

Searching for Ultra-**Light Dark Matter** with nuclear interferometry

Based on arXiv:2407.11112 with Elina Fuchs & Matthew McCullough

Hannah Banks

The Low Down

Quantum Sensors offer a number of exciting new avenues to probe fundamental physics at the feebly interacting frontier

Atomic Clocks and Atom Interferometers are leading the way in the search for the **variation**

The "Nuclear Interferometer" may open a window to new parameter space in the future...

Motivation: The Dark Matter Landscape

Dark Matter landscape is **extraordinary broad** covering a vast array of phenomenology

Motivation: The Dark Matter Landscape

Dark Matter landscape is **extraordinary broad** covering a vast array of phenomenology

Motivation: ULDM

Consider a light, free (pseudo-) scalar field : $\mathcal{L} \in m_{\phi}^2 \phi^2$ with initial homogeneous condition $\phi_{init} = \phi_0$ **COSMOLOGICAL EVOLUTION** ϕ_{init} Φ At late times, field oscillates about the minimum ULDM behaves as a **coherently oscillating classical wave**: $\phi(t, \mathbf{x}) = \phi_0 \cos[m_\phi(t - \mathbf{v} \cdot \mathbf{x}) + \theta]$

Scale Factor a/a_i

Coherent since cold Classical as phase space density >>1 to saturate DM abundance

The ULDM landscape:

Vectors (Dark Photons)

Class

Precession of spins

Quantum Sensing Signatures

Motivation: Ultra-Light Dark Matter

Scalar ULDM with (linear) couplings to SM fields:

e.g.
$$\mathcal{L}_{\phi} = -\sqrt{4\pi G_N} \left[\frac{d_e}{4e^2} F_{\mu\nu} F^{\mu\nu} - \frac{d_g \beta_3}{2g_3} G^A_{\mu\nu} G^{A\mu\nu} - d_{m_e} m_e \bar{e}e - \sum_{i=u,d} \left(d_{m_i} + \gamma_{m_i} d_g \right) m_i \bar{\psi}_i \psi_i \right] \phi ,$$

causes fundamental constants to oscillate in time:

$$m_{\psi} = m_{\psi} \left[1 + d_{m_{\psi}} \sqrt{4\pi G_N} \phi(t, \mathbf{x}) \right]$$
$$\alpha = \alpha \left[1 + d_e \sqrt{4\pi G_N} \phi(t, \mathbf{x}) \right]$$

Energy and length scales that depend on these **oscillate in time**

$$\alpha_s = \alpha_s \left[1 + d_g \sqrt{4\pi G_N} \phi(t, \mathbf{x}) \right]$$

Probes of Oscillating Fundamental Constants

Atomic Clock Comparisons

Optomechanical sensors

Torsion Balance Experiments

Atom Interferometry

Laser Interferometry

Searches with atomic clocks

sensitivities to different fundamental constants

Thorium-229 : A Nuclear Clock

Discovery of a low lying excited isomer of Thorium-229, 229m Th has led to **proposals for a nuclear clock**

8.3 eV

Transition in optical range

Excited state lifetime in atomic form ~ 10 μS due to internal conversion

• Extended to 10^4 s in ionic form or thorium doped crystals

Many key developments in recent months including first radiative excitation:

- PhysRevLett.132.182501
- arXiv:2404.12311
- arXiv:2406.18719

Transition particularly **insensitive to external** perturbations e.g. electromagnetic fields


```
\Delta\omega_N = \omega_N
```

v.s. atomic opti clock:

Frequency comparisons between nuclear and atomic optical clocks could provide a highly sensitive probe of the variation of fundamental constants (arXiv:2012.09304)

Highly sensitive to the variation of fundamental

$$V_V \left(10^4 d_e + 10^5 (d_{\hat{m}} - d_g) \right) \phi(t, \mathbf{x})$$

ical $\mathcal{O}(1)$ $\mathcal{O}(10^{-5})$

Atom Interferometery

Experiment that measures the phase shift between **spatially-separated quantum** superpositions of atomic wavepackets

Manipulating atoms with light

A two level system (i.e an atomic clock) coupled to a driving force (i.e. a laser) undergoes Rabi **Oscillations** between the ground $|g, \vec{p}\rangle$ and excited $|e, \vec{p} + \vec{k}\rangle$ states

Manipulating atoms with light

Manipulating atoms with light

π pulse (mirror)

Spacetime Diagram

Quantum State

Spacetime Diagram

Quantum State

 $\frac{1}{\sqrt{2}}\left(\left|g,\vec{p}\right\rangle+e^{i\Delta\phi(t)}\left|e,\vec{p}+\vec{k}\right\rangle\right)$

Spacetime Diagram

Quantum State

 $\frac{1}{\sqrt{2}}\left(\left|e,\vec{p}+\vec{k}\right\rangle+e^{i\Delta\phi(t)}\left|g,\vec{p}\right\rangle\right)$

Probabilities:

 $\Delta \phi(2T) =$ phase difference between the two arms at the end of the interferometer sequence

Arises due to differences in:

- Evolution of external or internal d.o.f
- Time spent in excited state

RECAP: Traditional ULDM searches with atom gradiometers

e.g. AION, MAGIS, VLBAI

- Operate in **gradiometer** configuration
- Apply Large-Momentum Transfer techniques

Fig. 1: Single photon atom interferometer with n = 4 LMT

Sensitivity depends on:

Baseline - L Interrogation time - T Number of LMT kicks - n Shot-noise (atomic flux)

To reach sensitivity to ULDM require:

- Long $\mathcal{O}(\mathrm{km})$ baselines
- High LMT atom optics $n \sim \mathcal{O}(1000)$

To support this require **ultra-narrow** `clock' **transitions**

clock transition

The current state of play

Could we combine the nuclear clock with the principles of interferometry to access new parameter space?

ATOMS

Excited state lifetime 10 μs Loss of atoms due to spontaneous **decay** during propagation: $nL \leq 1500 \text{ m}$

 \rightarrow Low π pulse efficiencies: n=2

Ionisation potential > nuclear excitation energy Need techniques to suppress ionisation

Neutral - can simultaneously interrogate clouds of $~\sim 10^8 - 10^{10}$ atoms

IONS

2

Charged - limited to a **single ion** per shot

High shot noise

Fluctuations of external **magnetic** fields can induce spurious accelerations and therefore phase noise

Ultra-narrow transition supports long baselines and high LMT orders

Potential to operate in space

Coupling to Photons

Coupling to Gluons

Coupling to Quarks

Summary

- Nuclear Interferometry could offer **access to new ULDM parameter space** (provided experimental challenges can be overcome)
- Unique window to new physics coupling to quarks or proposed experiments
- Motivates a closer study of the potential of Th-229 to probe fundamental physics in interferometry and beyond

gluons (including axions) with a reach enhancing existing and

Atom-based configurations

Setup	L [m]	T [s]	n	$\sqrt{ ilde{S}_{ m n}} \; [{ m Hz}^{-1/2}]$	$\Delta z \; [{ m m}]$
Initial	10	0.6	2	10-4	8.2
Intermediate	100	1.8	2	10^{-5}	84
Advanced	750	3.1	2	$0.3 imes10^{-5}$	702

Setup	L [m]	T [s]	n	$\sqrt{S}_{\mathrm{n}} \; [\mathrm{Hz}^{-1/2}]$	Δz [m]
Terrestrial	1000	1.2	2500	2.3	965
Space-based (A)	$4.4 imes 10^7$	5	16	4.7	$4.4 imes 10^7$
Space-based (B)	$4.4 imes 10^7$	70	120	17.6	$4.4 imes 10^7$