcdm
˙̄ρdr = − 4Hρ̄dr+ϵaΓρ̄dcdm
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Suppression through decay

▶ Compute power spectrum with modified CLASS code for DCDM
from [Abellan, Murgia, Poulin, arXiv:2102.12498]
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Cosmological Constraints

Lyman-α forest
[LF, Garny, arXiv:2210.06117]

CMB and BAO
[Simon et al., arXiv:2203.07440]

Weak lensing shear data
[Bucko et al., arXiv:2307.03222]

DM halo evolution
[DES Collab., arXiv:2201.11740]
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Cosmological Constraints

singles out parameter space of
interest to address S8 tension:
▶ τ ∼ 1018 s ∼ 100 Gyrs
▶ ϵ ∼ 10−2
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A theoretical framework

Question: How can such a model be realized theoretically?

Idea: “DR” only has to couple sufficiently weakly to the SM particles
to be considered dark

Can DM decay instead into neutrinos?

Minimal approach: as few ingredients as possible
▶ 2 new fermionic particles N1 and N2 as DM
▶ SM neutrinos as “DR”
▶ described by effective interaction
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The challenge

What we want:
(for S8)

decay into neutrinos
with τ ∼ 1018 s

What we need:
(indirect detection constraints)

decay into e+/e−/γ
with τ ≳ 1026 − 1030 s

Challenge!

⇒ coupling to SM visible particles needs to be suppressed around 10 orders of
magnitude
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New symmetries

easiest operators:
L ∼ (L̄N1)(N̄2L) + h.c.
L ∼ (L̄N1)(N̄c

2 L) + h.c. LL̄ pair leads to decay into νν̄, e+e−

⇒ operators need to be avoided!

impose 2 U(1) symmetries:
L N

N2 → eiαN2 N2 → eiαN2

N1 → eiαN1 N1 → e−iαN1

⇒ Lint = 1
Λ4

(
L̄H̃PRN2

) (
L̄H̃PRN1

)
+ h.c. with H̃ =

(
vEW+h−iG0

√
2 , −G−

)
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Recognizing DCDM

after electroweak symmetry breaking: Leff = v2
EW

2Λ4 ν̄PRN2 ν̄PRN1 + h.c.

N2

N1

ν

ν

ΓN2→N1νν = v4
EW

1280π3Λ8 (ϵM)5 = 1
τ

→ Λ only dependent on model
parameters ϵ, τ plus the DM mass M:

Λ =
(

v4
EW

1280π3 τ (ϵM)5
)1/8

What we wanted!
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Charged particles?

▶ e+e− production possible via W and Goldstone boson

N2

N1

ν

e−

e+

ν

ν

W

N2

N1

ν

e−

e+

ν

ν

G

N2

N1

ν

e−

e+

ν

G

▶ diagrams heavily suppressed with branching ratio scaling as

ΓN2→N̄1ννe+e−

ΓN2→N̄1νν

∝ (ϵM)4

v4
EW
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Photons?

▶ γ production via previous diagram or Higgs loop

N2

N1

ν

e−

e+

ν

ν

W

N2

N1

ν

ν

γ

γ

h

▶ similarly suppressed with branching ratio

ΓN2→N̄1ννγγ

ΓN2→N̄1νν

∝ (ϵM)8

m4
hv4

EW

⇒ We solved the challenge!
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Adjusting for a 3-body decay

DCDM → WDM + DR + DR

▶ now: momentum distribution

▶ important effect given by perturbations capturing the heating of WDM instead of
background evolution

▶ scale ϵ (3-body) to a new ϵ′ (2-body) that produce the same perturbations

⇒ small re-scaling with ϵ′(ϵ) =
√

13
21ϵ + O(ϵ2) ≈ 0.79ϵ
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A new neutrino flux

diffuse neutrino flux induced by N2
decay:

dΦν

dEν
≃ 1

4π

1
τM

1
3

dN
dEν

D(Ω)

D-factor:

D(Ω) =
∫

dΩ
∫

ρ(l) dl ,

neutrino spectrum dN
dEν

with ⟨Eν⟩ = ϵM/2
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Neutrino experiments

▶ Borexino (1.8 − 16.8 MeV)
[Borexino Collab., arXiv:1909.02422]

▶ KamLAND (8.3 − 30.8 MeV)
[KamLAND Collab., arXiv:2108.08527]

▶ Super-Kamiokande (9.3 − 200 MeV)
[SK Collab., arXiv:2109.11174;
Olivares-Del Campo et al., arXiv:1711.05283]

▶ JUNO (2.75 − 100 MeV)
[Akita et al., arXiv:2206.06755] https://www.weltmaschine.de/neuigkeiten/

neuigkeiten_archiv/2016/ neutri-
nos_auf_der_goldwaage_das_juno_experiment/

Measurement via inverse-β-decay: ν̄e + p → e+ + n
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Closing the window...

M = 1 GeV
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...but opening it again!

M = 0.3 GeV
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How to produce DM?

Freeze-out

vs.

Freeze-in
for typical scales

Λ ∼ TeV

[Hall et al., arXiv:0911.1120]
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Freeze-in...

▶ effective interaction can also produce DM after EW
symmetry-breaking: νν → N1N2, ν̄ν̄ → N̄1N̄2

▶ freeze-in assumption: neglect back-reaction

dY
dx ∝ x4γN1N2

γN1N2 = v4
EWM8

256π5Λ8
1
x8

(
x6K1 (x)2 + 2x5K1 (x) K2 (x) + (4 + x2)x4K2 (x)2

)

▶ depends strongly on temperature!

ν

ν

N1

N2

leads to 50%N1, 50%N2

Lea Fuß Dark Matter Landscape (MITP) 30.08.2024 25



Freeze-in...

▶ effective interaction can also produce DM after EW
symmetry-breaking: νν → N1N2, ν̄ν̄ → N̄1N̄2

▶ freeze-in assumption: neglect back-reaction

dY
dx ∝ x4γN1N2

γN1N2 = v4
EWM8

256π5Λ8
1
x8

(
x6K1 (x)2 + 2x5K1 (x) K2 (x) + (4 + x2)x4K2 (x)2

)

▶ depends strongly on temperature!

ν

ν

N1

N2

leads to 50%N1, 50%N2

Lea Fuß Dark Matter Landscape (MITP) 30.08.2024 25



Freeze-in...

▶ effective interaction can also produce DM after EW
symmetry-breaking: νν → N1N2, ν̄ν̄ → N̄1N̄2

▶ freeze-in assumption: neglect back-reaction

dY
dx ∝ x4γN1N2

γN1N2 = v4
EWM8

256π5Λ8
1
x8

(
x6K1 (x)2 + 2x5K1 (x) K2 (x) + (4 + x2)x4K2 (x)2

)

▶ depends strongly on temperature!

ν

ν

N1

N2

leads to 50%N1, 50%N2

Lea Fuß Dark Matter Landscape (MITP) 30.08.2024 25



...after reheating

▶ restriction to broken
phase with
T < 160 GeV

▶ vary reheating
temperature Trh up
to this limit
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One window still closed,

M = 1 GeV
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one window still open!

M = 0.3 GeV
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Invisible Higgs decay

1. Invisible Higgs decay

▶ ΓSM
h ≃ 3.2MeV with invisible branching ratio

constrained to < 12%

Γinv
h = 1

4mh

v2
EW

30π5Λ8

(mh
4

)8

≈1.37 · 10−20MeV
(MeV

ϵM

)5 (100 Gyrs
τ

)

▶ small effect only relevant at very small M, ϵ and τ

h

N2

ν

N1

ν
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Neutrino scattering

2. Neutrino-DM scattering

▶ typical constraints at low neutrino energies
from CMB/LSS

▶ cross section boosted at high energies
▶ limits from blazar TXS-0506+056 with

Eν ∼ 290 TeV measured by IceCube
[Ferrer, Herrera, Ibarra, arXiv:2209.06339]

N2

ν

N1

ν

σN1ν̄→N̄2ν = v4
EW

256πΛ8
(s − M2)2

s
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Help from high energy sources
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Low Mass Constraints

▶ neutrino-DM scattering:
constraints only shown
for

√
s < Λ

▶ invisible Higgs decay:
constraints in Λ < vEW
regime

⇒ limit of EFT description

Lea Fuß Dark Matter Landscape (MITP) 30.08.2024 32



Low Mass Constraints

▶ neutrino-DM scattering:
constraints only shown
for

√
s < Λ

▶ invisible Higgs decay:
constraints in Λ < vEW
regime

⇒ limit of EFT description

Lea Fuß Dark Matter Landscape (MITP) 30.08.2024 32



Outline

I. Cosmological model
II. Theoretical model building

III. New phenomenology
Neutrinos
Production via freeze-in
Low-mass signatures

IV. Outlook and Summary

Lea Fuß Dark Matter Landscape (MITP) 30.08.2024 33



What comes next?

One step further: going to a UV complete theory

1. New and/or improved phenomenology? (low mass regime, reheating temperature,
collider)

2. Connection to neutrino masses via e.g. Seesaw mechanism and heavy neutral
leptons that carry lepton number?

3. Natural explanation for the mass splitting between N1 and N2?
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Summary

▶ Found minimal and effective realization of decaying DM that opens up
new phenomenology

▶ Complementary constraints from cosmology, neutrino experiments, and
freeze-in production

▶ Window in parameter space where all constraints and lower S8 are
satisfied for M ≲ 1 GeV

▶ Possible future testability: JUNO, Euclid (?)

Thank you for your attention!
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