

Sommerfeld Effect and Bound State Formation for Dark Matter with colored mediators: a Computational Framework

Martin Napetschnig

Technical University of Munich

Based on a work in preparation with Mathias Becker, Emanuele Copello and Julia Harz

MITP workshop:

The Dark Matter Landscape -

From feeble to strong interactions

Thursday, August 29th 2024

Outline

Simplified dark matter models and long-range effects

Sommerfeld effect and bound state formation for colored mediators

Workflow of the code

Showcases of our computational framework

SFB 1258 Neutrinos Dark Matter Messengers

Motivation

Classical WIMP evades detection so far.

SFB 1258 Neutrinos Dark Matter Messengers

Motivation

Classical WIMP evades detection so far.

[PDG "Dark Matter" (2024)]

Motivation

Classical WIMP evades detection so far.

[PDG "Dark Matter" (2024)]

Motivation

Classical WIMP evades detection so far.

[PDG "Dark Matter" (2024)]

Heavier, **coannihilating** mediators can be the reason. Many processes and model

parameters render the analysis complicated.

$$\langle \sigma_{\rm eff} v_{\rm rel} \rangle = \sum_{ij} \langle \sigma_{ij} v_{\rm rel} \rangle \frac{Y_i^{\rm eq} Y_j^{\rm eq}}{\widetilde{Y}_{\rm eq}^2}$$

Pheno toolbox

Experiment needs **minimal models** (few parameters) - *Theory* needs precise and reliable **tools**!

[A. Belyaev (2018)]

Pheno toolbox

Experiment needs **minimal models** (few parameters) - *Theory* needs precise and reliable **tools**!

See talk by Sukanya Sinha

JGU

[A. Belyaev (2018)]

SFB 1258 Neutrinos Dark Matter Messengers

Pheno toolbox

Experiment needs **minimal models** (few parameters) - *Theory* needs precise and reliable **tools**!

See talk by Sukanya Sinha

[A. Belyaev (2018)]

Outline

Simplified dark matter models and long-range effects

Sommerfeld effect and bound state formation for colored mediators

Workflow of the code

Showcases of our computational framework

Long-range effects for Dark Matter I: Sommerfeld enhancement

Attractive (repulsive) Coulomb-like potentials significantly enhance (suppress) non-relatvistic scattering processes.

Dark sector particles charged under a gauge group form a bound state that subsequently decays \rightarrow additional annihilation channel!

Dark sector particles charged under a gauge group form a bound state that subsequently decays \rightarrow additional annihilation channel!

[K. Petraki et al. (2015)] [A. Mitridate et al. (2017)] [J. Harz and K. Petraki (2018)]

Dark sector particles charged under a gauge group form a bound state that subsequently decays \rightarrow additional annihilation channel!

[K. Petraki et al. (2015)] [A. Mitridate et al. (2017)] [J. Harz and K. Petraki (2018)]

7/38

Dark sector particles charged under a gauge group form a bound state that subsequently decays \rightarrow **additional annihilation channel!**

[K. Petraki et al. (2015)] [A. Mitridate et al. (2017)] [J. Harz and K. Petraki (2018)]

mtp

SFB 1258

Neutrinos Dark Matter Messengers

JGU

Dark sector particles charged under a gauge group form a bound state that subsequently decays \rightarrow **additional annihilation channel!**

 Image: See talk by Tobias

 [K. Petraki et al. (2015)]

 [A. Mitridate et al. (2017)]

 [J. Harz and K. Petraki (2018)]

JGU

 10^{-22}

mtp

SFB 1258

Neutrinos Dark Matter Messengers

Dark sector particles charged under a gauge group form a bound state that subsequently decays \rightarrow **additional annihilation channel!** [K. Petraki et al. (2015)] [A. Mitridate et al. (2017)] [J. Harz and K. Petraki (2018)]

JGU

 10^{-22}

SFB 1258

Neutrinos Dark Matter Messengers

Long-range effects can relax experimental bounds

[Becker, Harz, Sengupta et al. (2022)]

Long-range effects can relax experimental bounds

[Becker, Harz, Sengupta et al. (2022)]

Previously: Effects need to be added by hand to the relic density calculation. \rightarrow Inhibition threshold for non-experts.

Long-range effects can relax experimental bounds

[Becker, Harz, Sengupta et al. (2022)]

Previously: Effects need to be added by hand to the relic density calculation. \rightarrow Inhibition threshold for non-experts.

We include excited bound states to a wider class of t-channel models together with a micrOMEGAs add-on package!

Simplified dark matter models and nonperturbative effects

General class of simplified models, studied vastly in the literature. In t-channel models \rightarrow mediators are colored.

A phenomenological toolbox exists (DMSimpt).

[Arina et al. (2021)] [Giacchino, Lopez-Honorez et al. (2016)] [Becker, Harz, Sengupta et al. (2022)] [Garny et al. (2020)]

[Arina et al. (2020)]

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + \mathcal{L}_F(\chi) + \mathcal{L}_F(\tilde{\chi}) + \mathcal{L}_S(S) + \mathcal{L}_S(\tilde{S}) + \mathcal{L}_V(V) + \mathcal{L}_V(\tilde{V})$$

$$\mathcal{L}_{F}(X) = \left[\lambda_{\mathbf{Q}}\bar{X}Q\varphi_{Q}^{\dagger} + \lambda_{\mathbf{u}}\bar{X}u\varphi_{u}^{\dagger} + \lambda_{\mathbf{d}}\bar{X}d\varphi_{d}^{\dagger} + \text{h.c.}\right]$$
$$\mathcal{L}_{S}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}QX + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}uX + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}dX + \text{h.c.}\right]$$
$$\mathcal{L}_{V}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}\not{X}Q + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}\not{X}u + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}\not{X}d + \text{h.c.}\right]$$

Simplified dark matter models and nonperturbative effects

General class of simplified models, studied vastly in the literature. In t-channel models \rightarrow mediators are colored.

A phenomenological toolbox exists (DMSimpt).

[Arina et al. (2021)] [Giacchino, Lopez-Honorez et al. (2016)] [Becker, Harz, Sengupta et al. (2022)] [Garny et al. (2020)]

[Arina et al. (2020)]

DM annihilation | Mediato

Mediator coannihilation

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + \mathcal{L}_F(\chi) + \mathcal{L}_F(\tilde{\chi}) + \mathcal{L}_S(S) + \mathcal{L}_S(\tilde{S}) + \mathcal{L}_V(V) + \mathcal{L}_V(\tilde{V})$$

$$\mathcal{L}_{F}(X) = \left[\lambda_{\mathbf{Q}}\bar{X}Q\varphi_{Q}^{\dagger} + \lambda_{\mathbf{u}}\bar{X}u\varphi_{u}^{\dagger} + \lambda_{\mathbf{d}}\bar{X}d\varphi_{d}^{\dagger} + \text{h.c.}\right]$$
$$\mathcal{L}_{S}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}QX + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}uX + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}dX + \text{h.c.}\right]$$
$$\mathcal{L}_{V}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}\not{X}Q + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}\not{X}u + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}\not{X}d + \text{h.c.}\right]$$

Simplified dark matter models and nonperturbative effects

General class of simplified models, studied vastly in the literature. In t-channel models \rightarrow mediators are colored.

A phenomenological toolbox exists (DMSimpt).

[Arina et al. (2021)] [Giacchino, Lopez-Honorez et al. (2016)] [Becker, Harz, Sengupta et al. (2022)] [Garny et al. (2020)]

[Arina et al. (2020)]

DM annihilation

Mediator coannihilation

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{kin} + \mathcal{L}_F(\chi) + \mathcal{L}_F(\tilde{\chi}) + \mathcal{L}_S(S) + \mathcal{L}_S(\tilde{S}) + \mathcal{L}_V(V) + \mathcal{L}_V(\tilde{V})$$

$$\mathcal{L}_{F}(X) = \left[\lambda_{\mathbf{Q}}\bar{X}Q\varphi_{Q}^{\dagger} + \lambda_{\mathbf{u}}\bar{X}u\varphi_{u}^{\dagger} + \lambda_{\mathbf{d}}\bar{X}d\varphi_{d}^{\dagger} + \text{h.c.}\right]$$
$$\mathcal{L}_{S}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}QX + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}uX + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}dX + \text{h.c.}\right]$$
$$\mathcal{L}_{V}(X) = \left[\hat{\lambda}_{\mathbf{Q}}\bar{\psi}_{Q}\mathbf{X}Q + \hat{\lambda}_{\mathbf{u}}\bar{\psi}_{u}\mathbf{X}u + \hat{\lambda}_{\mathbf{d}}\bar{\psi}_{d}\mathbf{X}d + \text{h.c.}\right]$$

SFB 1258 Neutrinos Dark Mattee Massengar

Simplified dark matter models and nonperturbative effects (II)

Tools for relic density calculation with perturbative cross sections exist abundantly.

\rightarrow Need for an automated framework for the inclusion of non-perturbative effects.

We provide such a framework for the relic density calculation for colored mediators.

Name	DM	Mediators	Parameters
S3M_uni	$\tilde{\chi}$	$\varphi_{Q_f},\varphi_{u_f},\varphi_{d_f}$	$M_{arphi},\ M_{\chi},\ \lambda_{arphi}$
S3D_uni	X		
S3M_3rd	$\tilde{\chi}$	$arphi_{Q_3},arphi_{u_3},arphi_{d_3}$	
S3D_3rd	χ		
S3M_uR	$\tilde{\chi}$	φ_{u_1}	
S3D_uR	χ		
F3S_uni	$ ilde{S}$	$\psi_{Q_f},\psi_{u_f},\psi_{d_f}$	$M_S,M_\psi,\hat\lambda_\psi$
F3C_uni	S		
F3S_3rd	\tilde{S}	$\psi_{Q_3},\psi_{u_3},\psi_{d_3}$	
F3C_3rd	S		
F3S_uR	\tilde{S}	ψ_{u_1}	
F3C_uR	S		
F3V_uni	$ ilde{V}_{\mu}$	$\psi_{Q_f},\psi_{u_f},\psi_{d_f}$	$M_V,M_\psi,\hat\lambda_\psi$
F3W_uni	V_{μ}		
F3V_3rd	\tilde{V}_{μ}	$\psi_{Q_3},\psi_{u_3},\psi_{d_3}$	
F3W_3rd	V_{μ}		
F3V_uR	\tilde{V}_{μ}	ψ_{u_1}	
F3W_uR	V_{μ}		

[Arina et al. (2020)]

SFB 1258 Neutrinos Dark Matter Dark Matter Morsonare

Simplified dark matter models and nonperturbative effects (II)

Tools for relic density calculation with perturbative cross sections exist abundantly.

\rightarrow Need for an automated framework for the inclusion of non-perturbative effects.

We provide such a framework for the relic density calculation for colored mediators.

This talk: Four representative examples

	up-quark	top-quark	
Scalar	S3MuR:	S3MtR:	
mediator	$\mathcal{L}_{\text{int}} = g_{\text{DM}} \left(\overline{\chi} X^{\dagger} u_R + \overline{u}_R X \chi \right)$	$\mathcal{L}_{\text{int}} = g_{\text{DM}} \left(\overline{\chi} X^{\dagger} t_R + \overline{t}_R X \chi \right)$	
Fermionic	F3SuR:	F3StR:	
mediator	$\mathcal{L}_{\text{int}} = g_{\text{DM}} \left(\overline{X} \chi u_R + \overline{u}_R \chi X \right)$	$\mathcal{L}_{\text{int}} = g_{\text{DM}} \left(\overline{X} \chi t_R + \overline{t}_R \chi X \right)$	

[Arina et al. (2020)]

Parameter space

Parameter space

$$\Gamma^{\chi \to X} \gg H(T = m_X);$$
 coannihilation
 $\Gamma^{\chi \to X} \sim H(T = m_X);$ coscattering/conversion-driven
 $\Gamma^{\chi \to X} \ll H(T = m_X);$ super-WIMP/freeze-in

Parameter space

We focus on the coannihilation regime

 $\begin{array}{l} \Gamma^{\chi \to X} \gg H(T=m_X); \quad \mbox{coannihilation} \\ \Gamma^{\chi \to X} \sim H(T=m_X); \quad \mbox{coscattering/conversion-driven} \\ \Gamma^{\chi \to X} \ll H(T=m_X); \quad \mbox{super-WIMP/freeze-in} \end{array}$

Setup of the computation

 $<\sigma v>_{\rm total} = <S\sigma v>_{\rm eff} + <\sigma_{\rm BSF}v>_{\rm eff}$

Setup of the computation

All perturbative (co-)annihilations automatically calculated by micrOMEGAs

 $<\sigma v>_{\rm total} = <\mathcal{S}\sigma v>_{\rm eff} + <\sigma_{\rm BSF}v>_{\rm eff}$

Setup of the computation

All perturbative (co-)annihilations automatically calculated by micrOMEGAs

 $<\sigma v>_{\rm total} = < S \sigma v>_{\rm eff} + < \sigma_{\rm BSF} v>_{\rm eff}$

Sommerfeld enhancement for s-wave annihilations with the color structure

$$\mathbf{3}\otimes ar{\mathbf{3}} = \mathbf{1}\oplus \mathbf{8}$$

 $\mathbf{3}\otimes\mathbf{3}=\mathbf{ar{3}}\oplus\mathbf{6}$

SFB 1258 Neutrinos Dark Matter Messengers

Setup of the computation

Color decomposition splits the cross section into an enhanced (attractive configuration) and a suppressed part (repulsive configuration).

$$V(r)_{\mathbf{R}_{1}\otimes\mathbf{R}_{2}\to\hat{\mathbf{R}}} = -\frac{\alpha_{s}}{2r} \left(C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right) \quad \stackrel{[\mathsf{EI Hedri\,et}}{\text{al. (2017)]}}$$

We use explicitly

$$\mathcal{S}\sigma = \left[c_{0,[\mathbf{1}]}S_0\left(\frac{4}{3}\frac{\alpha_s}{v_{\rm rel}}\right) + c_{0,[\mathbf{8}]}S_0\left(-\frac{1}{6}\frac{\alpha_s}{v_{\rm rel}}\right) + c_{0,[\mathbf{\bar{3}}]}S_0\left(\frac{2}{3}\frac{\alpha_s}{v_{\rm rel}}\right) + c_{0,[\mathbf{6}]}S_0\left(-\frac{1}{3}\frac{\alpha_s}{v_{\rm rel}}\right)\right]\sigma_0 + \dots$$

with
$$S_0\left(\frac{\alpha_{\rm eff}}{v_{\rm rel}}\right) = \frac{\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}{1 - e^{-\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}}$$

Color decomposition splits the cross section into an enhanced (attractive configuration) and a suppressed part (repulsive configuration).

$$V(r)_{\mathbf{R}_{1}\otimes\mathbf{R}_{2}\to\hat{\mathbf{R}}} = -\frac{\alpha_{s}}{2r} \left(C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right) \quad \stackrel{[\mathsf{EI Hedri et}}{\text{al. (2017)}}$$

We use explicitly

$$\mathcal{S}\sigma = \left[c_{0,[\mathbf{1}]}S_0\left(\frac{4}{3}\frac{\alpha_s}{v_{\rm rel}}\right) + c_{0,[\mathbf{8}]}S_0\left(-\frac{1}{6}\frac{\alpha_s}{v_{\rm rel}}\right) + c_{0,[\mathbf{\bar{3}}]}S_0\left(\frac{2}{3}\frac{\alpha_s}{v_{\rm rel}}\right) + c_{0,[\mathbf{6}]}S_0\left(-\frac{1}{3}\frac{\alpha_s}{v_{\rm rel}}\right)\right]\sigma_0 + \dots$$

Only $\mathcal{O}(v_{rel}^0)$

Sommerfeld enhancement

with

$$S_0\left(\frac{\alpha_{\rm eff}}{v_{\rm rel}}\right) = \frac{\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}{1 - e^{-\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}}$$

Color decomposition splits the cross section into an enhanced (attractive configuration) and a suppressed part (repulsive configuration).

$$V(r)_{\mathbf{R}_{1}\otimes\mathbf{R}_{2}\to\hat{\mathbf{R}}} = -\frac{\alpha_{s}}{2r} \left(C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right) \quad \stackrel{[\mathsf{EI Hedri et}}{_{\mathsf{al. (2017)]}}}$$

We use explicitly

$$\mathcal{S}\sigma = \left[c_{0,[\mathbf{1}]}S_0\left(\frac{4}{3}\frac{\alpha_s}{v_{\rm rel}}\right) + c_{0,[\mathbf{8}]}S_0\left(-\frac{1}{6}\frac{\alpha_s}{v_{\rm rel}}\right) + c_{0,[\mathbf{3}]}S_0\left(\frac{2}{3}\frac{\alpha_s}{v_{\rm rel}}\right) + c_{0,[\mathbf{6}]}S_0\left(-\frac{1}{3}\frac{\alpha_s}{v_{\rm rel}}\right)\right]\sigma_0 + \dots$$

Only $\mathcal{O}(v_{rel}^0)$

4 coefficients needed

n - a

Sommerfeld enhancement

with

$$S_0\left(\frac{\alpha_{\rm eff}}{v_{\rm rel}}\right) = \frac{\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}{1 - e^{-\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}}$$

Color decomposition splits the cross section into an enhanced (attractive configuration) and a suppressed part (repulsive configuration).

$$V(r)_{\mathbf{R}_{1}\otimes\mathbf{R}_{2}\rightarrow\hat{\mathbf{R}}} = -\frac{\alpha_{s}}{2r} \left(C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right) \quad [\text{El Hedri et al. (2017)}]$$
We use explicitly
$$S\sigma = \left[c_{0,[\mathbf{1}]}S_{0} \left(\frac{4}{3} \frac{\alpha_{s}}{v_{\text{rel}}} \right) + c_{0,[\mathbf{8}]}S_{0} \left(-\frac{1}{6} \frac{\alpha_{s}}{v_{\text{rel}}} \right) + c_{0,[\mathbf{3}]}S_{0} \left(\frac{2}{3} \frac{\alpha_{s}}{v_{\text{rel}}} \right) + c_{0,[\mathbf{6}]}S_{0} \left(-\frac{1}{3} \frac{\alpha_{s}}{v_{\text{rel}}} \right) \right] \sigma_{0} + \dots$$

Only $\mathcal{O}(v_{rel}^0)$

4 coefficients needed

 $\eta - \epsilon$

Sommerfeld enhancement

with

$$S_0\left(\frac{\alpha_{\rm eff}}{v_{\rm rel}}\right) = \frac{\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}{1 - e^{-\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}}$$

Sommerfeld effect for colored particles

Color decomposition splits the cross section into an enhanced (attractive configuration) and a suppressed part (repulsive configuration).

$$V(r)_{\mathbf{R}_{1}\otimes\mathbf{R}_{2}\rightarrow\hat{\mathbf{R}}} = -\frac{\alpha_{s}}{2r} \left(C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right) \quad \stackrel{[\mathsf{El \, Hedri\, et}}{\mathsf{al. \, (2017)]}}$$
We use explicitly
$$S\sigma = \left[c_{0,[\mathbf{1}]}S_{0} \left(\frac{4}{3} \frac{\alpha_{s}}{v_{\mathrm{rel}}} \right) + c_{0,[\mathbf{8}]}S_{0} \left(-\frac{1}{6} \frac{\alpha_{s}}{v_{\mathrm{rel}}} \right) + c_{0,[\mathbf{\bar{3}}]}S_{0} \left(\frac{2}{3} \frac{\alpha_{s}}{v_{\mathrm{rel}}} \right) + c_{0,[\mathbf{6}]}S_{0} \left(-\frac{1}{3} \frac{\alpha_{s}}{v_{\mathrm{rel}}} \right) \right] \sigma_{0} + \dots$$
where $\mathcal{O}(v_{\mathrm{rel}}^{2})$

Only $\mathcal{O}(v_{rel}^0)$

4 coefficients needed

0

Sommerfeld enhancement

with

$$S_0\left(\frac{\alpha_{\rm eff}}{v_{\rm rel}}\right) = \frac{\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}{1 - e^{-\frac{2\pi\alpha_{\rm eff}}{v_{\rm rel}}}}$$

Coefficients for the color decomposition are not uniquely determined by the inital and final state representations.

[Giacchino, Lopez-Honorez et al. (2016)] [El Hedri et al. (2017)]

Coefficients for the color decomposition are not uniquely determined by the inital and final state representations.

1) If final state particles are identical, CP symmetry enforces selection rules that make the c_1 dependent on spin and angular momentum. [Giacchino, Lopez-Honorez et al. (2016)] [El Hedri et al. (2017)]

Coefficients for the color decomposition are not uniquely determined by the inital and final state representations.

[Giacchino, Lopez-Honorez et al. (2016)] [El Hedri et al. (2017)]

 If final state particles are identical, CP symmetry enforces selection rules that make the c_l dependent on spin and angular momentum.

Coefficients for the color decomposition are not uniquely determined by the inital and final state representations.

1) If final state particles are identical, CP symmetry enforces selection rules that make the c_l dependent on spin and angular momentum.

2) t-channel interactions lead to interferences to c_l that depend on all parameters of the model (m_{X_i}, m_q, m_{DM_i} $g_{DM}, \alpha_{QCD}, \alpha_{QED}$). [Giacchino, Lopez-Honorez et al. (2016)] [El Hedri et al. (2017)]

Coefficients for the color decomposition are not uniquely determined by the inital and final state representations.

1) If final state particles are identical, CP symmetry enforces selection rules that make the c_1 dependent on spin and angular momentum.

2) t-channel interactions lead to interferences to c_l that depend on all parameters of the model (m_{X_i}, m_q, m_{DM_i} $g_{DM}, \alpha_{QCD}, \alpha_{QED}$). [Giacchino, Lopez-Honorez et al. (2016)] [El Hedri et al. (2017)]

To order v_{rel}^0 and assuming $g_s \simeq g_{DM} >> g_w, g_Y$, there is a simplified color decomposition for scalar and fermionic mediators \rightarrow "Default settings"

$$\mathcal{S}\sigma^{gg} \simeq \left(\frac{2}{7}S_0^{[\mathbf{1}]} + \frac{5}{7}S_0^{[\mathbf{8}]}\right)\sigma_0^{gg}$$

Scalar & fermionic mediators

$$\mathcal{S}\sigma^{q\bar{q}} \simeq \left(\frac{1}{9}S_0^{[\mathbf{1}]} + \frac{8}{9}S_0^{[\mathbf{8}]}\right)\sigma_0^{q\bar{q}}$$

Scalar & fermionic mediators

$$\mathcal{S}\sigma^{qq} \simeq \left(0 \cdot S_0^{[\mathbf{\bar{3}}]} + 1 \cdot S_0^{[\mathbf{6}]}\right) \sigma_0^{qq}$$

 $\mathcal{S}\sigma^{qq} \simeq \left(\frac{1}{3}S_0^{[\mathbf{\bar{3}}]} + \frac{2}{3}S_0^{[\mathbf{6}]}\right)\sigma_0^{qq}$

Fermionic mediators

Scalar mediators

Network of Boltzmann equations for excited states can be simplified to one and an effective bound state formation cross section can be obtained.

[Garny & Heisig (2022)] [Binder, Petraki et al. (2022)] Binder, Garny et al. (2023)]

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \sum_{i} \langle \sigma_{\text{BSF},i} v \rangle \left(1 - (M)_{ij}^{-1} \frac{\langle \Gamma_{i\text{on}}^{j} \rangle}{\langle \Gamma^{j} \rangle} \right)$$

Network of Boltzmann equations for excited states can be simplified to one and an effective bound state formation cross section can be obtained.

[Garny & Heisig (2022)] [Binder, Petraki et al. (2022)] Binder, Garny et al. (2023)]

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \sum_{i} \langle \sigma_{\text{BSF},i} v \rangle \left(1 - (M)_{ij}^{-1} \frac{\langle \Gamma_{i\text{on}}^{j} \rangle}{\langle \Gamma^{j} \rangle} \right)$$

Network of Boltzmann equations for excited states can be simplified to one and an effective bound state formation cross section can be obtained.

[Garny & Heisig (2022)] [Binder, Petraki et al. (2022)] Binder, Garny et al. (2023)]

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \sum_{i} \langle \sigma_{\text{BSF,i}} v \rangle \left(1 - (M)_{ij}^{-1} \frac{\langle \Gamma_{\text{ion}}^j \rangle}{\langle \Gamma^j \rangle} \right)$$

$$M_{ij} = \delta_{ij} - \frac{\langle \Gamma_{\text{trans}}^{i \to j} \rangle}{\langle \Gamma^i \rangle} \qquad \Gamma^i = \langle \Gamma_{\text{dec}}^i \rangle + \langle \Gamma_{\text{ion}}^i \rangle + \sum_{j \neq i} \langle \Gamma_{\text{trans}}^{i \to j} \rangle$$

Network of Boltzmann equations for excited states can be simplified to one and an effective bound state formation cross section can be obtained.

[Garny & Heisig (2022)] [Binder, Petraki et al. (2022)] Binder, Garny et al. (2023)]

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \sum_{i} \langle \sigma_{\text{BSF,i}} v \rangle \left(1 - (M)_{ij}^{-1} \frac{\langle \Gamma_{\text{ion}}^j \rangle}{\langle \Gamma^j \rangle} \right)$$

$$M_{ij} = \delta_{ij} - \frac{\langle \Gamma_{\text{trans}}^{i \to j} \rangle}{\langle \Gamma^i \rangle} \qquad \Gamma^i = \langle \Gamma_{\text{dec}}^i \rangle + \langle \Gamma_{\text{ion}}^i \rangle + \sum_{j \neq i} \langle \Gamma_{\text{trans}}^{i \to j} \rangle$$

In the coannihilation regime, including only the ground state is usually sufficient.

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \langle \sigma_{BSF,n=1} v \rangle \frac{\langle \Gamma_{\text{dec}}^{n=1} \rangle}{\langle \Gamma_{\text{ion}}^{n=1} \rangle + \langle \Gamma_{\text{dec}}^{n=1} \rangle} \quad \text{with} \quad v_{\text{rel}} \frac{d\sigma_{\mathbf{k} \to \{100\}}}{d\Omega} = \frac{|\mathbf{P}_g|}{64\pi^2 M^2 \mu} \left(|\mathcal{M}_{\mathbf{k} \to \{100\}}|^2 - |\hat{\mathbf{P}}_g \cdot \mathcal{M}_{\mathbf{k} \to \{100\}}|^2 \right) \left(|\hat{\mathbf{M}}_{\mathbf{k} \to \{100\}}|^2 - |\hat{\mathbf{P}}_g \cdot \mathcal{M}_{\mathbf{k} \to \{100\}}|^2 \right) = \frac{|\mathbf{M}_g|}{64\pi^2 M^2 \mu} \left(|\mathcal{M}_{\mathbf{k} \to \{100\}}|^2 - |\hat{\mathbf{P}}_g \cdot \mathcal{M}_{\mathbf{k} \to \{100\}}|^2 \right) \left(|\hat{\mathbf{M}}_{\mathbf{k} \to \{100\}}|^2 - |\hat{\mathbf{M}}_{\mathbf{k} \to \{100\}}|^2 \right) \right)$$

SFB 1258

Network of Boltzmann equations for excited states can be simplified to one and an effective bound state formation cross section can be obtained.

[Garny & Heisig (2022)] [Binder, Petraki et al. (2022)] Binder, Garny et al. (2023)]

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \sum_{i} \langle \sigma_{\text{BSF},i} v \rangle \left(1 - (M)_{ij}^{-1} \frac{\langle \Gamma_{\text{ion}}^{j} \rangle}{\langle \Gamma^{j} \rangle} \right)$$

$$M_{ij} = \delta_{ij} - \frac{\langle \Gamma_{\text{trans}}^{i \to j} \rangle}{\langle \Gamma^{i} \rangle} \qquad \Gamma^{i} = \langle \Gamma_{\text{dec}}^{i} \rangle + \langle \Gamma_{\text{ion}}^{i} \rangle + \sum_{j \neq i} \langle \Gamma_{\text{trans}}^{i \to j} \rangle$$

In the coannihilation regime, including only the ground state is usually sufficient.

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \langle \sigma_{BSF,n=1} v \rangle \frac{\langle \Gamma_{\text{dec}}^{n=1} \rangle}{\langle \Gamma_{\text{ion}}^{n=1} \rangle + \langle \Gamma_{\text{dec}}^{n=1} \rangle} \quad \text{with} \quad v_{\text{rel}} \frac{d\sigma_{\mathbf{k} \to \{100\}}}{d\Omega} = \frac{|\mathbf{P}_g|}{64\pi^2 M^2 \mu} \left(|\mathcal{M}_{\mathbf{k} \to \{100\}}|^2 - |\hat{\mathbf{P}}_g \cdot \mathcal{M}_{\mathbf{k} \to \{100\}}|^2 \right) \left(|\hat{\mathbf{M}}_{\mathbf{k} \to \{100\}}|^2 - |\hat{\mathbf{P}}_g \cdot \mathcal{M}_{\mathbf{k} \to \{100\}}|^2 \right) = \frac{|\mathbf{M}_g|}{64\pi^2 M^2 \mu} \left(|\mathcal{M}_{\mathbf{k} \to \{100\}}|^2 - |\hat{\mathbf{M}}_g \cdot \mathcal{M}_{\mathbf{k} \to \{100\}}|^2 \right) \left(|\hat{\mathbf{M}}_{\mathbf{k} \to \{100\}}|^2 - |\hat{\mathbf{M}}_g \cdot \mathcal{M}_{\mathbf{k} \to \{100\}}|^2 \right) \right)$$

Cross sections and rates available in the literature:

Limiting scenarios for excited bound states

1) At early times: **Ionization** equilibrium:

 $\Gamma_{\rm ion}^i >> \Gamma_{\rm dec}^i, \Gamma_{\rm trans}^{ij}$

[Garny & Heisig (2022)]

$$<\sigma_{BSF}v>_{\text{eff}}=\sum_{i}\frac{g_{\mathcal{B}_{i}}}{g_{X}^{2}}\left(\frac{2\pi m_{\mathcal{B}_{i}}}{Tm_{X}^{2}}\right)^{3/2}e^{E_{\mathcal{B}_{i}}/T}\Gamma_{\text{dec}}^{i}$$

. .

2) Efficient transition limit:
$$\Gamma_{\text{trans}}^{ij} >> \Gamma_{\text{dec}}^{i}, \Gamma_{\text{ion}}^{i}$$

 $< \sigma_{BSF}v >_{\text{eff}} = < \sigma_{BSF}v >_{\text{sum}} \frac{\Gamma_{\text{dec}}^{\text{eff}}}{\Gamma_{\text{ion}}^{\text{eff}} + \Gamma_{\text{dec}}^{\text{eff}}} \qquad \Gamma_{\text{ion/dec}}^{\text{eff}} = \frac{\sum_{i} \Gamma_{\text{ion/dec}}^{i} Y_{\mathcal{B}_{i}}^{\text{eq}}}{Y_{\mathcal{B}}^{\text{eq}}}$
3) No transition limit: $\Gamma_{\text{dec}}^{i} >> \Gamma_{\text{ion}}^{i}, \Gamma_{\text{trans}}^{ij}$
 $< \sigma_{BSF}v >_{\text{eff}} = \sum_{i} < \sigma_{BSF,i}v > \frac{\Gamma_{\text{dec}}^{i}}{\Gamma_{\text{ion}}^{i} + \Gamma_{\text{dec}}^{i}}$

Bound state formation cross section **never freezes-out** for colored DM candidates (but they do for coannihilation).

[Binder et al. (2023)]

Bound state formation cross section **never freezes-out** for colored DM candidates (but they do for coannihilation).

[Binder et al. (2023)]

Dominant contribution during freeze-out comes from the **ground state (n = 1)**

$$\langle \sigma_{
m eff} v_{
m rel}
angle = \sum_{ij} \langle \sigma_{ij} v_{
m rel}
angle rac{Y_i^{
m eq} Y_j^{
m eq}}{\widetilde{Y}_{
m eq}^2} \propto e^{-2\delta x}$$

Bound state formation cross section **never freezes-out** for colored DM candidates (but they do for coannihilation).

[Binder et al. (2023)]

Dominant contribution during freeze-out comes from the **ground state (n = 1)**

$$\langle \sigma_{
m eff} v_{
m rel}
angle = \sum_{ij} \langle \sigma_{ij} v_{
m rel}
angle rac{Y_i^{
m eq} Y_j^{
m eq}}{\widetilde{Y}_{
m eq}^2} \propto e^{-2\delta x}$$

Cross sections for fermionic mediators

Cross sections for fermionic mediators

Triplet contributions negligible as expected → Only relevant at very **late times**

Cross sections for fermionic mediators

Triplet contributions negligible as expected → Only relevant at very **late times**

Transitions are **much more efficient** for triplet states

Outline

Simplified dark matter models and long-range effects

Sommerfeld effect and bound state formation for colored mediators

Workflow of the code

Showcases of our computational framework

Workflow of the code

Workflow of the code

Sommerfeld file

♥ improveCrossSection_Sommerfeld.cpp			
C: > Users > marti > Documents > t chann DM > micromeaas 6.0.3 > S3MuR > lib > 💁 improveCrossSection Sommerfeld.cop			
1 #include"//include/micromegas.h"			
2 #include"//include/micromegas_aux.h"			
3 #include"//Packages/SE_BSF/SE_BSF_header.h"			
4			
<pre>5 int somm_flag = 0; // Flag for Sommerfeld effect (0 = not active, 1 = active, else = user defined)</pre>			
6			
7 double SommerfeldFactor_BSMmodel(double alphaQCD, double vrel, int c1, int c2, int c3, int c4, long n1, long n2, long n3, long n4)			
8 { /* This function calculates the Sommerfeld factor for a BSM model			
9 according to the color decomposition implemented by the user.			
10 alphaQLD is the value of the strong coupling at the appropriate scale, viel the relative velocity,			
11 (1 and n1; 1 = 1,2,3,4; are the dimensions of the SU(N) representation and the names of the particles in the process, respectively.			
12 13 Periodity the ware has to be to dept the "if, alor" black scending to the connect color decomposition */			
basically, the user has to have the ifelse block according to the correct color decomposition/			
17 15 double cfacted /3 - double cfactor / 6 - double cfactor /3 - double cfactor /3 - //cfactic the coefficient of the counting in the ADGIMENT of the Sommerfeld factor			
15 double bfarlas, double bfarlas / d			
10 addie Avral-0, doubie Avral-0, doubie Avral-0, doubie Avral-0, //Avral-15 the Contribution of the Sommerfeld factor coming from the Color decomposition 17 doubie zeta-0, doubie zeta-0, doubie zeta-0, doubie zeta-0, // zeta = bioba group/viel			
19			
20 // **********************************			
21			
22 if((c1==3&&c2==-3) (c1==-3&&c2==3)){ // Y Y^\dagger process			
23 $if(c3==18\&c4==1){//most frequent case: Both final states are colour singlets 3 \times 3 \rightarrow$			
24 kQfac1=1.; //for all partial waves			
25 }			
27 if (c3==88ac4==8) (//gg final state $3 \otimes 3 \rightarrow 1 \oplus 8(aa)$			
28 ktrac1=2./7.; ktrac8=5./7.; $\mathbf{U} \otimes \mathbf{U} = \mathbf{U} \otimes \mathbf{U}$			
29 }			
<pre>31 In((c)==)ma(===)/((c)==)ma(==)/(32</pre>			
1 Interference terms in the color decomposition are neglected for now */ $0 \subset 0$, $1 \oplus 0 (-1)$			
$3 \times 3 \rightarrow 1 \oplus 8(aa)$			
35 k0fac1 = 1./9.:			
36 kQfac8=8./9.; // for all partial waves in the case gDM >> g s*vrel			
37			
38			
39 $if((c3!=8&c4==8) (c3==8&c4!=8)){/g + Z/gamma. This is purely adjoint for all partial waves. 9 \longrightarrow \overline{9}$			
40			
42 }			
43			
44 11((Cl==3&&C2=3) (Cl==-3&&C2==3) / // XX or X^\dagger Process			
$\begin{array}{c} 45 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46 \\ 46 \\$			
$\begin{array}{c} 40 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 1$			
4/ KUTACO=1.; //q_1 q_1 tinai state.			

Sommerfeld file

Ge improveCrossSection_Sommerfeld.cpp				
C > Lisers > marti > Documents > t chann DM > micromenas 6.0.3 > S3MuR > lib > C improveCrossSection Sommerfeld con				
1	1 #include"/include/minromemas.h"			
2	2 #include"//include/micromegas_aux.h"			
3	#inclode"//Packages/SE_0SP_SE_0SF_incader			
4				
5	int somm_flag = 0; // Flag for Sommerfeld effect (0 = not active, 1 = active, else = user defined)			
7	double SommerfeldFactor BSMmodel(double alphaOCD, double vrel, int c1, int c2, int c3, int c4, long n1, long n2, long n3, long n4)			
8	8 { /* This function calculates the Sommerfeld factor for a BSM model			
9	9 according to the color decomposition implemented by the user.			
10	alphaQCD is the value of the strong coupling at the appropriate scale, vrel the relative velocity,			
11	ci and ni; i = 1,2,3,4; are the dimensions of the SU(N) representation and the names of the particles in the process, respectively.			
12				
13	Basically, the user has to has to adapt the "ifelse" block according to the correct color decomposition. */			
15	double cfacl=4./3.: double cfacR=1./6.: double cfacB=2./3.: double cfacB=1./3.: //cfac is the coefficient of the counling in the ARGUMENT of the Sommerfeld factor			
16	double kOfac1=0; double kOfac8=0; double kOfac6=0; //kOfac is the coefficient IN FRONT OF the Sommerfeld factor coming from the color decomosition			
17	<pre>// double zetal=0; double zetal=0; double zetal=0; double zetal=0; // zeta = alpha_group/vrel</pre>			
18				
19				
20	// ***********************************			
21	5///1-288-2 2)11//1 288-22)1//// X VA/demon pages			
22	$\frac{1}{4}\left(\frac{1-1}{2}-\frac{1}{2}\right)\left(\frac{1-1}{2}-\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}-\frac{1}{2}-\frac{1}{2}\right)\left(\frac{1}{2}+\frac{1}{2}-\frac$			
24	$1 = 1, 1/1$ for all particular waves are conversioned singlets $\mathbf{J} \otimes \mathbf{J} \rightarrow \mathbf{L}$			
25				
26				
27	if(c3==88&c4==8){ //gg final state $2 \otimes 2 \longrightarrow 1 \oplus 8(aa)$			
28	$ \mathbf{V}_{kQfacl=2.7.; kQfacs=5.7.; } \mathbf{J} \otimes \mathbf{J} \rightarrow \mathbf{L} \oplus \mathbf{O}(\mathbf{g}\mathbf{g}) $			
29				
30				
32	<pre>IT((C)==:bac(4==-))((C)==:bac(4===))); (* This is the tricky of pass change 1 as elaborated in our publication</pre>			
33	Interference tens in the color decomposition are neglected for now */ $9 \odot \overline{9} \rightarrow 1 \oplus 9 (-\overline{3})$			
34	$3 \otimes 3 \rightarrow 1 \oplus 8(qq)$			
35	kQfac1 = 1./9.;			
36	kQfac8=8./9.; // for all partial waves in the case gDM >> g_s*vrel			
37				
38				
39	$1 + ((C_3) = 888C_4 = 8))((C_3 = 888C_4 = 8))(//g + 2/(gamma. Inis is purely adjoint for all partial waves. 3 3 \rightarrow 8$			
40				
42	}			
43				
44	if((c1==3&&c2==3) (c1==-3&&c2==-3)){ // XX or X^\dagger Process			
45	$ = \inf\{(n!=n_2) \ \{kQfac_3=1,/3,; \ kQfac_6=2,/3,;\} \ //q_i \ q_j \ final \ state $			
46	$\mathbf{J} \subseteq \mathbf{U} \subseteq \mathbf{U} \subseteq \mathbf{U} \subseteq \mathbf{U}$			
4/	Kųtato=1.; //q_1 q_1 tinai <u>state</u> .			
49				
50	// ***********************************			

Turning Sommerfeld on/off

Sommerfeld file

C improveCrossSection_Sommerfeld.cpp	
C: > Users > marti > Documents > t_chann_DM > micromegas_6.0.3 > S3MuR > lib > C: improveCrossSection_Sommerfeld.cpp	
1 #include"//include/micromegas.h"	- ·
2 #include"/include/micromegas_aux.h"	lurning
4	rannig
5 int somm_flag = 0; // Flag for Sommerfeld effect (0 = not active, 1 = active, else = user defined)	Sommerfeld
6	Commencia
7 double SommerfeldFactor_BSMmodel(double alphaQCD, double vrel, int c1, int c2, int c3, int c4, long n1, long n2, long n3, long n4) 9 (4) This function solutions the Sommerfeld factor for a PSM model	on/off
9 According to the color decomposition implemented by the user.	01/01
10 alphaQCD is the value of the strong coupling at the appropriate scale, vrel the relative velocity,	
11 ci and ni; i = 1,2,3,4; are the dimensions of the SU(N) representation and the names of the particles in the process, respectively.	
12	
Basically, the user has to has to adapt the "ifelse" block according to the correct color decomposition. */	
17 double cfacl=4./3.; double cfac8=-1./6.; double cfac3=2./3.; double cfac6=-1./3.; //cfac is the coefficient of the coupling in the ARGUMENT of the Sommerfeld factor	
16 double kQfac1=0.; double kQfac8=0.; double kQfac3=0.; double kQfac6=0.; //kQfac is the coefficient IN FRONT OF the Sommerfeld factor coming from the color decomposition	
<pre>17 double zeta1=0.; double zeta3=0.; double zeta8=0.; double zeta6=0.; // zeta = alpha_group/vrel</pre>	
19 20 // **********************************	
22 if((c1==3&&c2==-3) (c1==-3&&c2==3)){ // Y Y^\dagger process	
23 if(c3==18&c4==1){ // most frequent case: Both final states are colour singlets 3 (∑) 3 →	
24 kQfacl=1.; //for all partial waves	
25 } 26	
$\frac{1}{27}$ if (c3==868c4==8) (//gg final state $9 \odot \mathbf{\overline{9}}$) $1 \odot 9 (\mathbf{\alpha}, \mathbf{\alpha})$	
28 kQfac1=2./7.; kQfac8=5./7.; $\mathbf{a} \otimes \mathbf{a} \to \mathbf{I} \oplus \mathbf{O}(\mathcal{U}\mathcal{U})$	
	Coefficients of
<pre>31 11((C3==3&&C4==-3))(C3==-3&C4==3)/(32</pre>	
33 Interference terms in the color decomposition are neglected for now */ $2 \odot \overline{2} \rightarrow 1 \oplus 2 (\infty, \overline{2})$	
34 36 37 37 37	
35 kQfac1 = 1./9.;	
36 kQfac8=8./9.; // for all partial waves in the case gDM >> g_s*vrel	decomposition
37 }	accomposition
$\frac{1}{39}$ if $(r_3) = 888r_4 = 8 \frac{1}{(r_3)} (r_3 = 888r_4 = 8) (r_3 = 888r_4 = 8$	
40 kQfac8=1.; $3 \otimes 3 \rightarrow 8$	
41 }	
42 }	
43 44 if/(-1389-13))/(-1389-13))/(// W op V0/demon V0/demon Process	
44 $IT((Cl=2)GR(2=2))[(Cl=2=3GR(2=2))]/// A Or A '\addregger A '\addreg$	
$\begin{array}{c c} \hline \\ \hline $	
47 kQfac6=1.; //q_i q_i final state.	
48 }	
So //	

SFB 1258 Neutrinos Dark Matter Messengers

Bound State file

• improveCrossSection_Sommerfeld.cpp	🕒 BoundStateFormation.cpp 🔹					
C: > Users > marti > Documents > t_chann_DM > micromegas_6.0.3 > S3MuR > lib > 🕒 BoundStateFormation.cpp						
<pre>1 #include"//include/microme</pre>	#include"//include/micromegas.h"					
<pre>2 #include"//include/microme</pre>	#include"//include/micromegas aux.h"					
<pre>3 #include"//Packages/SE_BSF</pre>	3 #include"//Packages/SE_BSF/SE_BSF header.h"					
<pre>4 #include"//Packages/SE_BSF</pre>	4 #include"//Packages/SE_BSF/SE_BSF_functions.cpp"					
5						
6 /* In this file, the user has	to supply some details of the model for BSF. The fillowing information needs to be provided:					
7						
8 1) The BSF scenario/limit						
9						
10 2) The number of excited stat	ies to be considered					
11	numbialas and anti numbialas					
12 3) The humber of dark sector	particles and anti-particles.					
14 (1) The PDG code(s) (integers)) of the distinguishable mediators/particles undergoing RSE in an array baying the number of hinding mediators as size					
15 */	of the distinguishable mediators/particles undergoing bir in an array having the humber of binding mediators as size.					
16						
17 int bsf scenario = 0; //Flag f	For BSF (0 = no BSF, 1 = no transition limit, 2 = efficient transition limit, 3 = ionization equilibrium, 4 = Full matrix solution)					
18						
<pre>19 int num_excited_states = 0; //</pre>	/Number of n states included in the calculation (n = 0 -> no bound states, n = 1 -> ground state etc.)					
20						
21 const int num_of_mediators = 7	7; //Number of DIFFERENT=DISTINGUISHABLE particles in the dark sector					
22						
23 int pdg_nums_mediators[num_of_	_mediators] = {52, 2000002, -2000002, 2000004, -2000004, 2000006, -2000006}; //define the PDG number(s) of dark sector particles					
24						
25 // **********************************	END USER DEFINITION ************************************					
26						
27 double BoundStateCoannihilatio	<pre>in(double){ /* This function can be modified by the user according to the theory at hand.</pre>					
28 IT CALCULATES THE (CO-)ANNINI	acion terms for bound state formation in the spirit of eqns. (2.3) - (2.10) of arXiv:2203.04326v2.					
29 > IT LETT UNCHAnged, IT Calculat	les the BSF in all possible coanninilation pairings. "/					
/ C/						

+ improveCrossSection_Sommerfeld.cpp • G• BoundStateFormation.cpp •						
:> Users > marti > Documents > t_chann_DM > micromegas_6.0.3 > S3MuR > lib > 🕒 BoundStateFormation.cpp						
1	<pre>#include"//include/micromegas.h"</pre>					
2	#include"//include/micromegas_aux.h"					
3	<pre>#include"//Packages/SE_BSF/SE_BSF_header.h"</pre>					
4	<pre>#include"//Packages/SE_BSF/SE_BSF_functions.cpp"</pre>					
5						
6	/* In this file, the user has to supply some details of the model for BSF. The fillowing information needs to be provided:					
7	a) The DOT eccentric (limit					
8	1) The BSF Scenario/limit					
10	2) The number of excited states to be considered					
11						
12	3) The number of dark sector particles and anti-particles.					
13						
14	4) The PDG code(s) (integers) of the distinguishable mediators/particles undergoing BSF in an array having the number of binding mediators as size.					
15	*/					
16						
17	int bsf_scenario = 0; //Flag for BSF (0 = no BSF, 1 = no transition limit, 2 = efficient transition limit, 3 = ionization equilibrium, 4 = Full matrix solution)					
18						
19	int num_excited_states = 0; //Number of n states included in the calculation (n = 0 -> no bound states, n = 1 -> ground state etc.)					
20	const int num of mediators - 7: //Number of DIEEEPENT-DISTINGUISHADLE particles in the dark sector					
21	Const int num_of_mediators = 7, //Number of Differentialistingoishable particles in the dark sector					
22	int ndg nums mediators[num of mediators] = $\{52, 2000002, -2000002, 2000004, -2000004, 2000006\}$; //define the PDG number(s) of dark sector particles					
24						
25	// ***********************************					
26						
27	double BoundStateCoannihilation(double ⊤){ /* This function can be modified by the user according to the theory at hand.					
28	It calculates the (co-)annihilation terms for bound state formation in the spirit of eqns. (2.3) - (2.10) of arXiv:2203.04326v2.					
29 >	If left unchanged, it calculates the BSF in all possible coannihilation pairings. */…					
73	}					

📴 improveCrossSection_Sommerfeld.cpp 🍨 🗳 BoundStateFormation.cpp III					
C: > Users > marti > Documents > t_chann_DM > micromegas_6.0.3 > S3MuR > lib > 🕒 BoundStateFormation.cpp					
1 #include"//include/micromegas.h"					
2 #include"//include/micromegas_aux.h"					
3 #include"/./Packages/SE_BSF/SE_BSF_header.h"					
4 #include"//Packages/SE_BSF_tunctions.cpp"					
6 /* In this file, the user has to supply some details of the model for BSF. The fillowing information needs to be provided:					
1) The DCE companie/limit					
10 2) The number of excited states to be considered					
10 Z) The humber of excited states to be considered					
3) The number of dark sector particles and anti-particles.					
13					
A A) The PDG code(s) (integers) of the distinguishable mediators/narticles undergoing RSE in an array having the number of hinding mediators as size					
16					
17 int bsf scenario = 0; //Flag for BSF (0 = no BSF, 1 = no transition limit, 2 = efficient transition limit, 3 = ionization equilibrium, 4 = Full matrix solution)					
18					
19 int num excited states = 0; //Number of n states included in the calculation (n = 0 -> no bound states, n = 1 -> ground state etc.)					
20					
<pre>21 const int num_of_mediators = 7; //Number of DIFFERENT=DISTINGUISHABLE particles in the dark sector</pre>					
22					
23 int pdg_nums_mediators[num_of_mediators] = {52, 2000002, -2000002, 2000004, -2000004, 2000006, -2000006}; //define the PDG number(s) of dark sector particles					
24					
25 // **********************************					
26					
27 double BoundStateCoannihilation(double T){ /* This function can be modified by the user according to the theory at hand.					
It calculates the (co-)annihilation terms for bound state formation in the spirit of eqns. (2.3) - (2.10) of arXiv:2203.04326v2.					
29 > If left unchanged, it calculates the BSF in all possible coannihilation pairings. */…					
73 }					

Ge improveCrossSection_Sommerfeld.cpp • Ge BoundStateFormation.cpp •					
<pre>C: > Users > marti > Documents > t_chann_DM > micromegas_6.0.3 > S3MuR > lib ></pre>					
<pre>5 6 /* In this file, the user has to supply some details of the model for BSF. The fillowing information needs to be provided: 7 8 1) The BSF scenario/limit 9</pre>					
2) The number of excited states to be considered 3) The number of dark sector particles and anti-particles.					
<pre>4) The PDG code(s) (integers) of the distinguishable mediators/particles undergoing BSF in an array having the number of binding mediators as size. */ 16 17 int bsf_scenario = 0; //Flag for BSF (0 = no BSF, 1 = no transition limit, 2 = efficient transition limit, 3 = ionization equilibrium, 4 = Full matrix solution) </pre>					
<pre>18 19 19 int num_excited_states = 0; //Number of n states included in the calculation (n = 0 -> no bound states, n = 1 -> ground state etc.) 20 21 const int num of mediators = 7: //Number of DIFFERENT-DISTINGUISHABLE particles in the dark sector.</pre>					
<pre>int pdg_nums_mediators[num_of_mediators] = {52, 2000002, -2000002, 2000004, -2000004, 2000006, -2000006}; //define the PDG number(s) of dark sector particles 24</pre>					
<pre>25 // **********************************</pre>					
28 It calculates the (co-)annihilation terms for bound state formation in the spirit of eqns. (2.3) - (2.10) of arXiv:2203.04326v2. 29 > If left unchanged, it calculates the BSF in all possible coannihilation pairings. */ 73 }					

🗄 improveCrossSection_Sommerfeld.cpp 🔹 🕒 BoundStateFormation.cpp 🔹						
<pre>>Users > marti > Documents > t_chann_DM > micromegas_6.0.3 > S3MuR > lib ></pre>						
<pre>1) The BSF scenario/limit 2) The number of excited states to be considered 11</pre>						
3) The number of dark sector particles and anti-particles. 4) The PDG code(s) (integers) of the distinguishable mediators/particles undergoing BSF in an array having the number of binding mediators as size. */						
<pre>int bsf_scenario = 0; //Flag for BSF (0 = no BSF, 1 = no transition limit, 2 = efficient transition limit, 3 = ionization equilibrium, 4 = Full matrix solution) int num_excited_states = 0; //Number of n states included in the calculation (n = 0 -> no bound states, n = 1 -> ground state etc.) const int num_of_mediators = 7; //Number of DIFFERENT=DISTINGUISHABLE particles in the dark sector</pre>						
<pre>22 23 int pdg nums mediators[num of mediators] = {52, 2000002, -2000002, 2000004, -2000004, 2000006, -2000006}; //define the PDG number(s) of dark sector particles 24 25 // **********************************</pre>						
<pre>27 double BoundStateCoanniniation(double)} /* inis function can be modified by the user according to the theory at hand. 28 It calculates the (co-)annihilation terms for bound state formation in the spirit of eqns. (2.3) - (2.10) of arXiv:2203.04326v2. 29 > If left unchanged, it calculates the BSF in all possible coannihilation pairings. */ 73 }</pre>						

Outline

Simplified dark matter models and long-range effects

Sommerfeld effect and bound state formation for colored mediators

Workflow of the code

Showcases of our computational framework

top-quark

Impact of long-range effects: SE & BSF_{n=6}

up-quark

Allowed bands for $\Omega_{DM} = 0.1200 \pm 0.0050$ (5 σ)

Preliminary!

Scan for S3MuR: SE + BSF_{n=6}

Upper limit on g_{DM} for $\Omega_{DM} = 0.125$ (+5 σ)

Scan for S3MuR: SE + BSF_{n=6}

Upper limit on g_{DM} for $\Omega_{DM} = 0.125$ (+5 σ)

26 / 38

Scan for S3MuR: SE + BSF_{n=6}

Upper limit on g_{DM} for $\Omega_{DM} = 0.125$ (+5 σ)

top-quark

Comparison of models

Upper limit on g_{DM} for $\Omega_{DM} = 0.125$ (+5 σ)

up-quark

Preliminary!

Conclusions & Outlook

Non-perturbative long range effects have **a sizeable impact** on the predicted relic abundance and **soften experimental constraints**.

Simplified dark matter models allow for a universal treatment of these effects, which can be **efficiently incorporated by our framework**.

Impact of Sommerfeld enhancement depends on the dominant annihilation channels and **spin of the mediator**. However, for reasonable approximations, the color decomposition is simple for both types of mediators.

The inclusion of bound state formation **lifts the predicted DM mass and (re-)opens parameter space**.

In the coannihilation regime, excited bound states amount to a correction of (at most) 20%.

Future plans: Work out direct detection and collider limits.

Conclusions & Outlook

Non-perturbative long range effects have **a sizeable impact** on the predicted relic abundance and **soften experimental constraints**.

Simplified dark matter models allow for a universal treatment of these effects, which can be **efficiently incorporated by our framework**.

Impact of Sommerfeld enhancement depends on the dominant annihilation channels and **spin of the mediator**. However, for reasonable approximations, the color decomposition is simple for both types of mediators.

The inclusion of bound state formation **lifts the predicted DM mass and (re-)opens parameter space**.

In the coannihilation regime, excited bound states amount to a correction of (at most) 20%.

Future plans: Work out direct detection and collider limits.

Thank you for your attention!

DALL-E interpretation of "The Dark Matter Landscape"

ТШП

Backup

For the Sommerfeld effect, the partial wave is important, NOT the power of the velocity!

$$\sigma v_{\rm rel} = \left(a + b \, v_{\rm rel}^2 + \ldots\right) + \left(c \, v_{\rm rel}^2 + \ldots\right) + \mathcal{O}(v_{\rm rel}^4)$$

s-wave p-wave

For the Sommerfeld effect, the partial wave is important, NOT the power of the velocity!

$$\sigma v_{\rm rel} = \left(a + b \, v_{\rm rel}^2 + \ldots\right) + \left(c \, v_{\rm rel}^2 + \ldots\right) + \mathcal{O}(v_{\rm rel}^4)$$

s-wave p-wave

$$\sigma v_{\rm rel} \approx a + (b+c)v_{\rm rel}^2 + \dots$$

For the Sommerfeld effect, the partial wave is important, NOT the power of the velocity!

$$\sigma v_{\rm rel} = (a + b v_{\rm rel}^2 + \dots) + (c v_{\rm rel}^2 + \dots) + \mathcal{O}(v_{\rm rel}^4)$$

s-wave p-wave $\sigma v_{\rm rel} \approx a + (b + c) v_{\rm rel}^2 + \dots$

For the Sommerfeld effect, the partial wave is important, NOT the power of the velocity!

Vertices	$lpha_s$	$lpha_g$	$\begin{array}{c} {\rm Average} \\ {\rm momentum} \\ {\rm transfer} \ Q \end{array}$
Wavefunction(ladder diagrams)of scattering statein colour rep. $\hat{\mathbf{R}}$	α_s^s	$\alpha_{g,[\hat{\mathbf{R}}]}^{S} = (\alpha_{s}^{S}/2) \times \\ \times \left[C_{2}(\mathbf{R}_{1}) + C_{2}(\mathbf{R}_{2}) - C_{2}(\hat{\mathbf{R}}) \right]$	$k \equiv \mu v_{\rm rel}$
Wavefunction (ladder diagrams) of bound state in colour rep. $\hat{\mathbf{R}}$	$\alpha^{\scriptscriptstyle B}_{s,[\hat{\mathbf{R}}]}$	$\alpha_{g,[\hat{\mathbf{R}}]}^{B} = (\alpha_{s,[\hat{\mathbf{R}}]}^{B}/2) \times \\ \times \left[C_{2}(\mathbf{R_{1}}) + C_{2}(\mathbf{R_{2}}) - C_{2}(\hat{\mathbf{R}}) \right]$	$\kappa_{\hat{\mathbf{R}}} \equiv \mu \alpha_{g,[\hat{\mathbf{R}}]}^{\scriptscriptstyle B}$
Formation of bound states of colour rep. $\hat{\mathbf{R}}$: gluon emission	$lpha_{s,[\hat{\mathbf{R}}]}^{\mathrm{BSF}}$		$\begin{aligned} \mathcal{E}_{\mathbf{k}} - \mathcal{E}_{n\ell} &= \\ \frac{\mu}{2} \left[v_{\text{rel}}^2 + (\alpha_{g,[\hat{\mathbf{R}}]}^B/n)^2 \right] \end{aligned}$

[J. Harz and K. Petraki (2018)]

	Vertices	$lpha_s$	$lpha_g$	${f Average}\ {f momentum}\ {f transfer}\ {f Q}$	
	Wavefunction (ladder diagrams) of scattering state in colour rep. $\hat{\mathbf{R}}$	α_s^s	$\alpha_{g,[\hat{\mathbf{R}}]}^{S} = (\alpha_{s}^{S}/2) \times \\ \times \left[C_{2}(\mathbf{R_{1}}) + C_{2}(\mathbf{R_{2}}) - C_{2}(\hat{\mathbf{R}}) \right]$	$k \equiv \mu v_{\rm rel}$	Sommerfeld effect
	Wavefunction (ladder diagrams) of bound state in colour rep. $\hat{\mathbf{R}}$	$\alpha^{\scriptscriptstyle B}_{s,[\hat{\mathbf{R}}]}$	$\alpha_{g,[\hat{\mathbf{R}}]}^{B} = (\alpha_{s,[\hat{\mathbf{R}}]}^{B}/2) \times \\ \times \left[C_{2}(\mathbf{R_{1}}) + C_{2}(\mathbf{R_{2}}) - C_{2}(\hat{\mathbf{R}}) \right]$	$\kappa_{\hat{\mathbf{R}}} \equiv \mu \alpha_{g,[\hat{\mathbf{R}}]}^{\scriptscriptstyle B}$	
F	Formation of bound tates of colour rep. $\hat{\mathbf{R}}$: gluon emission	$lpha_{s,[\mathbf{\hat{R}}]}^{\mathrm{BSF}}$		$ \begin{aligned} \mathcal{E}_{\mathbf{k}} - \mathcal{E}_{n\ell} &= \\ \frac{\mu}{2} \left[v_{\text{rel}}^2 + (\alpha_{g,[\hat{\mathbf{R}}]}^B/n)^2 \right] \end{aligned} $	

[J. Harz and K. Petraki (2018)]

Vertices	$lpha_s$	$lpha_g$	${f Average}\ {f momentum}\ {f transfer}\ {f Q}$	
Wavefunction(ladder diagrams)of scattering statein colour rep. $\hat{\mathbf{R}}$	α_s^s	$\alpha_{g,[\hat{\mathbf{R}}]}^{S} = (\alpha_{s}^{S}/2) \times \\ \times \left[C_{2}(\mathbf{R_{1}}) + C_{2}(\mathbf{R_{2}}) - C_{2}(\hat{\mathbf{R}}) \right]$	$k \equiv \mu v_{\rm rel}$	Sommerfeld effect
Wavefunction (ladder diagrams) of bound state in colour rep. $\hat{\mathbf{R}}$	$\alpha^{\scriptscriptstyle B}_{s,[\hat{\mathbf{R}}]}$	$\alpha_{g,[\hat{\mathbf{R}}]}^{B} = (\alpha_{s,[\hat{\mathbf{R}}]}^{B}/2) \times \\ \times \left[C_{2}(\mathbf{R_{1}}) + C_{2}(\mathbf{R_{2}}) - C_{2}(\hat{\mathbf{R}})\right]$	$\kappa_{\hat{\mathbf{R}}} \equiv \mu \alpha_{g,[\hat{\mathbf{R}}]}^{\scriptscriptstyle B}$	Bound state formation
Formation of bound states of colour rep. $\hat{\mathbf{R}}$: gluon emission	$lpha_{s,[\mathbf{\hat{R}}]}^{\mathrm{BSF}}$		$ \begin{aligned} \mathcal{E}_{\mathbf{k}} - \mathcal{E}_{n\ell} &= \\ \frac{\mu}{2} \left[v_{\text{rel}}^2 + (\alpha_{g,[\mathbf{\hat{R}}]}^B/n)^2 \right] \end{aligned} $	

[J. Harz and K. Petraki (2018)]

	Vertices	$lpha_s$	$lpha_g$	$f Average \ momentum \ transfer Q$	
	Wavefunction (ladder diagrams) of scattering state in colour rep. $\hat{\mathbf{R}}$	$lpha_s^S$	$\alpha_{g,[\hat{\mathbf{R}}]}^{S} = (\alpha_{s}^{S}/2) \times \\ \times \left[C_{2}(\mathbf{R_{1}}) + C_{2}(\mathbf{R_{2}}) - C_{2}(\hat{\mathbf{R}}) \right]$	$k \equiv \mu v_{\rm rel}$	Sommerfeld effect
	Wavefunction (ladder diagrams) of bound state in colour rep. $\hat{\mathbf{R}}$	$\alpha^B_{s,[\hat{\mathbf{R}}]}$	$\alpha_{g,[\hat{\mathbf{R}}]}^{B} = (\alpha_{s,[\hat{\mathbf{R}}]}^{B}/2) \times \\ \times \left[C_{2}(\mathbf{R_{1}}) + C_{2}(\mathbf{R_{2}}) - C_{2}(\hat{\mathbf{R}})\right]$	$\kappa_{\hat{\mathbf{R}}} \equiv \mu \alpha_{g,[\hat{\mathbf{R}}]}^{\scriptscriptstyle B}$	Bound state formation
	Formation of bound states of colour rep. $\hat{\mathbf{R}}$: gluon emission	$\alpha^{\mathrm{BSF}}_{s,[\mathbf{\hat{R}}]}$		$ \begin{aligned} \mathcal{E}_{\mathbf{k}} - \mathcal{E}_{n\ell} &= \\ \frac{\mu}{2} \left[v_{\text{rel}}^2 + (\alpha_{g,[\hat{\mathbf{R}}]}^B/n)^2 \right] \end{aligned} $	
[[J. Harz and K. Petraki (2018)] Numerically solve for given running of $\alpha_B = \alpha_s \left(Q = \mu \frac{\alpha_B}{n}\right)$ QCD coupling				

Numerical bottleneck: diagonalization of transition matrix

$$\langle \sigma_{BSF} v \rangle_{\text{eff}} = \sum_{i} \langle \sigma_{\text{BSF},i} v \rangle \left(1 - (M)_{ij}^{-1} \frac{\langle \Gamma_{\text{ion}}^{j} \rangle}{\langle \Gamma^{j} \rangle} \right)$$
$$M_{ij} = \delta_{ij} - \frac{\langle \Gamma_{\text{trans}}^{i \to j} \rangle}{\langle \Gamma^{i} \rangle} \quad \Gamma^{i} = \langle \Gamma_{\text{dec}}^{i} \rangle + \langle \Gamma_{\text{ion}}^{i} \rangle + \sum_{j \neq i} \langle \Gamma_{\text{trans}}^{i \to j} \rangle$$

Inversion of matrix M with micrOMEGAs internal Jacobi routine (intended for diagonalizing mass matrices) \rightarrow room for improvement.

Scaling: $n^2 \times n^2 \sim \mathcal{O}$ (n⁴)

Bandscans on a logarithmic scale

Preliminary!

Comparison of models (linear scale)

Upper limit on g_{DM} for $\Omega_{DM} = 0.125$ (+5 σ)

up-quark

Preliminary!

Results without long-range effects

Preliminary!

Contours of constant δ

Preliminary!

Contours of constant δ (without long-range effects)

Preliminary!