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Sterile neutrinos

I sterile neutrino→ gauge singlet fermion
I interacts with SM via Yukawa interaction with Higgs and active

neutrinos
→ mixing with active neutrinos in broken phase

interesting since
I one of the most minimal SM extensions
I challenging to observe directly
I could provide the answer to some of the big open questions in

physics: neutrino masses, matter-antimatter asymmetry, dark
matter
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No SM gauge interaction
⇓

No interaction?
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Self-interacting sterile neutrinos

Minimal setup for a more complex dark sector:
I add one scalar singlet φ

(one new parameter: mφ)
I φ interacts with νs

(one parameter: Yukawa coupling y )
I νs mixing with SM neutrinos remains only connection to SM
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Sterile neutrino dark matter

good DM candidate since it is naturally dark

production from oscillations in early Universe (Dodelson-Widrow
mechanism)
I right amount of DM for O(keV ) masses X

I decays to photon and SM neutrino (X-ray lines) X
I tends to be warm (i.e. affect structure formation) X
I current status: excluded 7

What about interacting sterile neutrinos?

see also Hansen and SV ’17, Fuller and Johns ’19, Bringmann et al ’22
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Production in early Universe

sterile neutrinos are produced by “freeze-in" with some extra hoops
Master equation for production

evolution controlled by
I effective in medium oscillation probabilities, i.e. term in brackets
I total interaction rate of neutrinos, Γt

I dark sector thermalization rate, Cs
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Production from oscillations
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freeze-in type production
I no sterile neutrinos at high T
I most relevant production at T ∼ 200 to 300 MeV
I yield constant below ∼ 100 MeV
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Simple modification ...
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... with rich effects in sterile neutrino production

I large self-scattering rate for non-vanishing sterile neutrino
population

I heuristic: replace one of the initial states with SM neutrino via
mixing

the more sterile neutrinos there are the more they scatter
⇒ self-accelerating production rate
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Accelerated production
masses: ms = 12 keV, mφ = 1.5 GeV
mixing sin2(2θ) = 5× 10−13 and coupling y ≈ 7× 10−2

I high T : DW production
I intermediate T : self-interaction pick up and pull in more stuff
I low T : production shuts of when φ becomes massive
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... with rich effects in sterile neutrino production

I new physics contribution to thermal potentials

I cancelation in denominator of effective oscillation probability for
heavy φ and large enough y

⇒ resonant enhancement of the production rate (similar to MSW
resonance)
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Resonance for large mφ
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large jump in relic density for very small change in coupling
⇒ highly tuned, typically either too little or too much DM for large mφ
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... with rich effects in sterile neutrino production

I number changing processes in the sterile neutrino sector

⇒ allows for additional DM production and independent evolution of
dark sector temperature
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Thermalization
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I thermalization leads to a significant decrease in the dark sector
temperature early on

I more neutrinos pulled in via self-scattering later
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Can this be tested?
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Dark matter decay

I sterile neutrinos can decay via their mixing
I dominant mode: 3 neutrinos (not observable)

I loop induced decay to photon and neutrino: rate suppressed by
factor ≈ 100 but mono-energetic photon in final state

I constrains from X-ray satellites exclude lifetimes orders of
magnitude longer than the age of the Universe
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Warm dark matter 101

sterile neutrinos are produce late with a large temperature⇒ warm
dark matter
I free streaming erases structures smaller than distance traveled

since production

λFS =

∫ aprod

1
da

v(a)

H(a)

I can compute λFS if T is known
I structures on scales smaller than λFS are not expected since DM

can free-stream out of primordial perturbations
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Warm dark matter

I free streaming length of DM sets scale for suppression of
structure in the Universe

I with warm DM (i.e. too high velocities) many small structures are
washed out

⇒ bound from observations of smallest structures, e.g. Lyman-α
forest
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Parameter space of sterile neutrino dark matter

I X-ray limits are avoided
I structure formation bounds get strengthened (late production

compared to DW)
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Where else could sterile neutrino
interactions show up?
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SM neutrino self-interactions

sterile neutrinos mix with active neutrinos

ys × sin(θ)→ ya

with

⇒ sin(θ)2σs → σa

sterile neutrino self-scattering implies active neutrino self-scattering

S. Vogl (University of Freiburg) MITP, 26.8.24 21



Can we test this?
I Not for the small mixing angles and couplings needed for sterile

neutrino dark matter
but
I could be possible for larger mixing and coupling
I for simplicity: stay agnostic about origin of active neutrino

self-interaction
I effective parametrization (needs UV completion such as mixing!)

L =
1
2

∑
i,j

yijνi ν̄jφ

Challenges:
I Where do we take the neutrinos from? (Source)
I Where can we get neutrinos to scatter on from? (Target)
I How do we detect that neutrinos scattered on neutrinos?

(Detection)
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Astrophysical neutrino point sources

Answer: neutrinos seen by IceCube
I Source: IceCube observes astrophysical neutrino sources

first evidence for variable source in 2017, steady sources since
2022

I sources are very distant extragalactic objects
⇒ Cosmic Neutrino Background (CνB) significant on these
scales

I after interaction the neutrinos are scattered out of the
line-of-sight
⇒ non-detection of neutrinos from source
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Source fact sheet

Two detected with high significance so far
I TXS 0506+056

I high energy blazar
I variable source
I ∼ 100 TeV to ∼ 1 PeV neutrinos
I very distant, lTXS ≈ 1.2 Gpc (or z = 0.33)

I NGC 1068
I active galaxy
I consistent with a non-variable source
I ∼ 1 TeV to ∼ 10 TeV neutrinos
I “relatively" close by lNGC = 14 Mpc (negligible redshift)

I ... (to be detected)
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Propagation from source to earth

figure courtesy of C. Doring
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How do we quantify the
effect?
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Mean free path: case I
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I at least two neutrinos have T � mi today
I scattering in fixed target configuration with s = 2Eami
⇒ λMFP ≈ 1

σ(2Eami )ni

I large resonant enhancement for Ea ≈ m2
φ/2mi

I example: scattering on a single mi = 0.01 eV neutrino with y=
0.05 for mφ = 0.25 MeV (green) and mφ = 2.5 MeV (black)
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Mean free path: case II
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I one neutrino state could still have T � mi today
I average over momentum of background neutrino needed⇒

resonance condition can be met in wide Ea range
I example: same as before but with mi � T
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Fluxes
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I astro: Φν(Ea) ∝ E−γ
a

I here:

Φν(Ea) ∝ E−γ
a exp(−d/λMFP)

I realistic picture requires taking all mass eigenstates into account
I for distant sources redshift effect appear
⇒ broadens absorption region
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Average extinction

0.005 0.010 0.050 0.100 0.500
10

-5

10
-4

0.001

0.010

0.100

1

measure for the average effect

q =
n
n0

=

∫ Emax

Emin
dE Aeff(E) Φ0(E) exp(−τ(E))∫ Emax

Emin
dE Aeff(E) Φ0(E)

I strong dependence on y for q & 0.5
I order one distortion of spectrum measurable see J. Hyde 2307.02361

⇒ assume q < 0.5 excluded
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Limits
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I limits for massive neutrinos dominated by TXS 0506+056
I low mass limits more stringent for massless lightest neutrino
I however, mφ . 1 MeV disfavored by cosmology (Neff )
I comparison with terrestrial experiments

I point sources outperform limit on interactions with ντ (purple) for
mφ . 10 MeV

I low mass limits for massless case even better than terrestrial νµ
(brown) limits

S. Vogl (University of Freiburg) MITP, 26.8.24 31



A bit of speculation: PKS 1424+240

I most significant (3.7 σ locally) source apart from TXS 0506+056
and NGC 1068

I spectral slope similar for NGC 1068, i.e. excess observed mostly
in ∼ 10 TeV neutrinos

I very far away source, z = 0.6 (even more distant than TXS
0505+056)
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Potential limits from PKS 1424+240
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I significant improvement over NGC throughout the parameter
space

I y as low of 10−5 in reach
I redshift effect significant→ downward spike from redshift

broadening of energy range that allows for resonant
enhancement of scattering

S. Vogl (University of Freiburg) MITP, 26.8.24 33



Conclusions

I new interactions of sterile (and active) neutrinos are an
interesting possibility

I allows for large boost of keV sterile neutrinos production in early
Universe

I new parameter space of sterile neutrino dark matter
I can enable neutrino self-scattering
I testable with astrophysical neutrinos seen by IceCube
I exciting opportunities for novel BSM searches in the era of

multi-messenger astronomy
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