Minimal decaying dark matter: from cosmological tensions to neutrino constraints

Lea Fuß, Mathias Garny, Alejandro Ibarra based on [arXiv:2403.15543](https://arxiv.org/abs/2403.15543)

The Dark Matter Landscape: From Feeble to Strong Interactions (MITP)

August 30, 2024

I. [Cosmological model](#page-3-0)

II. [Theoretical model building](#page-14-0)

III. [New phenomenology](#page-37-0)

Neutrinos Production via freeze-in Low-mass signatures

IV. [Outlook and Summary](#page-0-0)

I. [Cosmological model](#page-3-0)

II. [Theoretical model building](#page-14-0)

III. [New phenomenology](#page-37-0)

Neutrinos Production via freeze-in Low-mass signatures

IV. [Outlook and Summary](#page-0-0)

Cosmological tensions: A hint for something new?

 S_8 tension:

persistent tension of 2 − 3*σ* between early and late universe measurements in the clustering on small scales

Cosmological tensions: A hint for something new?

$$
S_8 = \sigma_8 \sqrt{\Omega_m / 0.3}
$$

$$
\sigma_R^2 = \int_0^\infty \frac{dk}{k} \Delta_m(k) \tilde{W}_R(k)^2
$$

 S_8 tension:

persistent tension of 2 − 3*σ* between early and late universe measurements in the clustering on small scales

Cosmological tensions: A hint for something new?

S_8 tension:

persistent tension of 2 − 3*σ* between early and late universe measurements in the clustering on small scales

[Abdalla et. al., arXiv:2203.06142]

Decaying Cold Dark Matter

DM model that generates suppression on small scales → **Decaying Cold Dark Matter (DCDM)**

 $DCDM \rightarrow WDM + DR$

Decaying Cold Dark Matter

DM model that generates suppression on small scales → **Decaying Cold Dark Matter (DCDM)**

 $DCDM \rightarrow WDM + DR$

2 parameters: **lifetime** τ , **mass splitting** $\epsilon = \frac{1}{2}$ $\frac{1}{2}\left(1-\frac{m^2}{M^2}\right)$ $\frac{m^2}{M^2}$

Decaying Cold Dark Matter

DM model that generates suppression on small scales → **Decaying Cold Dark Matter (DCDM)**

 $DCDM \rightarrow WDM + DR$

2 parameters: **lifetime** τ , **mass splitting** $\epsilon = \frac{1}{2}$ $\frac{1}{2}\left(1-\frac{m^2}{M^2}\right)$ $\frac{m^2}{M^2}$

Suppression through decay

▶ Compute power spectrum with modified CLASS code for DCDM from [Abellan, Murgia, Poulin, arXiv:2102.12498]

Suppression through decay

▶ Compute power spectrum with modified CLASS code for DCDM from [Abellan, Murgia, Poulin, arXiv:2102.12498]

Lyman-*α* forest [LF, Garny, arXiv:2210.06117]

CMB and BAO [Simon et al., arXiv:2203.07440]

Weak lensing shear data [Bucko et al., arXiv:2307.03222]

DM halo evolution [DES Collab., arXiv:2201.11740]

Cosmological Constraints

singles out parameter space of interest to address S_8 tension:

$$
\begin{aligned}\n\blacktriangleright \tau &\sim 10^{18} \,\mathrm{s} \sim 100 \,\mathrm{Gyrs} \\
\blacktriangleright \epsilon &\sim 10^{-2}\n\end{aligned}
$$

I. [Cosmological model](#page-3-0)

II. [Theoretical model building](#page-14-0)

III. [New phenomenology](#page-37-0)

Neutrinos Production via freeze-in Low-mass signatures

IV. [Outlook and Summary](#page-0-0)

Question: How can such a model be realized theoretically?

Question: How can such a model be realized theoretically?

Idea: "DR" only has to couple sufficiently weakly to the SM particles to be considered dark

Can DM decay instead into neutrinos?

Question: How can such a model be realized theoretically?

Idea: "DR" only has to couple sufficiently weakly to the SM particles to be considered dark

Can DM decay instead into neutrinos?

Minimal approach: as few ingredients as possible

- ▶ 2 new fermionic particles N_1 and N_2 as DM
- ▶ SM neutrinos as "DR"
- \blacktriangleright described by effective interaction

What we want: (for S_8)

decay into neutrinos with $\tau \sim 10^{18}$ s

What we want: (for S_8)

decay into neutrinos with $\tau \sim 10^{18}$ s

What we need:

(indirect detection constraints)

$$
\begin{array}{c} {\rm decay~into~}e^+/e^-/\gamma \\ {\rm with~}\tau\gtrsim 10^{26}-10^{30}\,{\rm s} \end{array}
$$

What we want: (for S_8)

decay into neutrinos with $\tau \sim 10^{18}$ s

What we need:

(indirect detection constraints)

$$
\begin{array}{c} {\rm decay~into~}e^+/e^-/\gamma \\ {\rm with~}\tau\gtrsim 10^{26}-10^{30}\,{\rm s} \end{array}
$$

Challenge!

 \Rightarrow coupling to SM visible particles needs to be suppressed around 10 orders of magnitude

easiest operators:

 $\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + \text{h.c.}$ $\mathcal{L} \sim (\bar{L} N_1)(\bar{N}_2^c)$

 $L^2(L) + \text{h.c.}$ LLⁱ pair leads to decay into $\nu\bar{\nu}$, e^+e^-

easiest operators:

$$
\begin{array}{l} \mathcal{L} \sim (\bar{L} N_1)(\bar{N}_2 L) + \text{h.c.}\\ \mathcal{L} \sim (\bar{L} N_1)(\bar{N}_2^\mathcal{L} L) + \text{h.c.} \end{array}
$$

⇒ operators need to be avoided!

 $L^2(L) + \text{h.c.}$ LLⁱ pair leads to decay into $\nu\bar{\nu}$, e^+e^-

easiest operators:

$$
\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + \text{h.c.} \n\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2^cL) + \text{h.c.}
$$

 $L^2(L) + \text{h.c.}$ LLⁱ pair leads to decay into $\nu\bar{\nu}$, e^+e^-

⇒ operators need to be avoided!

impose $2 \text{ U}(1)$ symmetries:

L N $N_2 \rightarrow e^{i\alpha} N_2 \mid N_2 \rightarrow e^{i\alpha} N_2$ $N_1 \rightarrow e^{i\alpha} N_1 \mid N_1 \rightarrow e^{-i\alpha} N_1$

easiest operators:

$$
\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + \text{h.c.} \n\mathcal{L} \sim (\bar{L}N_1)(\bar{N}_2L) + \text{h.c.}
$$

 $L^2(L) + \text{h.c.}$ LLⁱ pair leads to decay into $\nu\bar{\nu}$, e^+e^-

⇒ operators need to be avoided!

impose $2 \text{ U}(1)$ symmetries:

$$
\begin{array}{c|c|c} \textbf{L} & \textbf{N} \\ \hline N_2 \rightarrow e^{i\alpha} N_2 & N_2 \rightarrow e^{i\alpha} N_2 \\ N_1 \rightarrow e^{i\alpha} N_1 & N_1 \rightarrow e^{-i\alpha} N_1 \end{array}
$$

$$
\Rightarrow \boxed{\hspace{0.1cm} \mathcal{L}_{\text{int}} = \frac{1}{\Lambda^4} \left(\bar{L} \tilde{H} P_R N_2 \right) \left(\bar{L} \tilde{H} P_R N_1 \right) + \text{h.c.}}
$$

$$
+ h.c. \quad \text{with } \tilde{H} = \left(\frac{v_{\text{EW}} + h - iG^0}{\sqrt{2}}, -G^-\right)
$$

$$
\mathcal{L}_{eff}=\tfrac{v_{EW}^2}{2\Lambda^4}\,\bar{\nu}P_R N_2\,\bar{\nu}P_R N_1+h.c.
$$

$$
\mathcal{L}_{eff}=\tfrac{v_{EW}^2}{2\Lambda^4}\,\bar{\nu} P_R N_2\,\bar{\nu} P_R N_1 + \text{h.c.}
$$

$$
\mathcal{L}_{eff}=\tfrac{v_{EW}^2}{2\Lambda^4}\,\bar{\nu}P_R N_2\,\bar{\nu}P_R N_1+h.c.
$$

$$
\Gamma_{N_2 \to N_1 \nu \nu} = \frac{v_{\text{EW}}^4}{1280 \pi^3 \Lambda^8} \left(\epsilon M\right)^5 = \frac{1}{\tau}
$$

 \rightarrow Λ only dependent on model parameters ϵ , τ plus the DM mass M:

$$
\Lambda = \left(\frac{v_{EW}^4}{1280\pi^3}\tau\left(\epsilon M\right)^5\right)^{1/8}
$$

$$
\mathcal{L}_{eff}=\tfrac{v_{EW}^2}{2\Lambda^4}\,\bar{\nu}P_R N_2\,\bar{\nu}P_R N_1+h.c.
$$

$$
\Gamma_{N_2 \to N_1 \nu \nu} = \frac{v_{\text{EW}}^4}{1280 \pi^3 \Lambda^8} \left(\epsilon M\right)^5 = \frac{1}{\tau}
$$

 \rightarrow Λ only dependent on model parameters *ϵ*, *τ* plus the DM mass M:

$$
\Lambda = \left(\frac{v_{\text{EW}}^4}{1280\pi^3}\tau\left(\epsilon M\right)^5\right)^{1/8}
$$

What we wanted!

► e^+e^- production possible via W and Goldstone boson

► e^+e^- production possible via W and Goldstone boson

 \blacktriangleright diagrams heavily suppressed with branching ratio scaling as

$$
\frac{\Gamma_{N_2\to \bar N_1\nu\nu e^+e^-}}{\Gamma_{N_2\to \bar N_1\nu\nu}}\propto \frac{(\epsilon M)^4}{v_{\rm EW}^4}
$$

Photons?

▶ *γ* production via previous diagram or Higgs loop

Photons?

▶ *γ* production via previous diagram or Higgs loop

 \blacktriangleright similarly suppressed with branching ratio

$$
\frac{\Gamma_{N_2 \to \bar{N}_1 \nu \nu \gamma \gamma}}{\Gamma_{N_2 \to \bar{N}_1 \nu \nu}} \propto \frac{(\epsilon M)^8}{m_h^4 v_{EW}^4}
$$

Photons?

▶ *γ* production via previous diagram or Higgs loop

 \blacktriangleright similarly suppressed with branching ratio

$$
\frac{\Gamma_{N_2 \to \bar{N}_1 \nu \nu \gamma \gamma}}{\Gamma_{N_2 \to \bar{N}_1 \nu \nu}} \propto \frac{(\epsilon M)^8}{m_h^4 v_{EW}^4}
$$

⇒ **We solved the challenge!**

$DCDM \rightarrow WDM + DR + DR$

$DCDM \rightarrow WDM + DR + DR$

- ▶ now: momentum distribution
- ▶ important effect given by perturbations capturing the heating of WDM instead of background evolution

$DCDM \rightarrow WDM + DR + DR$

- now: momentum distribution
- important effect given by perturbations capturing the heating of WDM instead of background evolution
- ▶ scale *ϵ* (3-body) to a new *ϵ* ′ (2-body) that produce the same perturbations

 \Rightarrow small re-scaling with $\epsilon'(\epsilon) = \sqrt{\frac{13}{21}}\epsilon + \mathcal{O}(\epsilon^2) \approx 0.79 \epsilon$

I. [Cosmological model](#page-3-0) II. [Theoretical model building](#page-14-0) III. [New phenomenology](#page-37-0) **Neutrinos** Production via freeze-in Low-mass signatures IV. [Outlook and Summary](#page-0-0)

diffuse neutrino flux induced by N_2 decay:

$$
\frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}}\simeq\frac{1}{4\pi}\frac{1}{\tau M}\frac{1}{3}\frac{\mathrm{d}N}{\mathrm{d}E_{\nu}}D(\Omega)
$$

D-factor:

$$
D(\Omega) = \int d\Omega \int \rho(I) \, \mathrm{d}I,
$$

diffuse neutrino flux induced by N_2 decay:

$$
\frac{d\Phi_{\nu}}{dE_{\nu}} \simeq \frac{1}{4\pi} \frac{1}{\tau M} \frac{1}{3} \frac{dN}{dE_{\nu}} D(\Omega)
$$

D-factor:

$$
D(\Omega) = \int d\Omega \int \rho(I) \, \mathrm{d}I,
$$

neutrino spectrum $\frac{dN}{dE_{\nu}}$ with $\langle E_{\nu} \rangle = \epsilon M/2$

- ▶ Borexino (1*.*8 − 16*.*8 MeV) [Borexino Collab., arXiv:1909.02422]
- ▶ KamLAND (8*.*3 − 30*.*8 MeV) [KamLAND Collab., arXiv:2108.08527]
- ▶ Super-Kamiokande (9*.*3 − 200 MeV) [SK Collab., arXiv:2109.11174; Olivares-Del Campo et al., arXiv:1711.05283]
- ▶ JUNO (2*.*75 − 100 MeV) $[Akita et al., arXiv:2206.06755]$ https://www.weltmaschine.de/neuigkeiten/

Measurement via inverse- β -decay: $\bar{\nu}_e + p \rightarrow e^+ + n$

Closing the window...

$$
M=1\,\hbox{GeV}
$$

...but opening it again!

 $M = 0.3$ GeV

[Hall et al., arXiv:0911.1120]

▶ effective interaction can also produce DM after EW symmetry-breaking: $\nu\nu\rightarrow \textit{N}_1\textit{N}_2$, $\bar{\nu}\bar{\nu}\rightarrow \bar{\textit{N}}_1\bar{\textit{N}}_2$

leads to $50\%N_1$, $50\%N_2$

- ▶ effective interaction can also produce DM after EW symmetry-breaking: $\nu\nu\rightarrow \textit{N}_1\textit{N}_2$, $\bar{\nu}\bar{\nu}\rightarrow \bar{\textit{N}}_1\bar{\textit{N}}_2$
- ▶ freeze-in assumption: neglect back-reaction

$$
\frac{dY}{dx} \propto x^4 \gamma_{N_1 N_2}
$$

leads to $50\% N_1$, $50\% N_2$

$$
\gamma_{N_1 N_2} = \frac{v_{\text{EW}}^4 M^8}{256 \pi^5 \Lambda^8} \frac{1}{x^8} \left(x^6 K_1(x)^2 + 2 x^5 K_1(x) K_2(x) + (4+x^2) x^4 K_2(x)^2 \right)
$$

- ▶ effective interaction can also produce DM after EW symmetry-breaking: $\nu\nu\rightarrow \textit{N}_1\textit{N}_2$, $\bar{\nu}\bar{\nu}\rightarrow \bar{\textit{N}}_1\bar{\textit{N}}_2$
- ▶ freeze-in assumption: neglect back-reaction

$$
\frac{\text{d}Y}{\text{d}x} \propto x^4 \gamma_{N_1 N_2}
$$

leads to $50\% N_1$, $50\% N_2$

$$
\gamma_{N_1 N_2} = \frac{v_{\text{EW}}^4 M^8}{256 \pi^5 \Lambda^8} \frac{1}{x^8} \left(x^6 K_1(x)^2 + 2 x^5 K_1(x) K_2(x) + (4+x^2) x^4 K_2(x)^2 \right)
$$

▶ depends strongly on temperature!

 \blacktriangleright restriction to broken phase with T *<* 160 GeV

- \blacktriangleright restriction to broken phase with T *<* 160 GeV
- ▶ vary reheating temperature T_{rh} up to this limit
- \blacktriangleright restriction to broken phase with T *<* 160 GeV
- \blacktriangleright vary reheating temperature T_{rh} up to this limit

One window still closed,

 $M = 1$ GeV

one window still open!

$$
M=0.3\,\hbox{GeV}
$$

Lea Fuß Dark Matter Landscape (MITP) 30.08.2024 28

 \blacktriangleright $\Gamma_h^{\text{SM}} \simeq 3.2 \text{MeV}$ with invisible branching ratio constrained to $< 12\%$

 \blacktriangleright $\Gamma_h^{\text{SM}} \simeq 3.2 \text{MeV}$ with invisible branching ratio constrained to $< 12\%$

$$
\Gamma_{\rm h}^{\rm inv} = \frac{1}{4m_h} \frac{v_{\rm EW}^2}{30\pi^5 \Lambda^8} \left(\frac{m_h}{4}\right)^8
$$

$$
\approx 1.37 \cdot 10^{-20} \text{MeV} \left(\frac{\text{MeV}}{\epsilon M}\right)^5 \left(\frac{100 \text{ Gyrs}}{\tau}\right)
$$

 \blacktriangleright $\Gamma_h^{\text{SM}} \simeq 3.2 \text{MeV}$ with invisible branching ratio constrained to $< 12\%$

$$
\Gamma_{\rm h}^{\rm inv} = \frac{1}{4m_h} \frac{v_{\rm EW}^2}{30\pi^5 \Lambda^8} \left(\frac{m_h}{4}\right)^8
$$

$$
\approx 1.37 \cdot 10^{-20} \text{MeV} \left(\frac{\text{MeV}}{\epsilon M}\right)^5 \left(\frac{100 \text{ Gyrs}}{\tau}\right)
$$

▶ small effect only relevant at very small M, *ϵ* and *τ*

2. Neutrino-DM scattering

▶ typical constraints at **low** neutrino energies from CMB/LSS

$$
\sigma_{N_1\bar{\nu}\to\bar{N_2\nu}}=\frac{v_{EW}^4}{256\pi\Lambda^8}\frac{(s-M^2)^2}{s}
$$

2. Neutrino-DM scattering

- ▶ typical constraints at **low** neutrino energies from CMB/LSS
- ▶ cross section boosted at **high** energies
- limits from blazar TXS-0506+056 with E*^ν* ∼ 290 TeV measured by IceCube [Ferrer, Herrera, Ibarra, arXiv:2209.06339]

Help from high energy sources

- ▶ neutrino-DM scattering: constraints only shown for [√] s *<* Λ
- ▶ invisible Higgs decay: constraints in Λ *<* vEW regime
- **⇒** limit of EFT description

- ▶ neutrino-DM scattering: constraints only shown for [√] s *<* Λ
- ▶ invisible Higgs decay: constraints in Λ *<* vEW regime
- **⇒** limit of EFT description

I. [Cosmological model](#page-3-0) II. [Theoretical model building](#page-14-0) III. [New phenomenology](#page-37-0) Neutrinos Production via freeze-in Low-mass signatures

IV. [Outlook and Summary](#page-0-0)

1. New and/or improved phenomenology? (low mass regime, reheating temperature, collider)

- 1. New and/or improved phenomenology? (low mass regime, reheating temperature, collider)
- 2. Connection to neutrino masses via e.g. Seesaw mechanism and heavy neutral leptons that carry lepton number?

- 1. New and/or improved phenomenology? (low mass regime, reheating temperature, collider)
- 2. Connection to neutrino masses via e.g. Seesaw mechanism and heavy neutral leptons that carry lepton number?
- 3. Natural explanation for the mass splitting between N_1 and N_2 ?

- ▶ Found minimal and effective realization of decaying DM that opens up new phenomenology
- ▶ Complementary constraints from cosmology, neutrino experiments, and freeze-in production
- \triangleright Window in parameter space where all constraints and lower S_8 are satisfied for $M \leq 1$ GeV
- ▶ Possible future testability: JUNO, Euclid (?)

- ▶ Found minimal and effective realization of decaying DM that opens up new phenomenology
- ▶ Complementary constraints from cosmology, neutrino experiments, and freeze-in production
- \triangleright Window in parameter space where all constraints and lower S_8 are satisfied for $M \leq 1$ GeV
- ▶ Possible future testability: JUNO, Euclid (?)

Thank you for your attention!