
Hamiltonian Truncation Revisited

J. Ingoldby

Durham University, IPPP

August 12th, 2024



Introduction UV Divergences in HT Hamiltonian Truncation on NISQ Devices Summary

Outline

1 Introduction

2 UV Divergences in HT

3 Hamiltonian Truncation on NISQ Devices

4 Summary

J. Ingoldby Hamiltonian Truncation Revisited August 12th, 2024 2 / 47



Introduction UV Divergences in HT Hamiltonian Truncation on NISQ Devices Summary

Method Overview

Hamiltonian Setup

H = H0 + V (1)

• H0 is an exactly solvable Hamiltonian

• V represents a new interaction, which may be strong.

• Work in the eigenbasis of H0. Truncate so that only a finite number
of states with E0 ≤ ET are included in the basis.

• Diagonalize numerically to calculate spectrum and wavefunctions.
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A Simple Example: The Anharmonic Oscillator

Take the quantum mechanical model

H =
p2 + x2

2
+ λx4 . (2)

Decompose the Hamiltonian so that H0 is the SHO and V = λx4. Work in
the SHO eigenbasis: H0 |n⟩ = (n + 1/2) |n⟩

• Truncate basis to include states
|n⟩ for n + 1/2 ≤ ET .

• All energy eigenvalues are upper
bounds for the true energies due
to min-max theorem.

• Method generalises to QFTs.
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What QFTs Have Been Studied Using HT?

An incomplete selection of studies, with an hep-th focus: Please see [Konik

et al ’17], [Katz, Fitzpatrick ’22] for a more complete review.

In 2 dimensions
• Minimal model CFT deformed with relevant primary operator
[Yurov, Zamolodchikov ’89]...

• SU(3) gauge theory with fundamental Dirac fermions on the
lightcone [Hornbostel, Brodsky, Pauli ’90]...

• ϕ4 deformation of massive scalar field [Rychkov, Vitale ’14],
[Cohen, Farnsworth, Houtz, Luty ’21] ...
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What QFTs Have Been Studied Using HT?

An incomplete selection of studies, with an hep-th focus: Please see [Konik

et al ’17], [Katz, Fitzpatrick ’22] for a more complete review.

In 3 dimensions

• ϕ2 + iϕ3 deformation of free scalar CFT on S3 [Hogervorst ’18]...

• ϕ4 deformation of massive scalar on R × T 2 [Elias-Miró, Hardy ’18]...

• ϕ4 deformation of scalar CFT on the lightcone [Anand, Katz,
Khandker, Walters ’18]...
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Truncated Conformal Space Approach

[Yurov, Zamolodchikov ’89], [Lassig, Mussardo, Cardy ’90], ..., [Hogervorst,
Rychkov, van Rees ’14], ...

QFTs can very generally be realized as RG flows between a pair of CFTs.

H = HCFT + V∆ (3)

Put UV CFT onto the cylinder R× SR
d−1:

The dilatation operator on the plane Rd gets Weyl mapped to the time
translation generator on the cylinder: D → H
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Truncated Conformal Space Approach

Take V∆ to be the space integral of a local relevant operator

V∆ = gR∆−d

∫
Sd−1
R

dd−1x ϕ∆(x) . (4)

The matrix elements of V∆ between states ⟨∆i | and |∆j⟩ are given by
OPE coefficients Ciϕj . The full Hamiltonian becomes:

Hij =
1

R
(∆iδij + gCiϕj) (5)

• Truncate to retain states ∆i < ∆T .

• Diagonalizing H gives finite volume spectrum.

• TCSA can be used even at strong coupling g ≳ 1.
• Lightcone Conformal Truncation is an interesting alternative

e.g. [Katz et al ’20].
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Extrapolating to the “Continuum Limit”

Just like in a lattice calculation, to make contact with the original QFT,
you need to numerically extrapolate TCSA results to the continuum limit.
In our case, this corresponds to taking ∆T → ∞ and R → ∞.

For d-dimensional CFTs, the number of states grows exponentially with
scaling dimension [Cardy ’91]:

N(∆) ∼ exp{α∆ d−1
d } . (6)

Therefore the size of the TCSA Hilbert space will also grow exponentially
with ∆T .

J. Ingoldby Hamiltonian Truncation Revisited August 12th, 2024 9 / 47



Introduction UV Divergences in HT Hamiltonian Truncation on NISQ Devices Summary

Extrapolating to the “Continuum Limit”

Just like in a lattice calculation, to make contact with the original QFT,
you need to numerically extrapolate TCSA results to the continuum limit.
In our case, this corresponds to taking ∆T → ∞ and R → ∞.

For d-dimensional CFTs, the number of states grows exponentially with
scaling dimension [Cardy ’91]:

N(∆) ∼ exp{α∆ d−1
d } . (6)

Therefore the size of the TCSA Hilbert space will also grow exponentially
with ∆T .

J. Ingoldby Hamiltonian Truncation Revisited August 12th, 2024 9 / 47



Introduction UV Divergences in HT Hamiltonian Truncation on NISQ Devices Summary

Exponential Scaling

In a QFT without UV divergences, the error in a typical HT calculation
tends to scale in a power like way with the cutoff ϵ ∼ E−b

T as you
approach the continuum limit.

The cost of a HT calculation grows exponentially with the tolerance

dim HT ∼ exp{1/ϵconst} . (7)

1 Despite the exponential scaling, useful precision can be obtained with
readily available computing resources.

2 Quantum Computing promises to enable calculation in an
exponentially big truncated Hilbert space using polynomial resources.

3 Heuristically, this is because nq entangled qubits can represent a
Hilbert space of dimension 2nq .
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UV Divergences

Unfortunately, TCSA calculations are not guaranteed to converge to any
finite value as ∆T → ∞ when there are UV divergences.

• No UV divs for ∆ < d/2. TCSA works straightforwardly here.

• More subtle when d > ∆ ≥ d/2. The full QFT has UV divergences in
perturbation theory and requires renormalization.

• The TCSA cutoff may be viewed as an awkward, nonlocal UV
regulator. UV divergences show up as infinities in the limit ∆T → ∞.

• Want to extend TCSA to calculate reliably when d > ∆ ≥ d/2. This
is not straightforward due to unusual properties of the TCSA
regulator. This is the problem I will focus on in this section!
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Relevance

Two very interesting strongly interacting QFTs can be realized as relevant
deformations of a UV CFT with d > ∆ ≥ d/2:

QED3

Flows to an interacting CFT in the
IR for Nf ≳ 4 (4 component ψ).

H = HCFT +m

∫
d3x

∑
i

ψ̄iψi

∆ψ̄ψ ∼ 2, d/2 = 1.5

QCD4

Flows to an interacting CFT in the
IR for 33/2 > Nf ≳ 9 for Nc = 3.

H = HBZ +m

∫
d4x

∑
i

ψ̄iψi

∆ψ̄ψ ∼ 3, d/2 = 2
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Sharpening the Problem with PT

We analyze UV divergences in the lowest few orders in perturbation theory
using two regulators:

1 Rayleigh Schrödinger PT with TCSA regulator

Ei R = ∆i + Vii + Vik
1

∆ik
Vki + . . . (8)

2 Conformal PT with a local regulator

Egs R = −g2Sd−1

2!

∫
ddx |x |∆−d⟨ϕ∆(x)ϕ∆(1)⟩+ . . . (9)

Check whether the two formulations of PT give consistent results.
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Summary of Results
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New UV divergences appear in HT that do not if a local regulator is used.
This suggests that nonlocal counterterms are essential for renormalization.
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Effective Hamiltonians

We can take an effective Hamiltonian (see [Cohen, Farnsworth, Houtz,
Luty ’21]) and apply it in the case of a QFT with UV divergences:

1 First use a local regulator (ϵ) to remove UV divergences from
integrated, connected correlation functions

E
(n)
gs R ∝ gn

∫
ϵ

n−1∏
i=1

ddxi |xi |∆−d⟨ϕ∆(1)ϕ∆(x1) . . . ϕ∆(xn−1)⟩conn

and add local counterterms to the full theory Hamiltonian as needed
to make the ϵ→ 0 limit well defined

H(ϵ) = H0 + gV + Hct(ϵ)

This implements local renormalization.
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Procedure for Handling UV Divergences

2 Calculate finite dimensional Heff in this renormalized theory in PT.

Heff(ϵ)ij = H(ϵ)ij +
∑
n>2

Heff n(ϵ) , (10)

where Heff n is O(gn). Compute as many orders as you need to ensure
all matrix elements are finite as ϵ→ 0.

3 Take the ϵ→ 0 limit analytically for fixed ∆T

Heff = H0 + gV + K (11)

The bit left over, K , will in general grow with ∆T and be nonlocal.
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Computation at Second Order

Write Heff 2 as an integral of a correlation function:

(Heff 2(ϵ))fi =
VfhVhi

Eih
,

=− g2Sd−1

2R

∫
0≤|x |<1
|1−x |>ϵ

ddx |x |∆−d ⟨f |ϕ∆(1) ϕ∆(x) |i⟩ ,

where we have inserted a partial resolution of the identity

≡
∑

|h⟩ ⟨h| .
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Computation at Second Order

The integral is over the red region below (minus an ϵ–ball)

𝒪f(∞)𝒪i(0) ϕΔ(1)

|x | < 1 |1 − x | < 1 x

In the blue region, we can use the OPE for ϕ∆(1)ϕ∆(x)

⟨f |ϕ∆(1)ϕ∆(x) |i⟩ =
∑
O

⟨Of (∞)O(1)Oi (0)⟩ ⟨O(∞)ϕ∆(1)ϕ∆(x)⟩ ,
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Computation at Second Order

𝒪f(∞)𝒪i(0) ϕΔ(1)

|x | < 1 |1 − x | < 1 x

We can neglect the second term below. It is independent of ϵ and will
converge to something finite as ∆T → ∞.

(Heff 2(ϵ))fi = −g2Sd−1

2R

∑
O

⟨f | O(1) |i⟩
∫

0≤|x|<1
1>|1−x|>ϵ

ddx |x |∆−d⟨O(∞)ϕ∆(1) ϕ∆(x)⟩

− g2Sd−1

2R

∫
0≤|x|<1
|1−x|≥1

ddx |x |∆−d ⟨f |ϕ∆(1) ϕ∆(x) |i⟩ .
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Computation at Second Order

For primary scalars

⟨O(∞)ϕ∆(1)ϕ∆(x)⟩ =
fOϕϕ

|1− x |2∆−∆O
= fOϕϕ

∞∑
n=0

|x |n C (2∆−∆O)/2
n (cos θ) ,

and we can integrate each term in the series expansion separately

u∆
′, ϵ

n ≡ (2n +∆)

∫
0≤|x |<1
|1−x |>ϵ

ddx |x |2n+∆−dC
∆′/2
n (cos θ) ,

(Heff 2(ϵ))fi = −g2Sd−1

2R

∑
O

⟨f | O(1) |i⟩ fOϕϕ
∞∑

2n+∆>∆T−∆i

u2∆−∆O, ϵ
n

2n +∆
+ finite
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Scheme Choice

We choose to add the following counterterms, which make Heff , 2 finite in
the ϵ→ 0 limit:

H0 + V → H0 + V +
∑

2∆−∆O−d≥0

(
λO(ϵ) + λOren

) ∫
Sd−1

dd−1x O(x) ,

λOct(ϵ) ≡
g2

2R

∫
0≤|x |<1

1>|1−x |>ϵ

ddx |x |∆−d⟨O(∞)ϕ∆(1)ϕ∆(x)⟩ , (12)

λOct(ϵ) =
g2fϕϕO
2R

∞∑
n=0

u2∆−∆O, ϵ
n

2n +∆
.
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Result at Second Order

Renormalized Effective Hamiltonian

K2 = Sd−1

∑
∆O<2∆−d

⟨f | O(1) |i⟩
(
λOren +

g2fϕϕO
2

2n+∆≤∆T−∆i∑
n=0

u2∆−∆O
n

2n +∆

)
+. . .

(13)

• Spectrum is finite as ∆T → ∞ (at this order in PT).

• Although individual matrix elements blow up as ∆T → ∞.

• K2 is a nonlocal interaction.

• Adding K2 will affect energy differences between states.

• We have also calculated K3 using this methodology.
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Example I: Ising + ϵ

A simple, well studied example QFT with UV divergences is the 2d Ising
CFT deformed with its ϵ operator.

H = H Ising
CFT +

m

2π

∫ 2πR

0
dx ϵ(0, x) . (14)

This QFT is actually the free massive fermion in disguise.

Naively, this QFT has a UV divergence when the mass is added as a
deformation:

Egs ∼ m2 log (RΛUV )
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CFT Hamiltonian

The CFT Hamiltonian is the dilatation operator, Weyl transformed to the
cylinder

H Ising
CFT =

1

R

(
D − c

12

)
(15)

Its eigenstates are built systematically by acting on the vacuum with
primary operators ϕp = {1, σ, ϵ} and Virasoro generators:

|ψ⟩ = L−n1 . . . L−nk L̄−m1 . . . L̄−ml
ϕp(0, 0) |0⟩ (16)
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Renormalization

To deal with the UV divergence in the ground state energy, we follow our
procedure from section IV and first add the only local counterterm we
need:

Hct(δ) = λ1
ct(δ)

∫ 2πR

0
dx 1 , (17)

We pick the scheme

λ1
ct(δ) =

m2

4π2

∫
0≤|x |<1

1>|1−x |>δ

d2x

|x | ⟨ϵ(1)ϵ(x)⟩ , (18)

so that

K2 = ⟨f | i⟩m2R

2n+1≤∆T−∆i∑
n=0

1

2n + 1
(19)
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Spectrum
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m
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Figure: Plots indicating the variation of estimates for the Ising + ϵ spectrum with
the truncation parameter ∆T . The raw Hamiltonian is shown in blue and the
estimate using K2 is shown in orange. Exact results for this soluble QFT are
plotted as gray dashed lines.

∆T = 40 corresponds to a truncated Hilbert space with ∼ 22, 000 states
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Variation with m

ΔT=18

ΔT=24

Exact

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.5

0.0

0.5

1.0

1.5
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2.5

m R

E
0
/m

Figure: Comparison between results for the ground state energy using the
renormalized effective Hamiltonian and the exact answer.

E0(R) = −m2R

4

(
1− log(2m2R2)− 2γ

)
− |m|

∫ ∞

−∞

dθ

2π
cosh θ log

(
1 + e−2π|m|R cosh θ

)
. (20)
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Example II: Tricritical Ising + ϵ′

The ϵ′ operator triggers an RG flow from the 2d Tricritical Ising CFT to
the Ising CFT

H = HTricritical
CFT +

g

2π

∫ 2πR

0
dx ϵ′(0, x) . (21)

This flow has been studied before using TBA e.g [Zamolodchikov ’91]and
TCSA methods [Cardy, Lassig, Mussardo ’90], [Giokas, Watts ’11]

The ground state energy is more strongly UV divergent

Egs ∼ g2(RΛUV )
2/5 ,

but there are no divergences at higher orders in perturbation theory.
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Renormalization and the Effective Hamiltonian

Again, we need to introduce the local counterterm

Hct(δ) = λ1
ct(δ)

∫ 2πR

0
dx 1 , (22)

and pick the scheme

λ1
ct(δ) =

g2

4π2

∫
0≤|x |<1

1>|1−x |>δ

d2x

|x |4/5 ⟨ϵ
′(1)ϵ′(x)⟩ , (23)

This time, we use both the 1 and ϵ′ terms in Heff 2 and also the 1 term in
Heff 3. The last two are “improvement terms”. They vanish and have no
effect in the ∆T → ∞ limit, but they improve the rate of convergence of
results with ∆T .
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Spectrum
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Figure: Plots indicating the variation of estimates for the Tricritical Ising + ϵ′

spectrum with the truncation parameter ∆T . The raw Hamiltonian is shown in
blue, the estimate using Keff 2 is shown in orange and the estimate using
Keff 2 + Keff 3 is shown in green.
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Variation with g
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Figure: Four smallest energy gaps as function of radius, using Keff 2,3 and
∆T = 30 with 40818 states total including all symmetry subsectors.

For large volumes, we find the spectrum approaches the Ising CFT:

Ei =
∆i

R
+ Λ2R . (24)
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Based on [2407.19022] with M. Spannowsky,
T. Sypchenko and S. Williams.
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General Idea

Hamiltonian 
Truncation

H =
h1,1 … h1,n
⋮ ⋮

hn,1 … hn,n

e−iHt

e+

e−

t

P(t)

1 We compute the probability that the Schwinger Model QFT remains
in its ground state following a quantum quench.

2 We use Hamiltonian Truncation to generate an approximate
Hamiltonian for our system of low dimensionality.

3 We use a qubit based, gate based, quantum device from IBM to
determine how this probability evolves with time.
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Schwinger Model

QED in 1+1 dimensions

L = −1

4
FµνF

µν + ψ̄
(
i /∂ − g /A−m

)
ψ , (25)

• Shares qualitative features with QCD including confinement, chiral
symmetry breaking, U(1)A anomaly.

• We take there to be only 1 Dirac fermion.

• Put on a circle of circumference L and use periodic boundary
conditions.

• Studied extensively using lattice gauge theory on a variety of quantum
computing platforms e.g. [P. Hauke et al ’13].
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Bosonisation

The m = 0 theory was solved exactly by Schwinger. It is a theory of
confined, noninteracting, pseudoscalar mesons.

H0 =
1

2

∫ L

0
dx : Π2 + (∂xϕ)

2 +
g2

π
ϕ2 : , (26)

The scalar has mass M = g/
√
π. Bosonisation helpfully removes gauge

redundant d.o.fs. Normal ordering in (26) removes UV divergences.

When m ̸= 0, the theory becomes interacting

V = −2cmM

∫ L

0
dx : cos

(√
4πϕ+ θ

)
: , (27)

chiral symmetry is broken, and the θ parameter becomes physical, but we
only consider θ = 0 here.
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Basis States

Quantise the massive scalar field on the circle

ϕ(x) =
∞∑

n=−∞

1√
2LEn

(
an e

iknx + a†n e
−iknx

)
. (28)

where the n represent the different momentum modes on the circle
kn = 2πn/L.

Work in eigenbasis of H0

|{r}⟩ =
n=∞∏
n=−∞

1√
rn!

(
a†n

)rn |0⟩ , (29)

which is the usual Fock basis.
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Truncation

List the states in order of increasing H0 eigenvalue and take the first 2nq

states from this list.

For instance, with nq = 2 and gL = 8, the states we would retain are

|0⟩ , 1√
2

(
a†0

)2
|0⟩ , a†1a

†
−1 |0⟩ ,

1√
4!

(
a†0

)4
|0⟩ . (30)

These states form our computational basis for quantum computing.
Calculate matrix elements

Vr, r′ =
〈
{r′}

∣∣ : cos (√4πϕ) : |{r}⟩ (31)

between these states. Gives H as a 2nq × 2nq matrix
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Sanity Check

Numerical estimates for particle masses converge to known results as
(qubit number nq) is increased

0.0 0.2 0.4 0.6 0.8 1.0
mf/g

0.0

0.5

1.0

1.5

2.0

2.5

3.0
M

V
/g

PT

nq = 5

nq = 10

MPS

HT data taken at gL = 8. PT = second order perturbation theory in
infinite volume. MPS = matrix product states M. Bañuls et al ’13.
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Quantum Quench

We consider the time dependence of the probability that the Schwinger
model stays in its m = 0 vacuum state, following a quantum quench to
m/g = 0.2.

G (t) =
〈
0
∣∣∣e−iHt

∣∣∣ 0〉 , P(t) = |G (t)|2 . (32)

This particular probability cannot be computed without state preparation
in Kogut-Susskind lattice formulation of the Schwinger model.

These routines can be extremely costly. The resources required to
implement the state-preparation for an arbitrary state can scale
exponentially [Sun et al ’23].

J. Ingoldby Hamiltonian Truncation Revisited August 12th, 2024 40 / 47



Introduction UV Divergences in HT Hamiltonian Truncation on NISQ Devices Summary

Time Evolution Converges

0 1 2 3 4
g t

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

|G
(t

)|2
nq = 2

nq = 4

nq = 6

nq = 8

nq = 10

• The vacuum survival probability converges as nq → ∞.

• Already at nq = 2, we get a reasonable approximation to the
continuum time evolution. We are within 5% of the nq = 10 result.

• This is a classical calculation.
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Device Basics

Figure: Image credit:
[J. Gambetta et al ’17]

Figure: Universal set of
gates [S. Kwon et al ’21]

Figure: Connectivity of
gates for ibm brisbane
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Pauli Decomposition

To do the calculation on a NISQ device, we decompose the Hamiltonian as

H =
3∑

i1...inq=0

αi1...inq

(
σi1 ⊗ · · · ⊗ σinq

)
(33)

Any Hermitian matrix can be decomposed this way to yield real
coefficients αi1...inq .

For a generic dense Hamiltonian matrix, there will be ∼ 4nq nonzero
coefficients in this decomposition.
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Trotterisation

We use the Trotter-Suzuki approximation to first order. Error ∼ O(t2/n).

|ψ(t)⟩ = e−iHt |ψ(0)⟩ ≈

 ∏
i1,...,inq

e
−i t

n
αi1,...,inq

(
σi1⊗···⊗σinq

)n

|ψ(0)⟩ . (34)

The exponential of each Pauli term can be implemented on a qubit-based
quantum device through a short sequence of single-qubit rotation gates
and cnot gates.
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Trotter Error
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Figure: Blue curves are for nq = 2 and yellow for nq = 6.

We will use gt/n = gδt = 0.3 for nq = 2 on the quantum device.
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Quantum Hamiltonian Truncation

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure: Time evolution of the Schwinger model via HT run on the ibm brisbane
127-qubit quantum computer (though we only use 2 of them). The results are
enhanced using error mitigation and suppression routines through Qiskit and
Q-Ctrl.
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Summary and Conclusion I

1 Hamiltonian Truncation (HT) is a framework for extracting
predictions from quantum theories non-perturbatively.

2 The TCSA is HT applied to QFTs defined as a CFT deformed with
relevant operators on the cylinder.

3 For QFTs with UV divergences, nonlocal ∆T divergent interactions
must be added to the truncated Hamiltonian.

4 We have shown how to calculate the required nonlocal interactions in
TCSA, using an effective Hamiltonian.

5 We demonstrate the viability of using HT to facilitate the
non-perturbative, real-time simulation of QFTs on NISQ devices.

6 The tools we used could be applied to many other QFTs and
observables - there are many other exciting applications to explore!
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Thank you!



Backup

The Schrieffer–Wolff Effective Hamiltonian

The Schrieffer–Wolff Hamiltonian [Schrieffer, Wolff ’66] has the properties we
need to play the role of an effective Hamiltonian:

HSW
eff =

[
eS (H0 + gV ) e−S

]
l
, (35)

eS is a canonical transformation constructed to block diagonalize the full theory
Hamiltonian order by order in PT:

eS (H0 + gV ) e−S =

(
HSW

eff 0
0 Hhh

)
.

The sizes of the blocks may be freely chosen. Choose the block size so that HSW
eff

only acts on states Ei ≤ ∆T/R:

S is constructed to be anti–hermitian, so HSW
eff is hermitian.
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Backup

Truncation

eS is unitary: Spectrum of HSW
eff exactly matches low energy spectrum of

the full theory:

Finally, we truncate the Hilbert space, so that only states with Ei ≤ ∆T/R
are retained:

1 3 0 0 · · ·
3 2 0 0

0 0 12 7

0 0 7 −6

...
. . .




=⇒ 1 3

3 2
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Backup

Expanding Heff in Perturbation Theory

(
HSW
eff 2

)
fi
=
1

2

(
VfhVhi

Efh
+

VfhVhi

Eih

)
, (36)(

HSW
eff 3

)
fi
=
1

2

(
Vfh1Vh1h2Vh2i

Efh1Efh2

− VflVlhVhi

EfhElh
+ h.c.

)
, (37)

• Repeated hi indices denote sums over states above the cutoff.

• Repeated li indices denote sums over states in the truncated Hilbert
space.

• Higher order corrections suppressed by ∼ Vij/(Eh − Ei ). Denominator
is large for states with energy much lower than cutoff.
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Backup

Fourth Order

(
HSW
eff 4

)
fi
= −1

2

Vfh1Vh1h2Vh2h3Vh3i

Eh1f Eh2f Eh3f
+

1

2

Vfh1Vh1h2Vh2l1Vl1i

Eh1iEh1l1Eh2l1

+
1

2

Vfh1Vh1h2Vh2l1Vl1i

Eh1iEh2iEh1l1

− 1

2

Vfh1Vh1l1Vl1l2Vl2i

Eh1iEh1l1Eh1l2

+
1

3!

Vfh1Vh1l1Vl1h2Vh2i

Eh1f Eh2f Eh1l1

+
2

3!

Vfh1Vh1l1Vl1h2Vh2i

Eh1f Eh2f Eh2l1

+
1

3!

Vfh1Vh1l1Vl1h2Vh2i

Eh2f Eh1l1Eh2l1

− 1

4!

Vfh1Vh1l1Vl1h2Vh2i

Eh1f Eh2l1Eh1l1

− 3

4!

Vfh1Vh1l1Vl1h2Vh2i

Eh1f Eh1l1Eh2i
+ h.c. (38)
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Backup

Alternative Effective Hamiltonians

In [Cohen, Farnsworth, Houtz, Luty ’21], another effective Hamiltonian was
introduced, which can also be written as

Heff = (Σl)
−1
[
Σ(H0 + V )Σ†

]
l
Σl , (39)

where Σ is given by

Σ = lim
tf →∞

UIP(tf , 0) . (40)

In scattering theory, it is often called Møller operator.

J. Ingoldby Hamiltonian Truncation Revisited August 12th, 2024 6 / 7



Backup

Effective Hamiltonian in PT

When expanded in perturbation theory, it has a more compact form

(Heff 2)fi =
VfhVhi

Efh
, (41)

(Heff 3)fi =
Vfh1Vh1h2Vh2i

Efh1Efh2

− VflVlhVhi

EfhElh
, (42)

(Heff 4)fi =
Vfh1Vh1h2Vh2h3Vh3i

Efh1Efh2Efh3

− Vfh1Vh1lVlh2Vh2i

Efh1Efh2Elh2

− VflVlh1Vh1h2Vh2i

Efh1Elh2

[
1

Efh2

+
1

Elh1

]
+

Vfl1Vl1l2Vl2hVhi

EfhEl1hEl2h
, (43)

although it is non-hermitian.
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