Neutrino self-interactions in the early Universe and today

Stefan Vogl

based on

[JHEP 03 \(2024\) 032](https://doi.org/10.1007/JHEP03(2024)032) [\[arXiv:2307.15565\]](https://arxiv.org/abs/2307.15565) with M. Dias Astros

and

[JCAP 07 \(2024\) 015 \[](https://arxiv.org/abs/2304.08533)arXiv:2304.08533] with C. Döring

universität freiburg

Sterile neutrinos

- \triangleright sterile neutrino \rightarrow gauge singlet fermion
- \triangleright interacts with SM via Yukawa interaction with Higgs and active neutrinos
	- \rightarrow mixing with active neutrinos in broken phase

interesting since

- \triangleright one of the most minimal SM extensions
- \triangleright challenging to observe directly
- \triangleright could provide the answer to some of the big open questions in physics: neutrino masses, matter-antimatter asymmetry, dark matter

No SM gauge interaction ⇓ No interaction?

Self-interacting sterile neutrinos

Minimal setup for a more complex dark sector:

- ightharpoonup add one scalar singlet ϕ (one new parameter: m_{ϕ})
- \blacktriangleright ϕ interacts with ν_s (one parameter: Yukawa coupling *y*)
- \triangleright ν_s mixing with SM neutrinos remains only connection to SM

Sterile neutrino dark matter

good DM candidate since it is naturally dark

production from oscillations in early Universe (Dodelson-Widrow mechanism)

- **If** right amount of DM for $O(keV)$ masses \checkmark
- \triangleright decays to photon and SM neutrino (X-ray lines) \checkmark
- ighthrow tends to be warm (i.e. affect structure formation) $\sqrt{ }$
- \triangleright current status: excluded \boldsymbol{x}

What about interacting sterile neutrinos?

see also Hansen and SV '17, Fuller and Johns '19, Bringmann et al '22

Production in early Universe

sterile neutrinos are produced by "freeze-in" with some extra hoops Master equation for production

evolution controlled by

- \triangleright effective in medium oscillation probabilities, i.e. term in brackets
- **ID** total interaction rate of neutrinos, Γ_t
- \triangleright dark sector thermalization rate, C_s

Production from oscillations

freeze-in type production

- \triangleright no sterile neutrinos at high T
- I most relevant production at *T* ∼ 200 to 300 MeV
- \triangleright yield constant below \sim 100 MeV

Simple modification ...

... with rich effects in sterile neutrino production

 \blacktriangleright large self-scattering rate for non-vanishing sterile neutrino population

 \blacktriangleright heuristic: replace one of the initial states with SM neutrino via mixing

the more sterile neutrinos there are the more they scatter \Rightarrow self-accelerating production rate

Accelerated production

masses: $m_s = 12$ keV, $m_\phi = 1.5$ GeV mixing $\sin^2(2\theta) = 5\times 10^{-13}$ and coupling $y\approx 7\times 10^{-2}$

- ▶ high *T*: DW production
- \triangleright intermediate T : self-interaction pick up and pull in more stuff
- \blacktriangleright low *T*: production shuts of when ϕ becomes massive

S. Vogl (University of Freiburg) MITP, 26.8.24 10

... with rich effects in sterile neutrino production

 \blacktriangleright new physics contribution to thermal potentials

- \triangleright cancelation in denominator of effective oscillation probability for heavy φ and large enough *y*
- \Rightarrow resonant enhancement of the production rate (similar to MSW resonance)

Resonance for large $m_φ$

large jump in relic density for very small change in coupling \Rightarrow highly tuned, typically either too little or too much DM for large m_{ϕ}

... with rich effects in sterile neutrino production

 \blacktriangleright number changing processes in the sterile neutrino sector

 \Rightarrow allows for additional DM production and independent evolution of dark sector temperature

Thermalization

- \blacktriangleright thermalization leads to a significant decrease in the dark sector temperature early on
- more neutrinos pulled in via self-scattering later

Can this be tested?

Dark matter decay

- \triangleright sterile neutrinos can decay via their mixing
- \triangleright dominant mode: 3 neutrinos (not observable)
- \triangleright loop induced decay to photon and neutrino: rate suppressed by factor \approx 100 but mono-energetic photon in final state

 \triangleright constrains from X-ray satellites exclude lifetimes orders of magnitude longer than the age of the Universe

Warm dark matter 101

sterile neutrinos are produce late with a large temperature \Rightarrow warm dark matter

 \blacktriangleright free streaming erases structures smaller than distance traveled since production

$$
\lambda_{FS}=\int_1^{a_{prod}} da \frac{v(a)}{H(a)}
$$

- **I** can compute λ_{FS} if T is known
- **If** structures on scales smaller than λ_{FS} are not expected since DM can free-stream out of primordial perturbations

Warm dark matter

- \triangleright free streaming length of DM sets scale for suppression of structure in the Universe
- \triangleright with warm DM (i.e. too high velocities) many small structures are washed out
	- \Rightarrow bound from observations of smallest structures, e.g. Lyman- α

forest

Parameter space of sterile neutrino dark matter

- \blacktriangleright X-ray limits are avoided
- \triangleright structure formation bounds get strengthened (late production compared to DW)

Where else could sterile neutrino interactions show up?

SM neutrino self-interactions

sterile neutrinos mix with active neutrinos

 $y_s \times \sin(\theta) \rightarrow y_a$

with

 \Rightarrow sin $(\theta)^2\sigma_s \rightarrow \sigma_a$

sterile neutrino self-scattering implies active neutrino self-scattering

S. Vogl (University of Freiburg) MITP, 26.8.24 21

Can we test this?

 \triangleright Not for the small mixing angles and couplings needed for sterile neutrino dark matter

but

- \triangleright could be possible for larger mixing and coupling
- \triangleright for simplicity: stay agnostic about origin of active neutrino self-interaction
- \triangleright effective parametrization (needs UV completion such as mixing!)

$$
\mathcal{L}=\frac{1}{2}\sum_{i,j}y_{ij}\nu_i\bar{\nu}_j\phi
$$

Challenges:

- \blacktriangleright Where do we take the neutrinos from? (Source)
- \triangleright Where can we get neutrinos to scatter on from? (Target)
- \blacktriangleright How do we detect that neutrinos scattered on neutrinos? (Detection)

Astrophysical neutrino point sources

Answer: neutrinos seen by IceCube

- ▶ Source: IceCube observes astrophysical neutrino sources first evidence for variable source in 2017, steady sources since 2022
- \triangleright sources are very distant extragalactic objects \Rightarrow Cosmic Neutrino Background (C_{ν}B) significant on these scales
- \blacktriangleright after interaction the neutrinos are scattered out of the line-of-sight

⇒ non-detection of neutrinos from source

Source fact sheet

Two detected with high significance so far

- \triangleright TXS 0506+056
	- \blacktriangleright high energy blazar
	- \blacktriangleright variable source
	- $\blacktriangleright \sim 100$ TeV to \sim 1 PeV neutrinos
	- \triangleright very distant, $l_{TXS} \approx 1.2$ Gpc (or *z* = 0.33)
- ▶ NGC 1068
	- \blacktriangleright active galaxy
	- \triangleright consistent with a non-variable source
	- $\blacktriangleright \sim 1$ TeV to ~ 10 TeV neutrinos
	- \triangleright "relatively" close by $I_{NGC} = 14$ Mpc (negligible redshift)
- \blacktriangleright ... (to be detected)

Propagation from source to earth

figure courtesy of C. Doring

How do we quantify the effect?

Mean free path: case I

- **If** at least two neutrinos have $T \ll m_i$ today
- \triangleright scattering in fixed target configuration with $s = 2E_a m_i$ $\Rightarrow \lambda_{\textit{MFP}} \approx \frac{1}{\sigma(2\mathcal{E}_{\textit{a}}m_{\textit{i}})n_{\textit{i}}}$
- **D** large resonant enhancement for $E_a \approx m_\phi^2/2m_\phi^2$
- example: scattering on a single $m_i = 0.01$ eV neutrino with y= 0.05 for $m_{\phi} = 0.25$ MeV (green) and $m_{\phi} = 2.5$ MeV (black)

S. Vogl (University of Freiburg) MITP, 26.8.24 27

Mean free path: case II

- **•** one neutrino state could still have $T \gg m_i$ today
- average over momentum of background neutrino needed \Rightarrow resonance condition can be met in wide *E^a* range
- example: same as before but with $m_i \ll T$

Fluxes

$$
\blacktriangleright \text{astro: } \Phi_{\nu}(E_a) \propto E_a^{-\gamma}
$$

here:

$$
\Phi_\nu(E_a) \propto E_a^{-\gamma} \exp(-d/\lambda_{MFP})
$$

- \blacktriangleright realistic picture requires taking all mass eigenstates into account
- \blacktriangleright for distant sources redshift effect appear
	- ⇒ broadens absorption region

Average extinction

measure for the average effect

$$
q=\frac{n}{n_0}=\frac{\int_{E_{\rm min}}^{E_{\rm max}}\mathrm{d} E\, A_{\rm eff}(E)\,\Phi_0(E)\exp(-\tau(E))}{\int_{E_{\rm min}}^{E_{\rm max}}\mathrm{d} E\, A_{\rm eff}(E)\,\Phi_0(E)}
$$

- In strong dependence on *y* for $q \ge 0.5$
- \triangleright order one distortion of spectrum measurable see J. Hyde 2307.02361
- ⇒ assume *q* < 0.5 excluded

S. Vogl (University of Freiburg) MITP, 26.8.24 30

Limits

- limits for massive neutrinos dominated by TXS 0506+056
- \blacktriangleright low mass limits more stringent for massless lightest neutrino
- **I** however, $m_{\phi} \leq 1$ MeV disfavored by cosmology (N_{eff})
- comparison with terrestrial experiments
	- **D** point sources outperform limit on interactions with ν_{τ} (purple) for $m_{\phi} \lesssim 10$ MeV
	- I low mass limits for massless case even better than terrestrial ν_μ (brown) limits

A bit of speculation: PKS 1424+240

- **In** most significant (3.7 σ locally) source apart from TXS 0506+056 and NGC 1068
- \triangleright spectral slope similar for NGC 1068, i.e. excess observed mostly in ∼ 10 TeV neutrinos
- \triangleright very far away source, $z = 0.6$ (even more distant than TXS) 0505+056)

Potential limits from PKS 1424+240

- \triangleright significant improvement over NGC throughout the parameter space
- ► y as low of 10⁻⁵ in reach
- \triangleright redshift effect significant \rightarrow downward spike from redshift broadening of energy range that allows for resonant enhancement of scattering

Conclusions

- \triangleright new interactions of sterile (and active) neutrinos are an interesting possibility
- \blacktriangleright allows for large boost of keV sterile neutrinos production in early Universe
- \blacktriangleright new parameter space of sterile neutrino dark matter
- \triangleright can enable neutrino self-scattering
- \blacktriangleright testable with astrophysical neutrinos seen by IceCube
- \triangleright exciting opportunities for novel BSM searches in the era of multi-messenger astronomy