# **Domain wall networks** and their cosmological signatures

BY U. A. YAJNIK, Indian Institute of Technology Gandhinagar, Indian Institute of Technology Bombay

> MITP Program Effective Theories for non-perturbative Physics 5–17 August 2024 14–8–24



### Preliminary evidence : Römische Theater



## Overview

- $\rightarrow$  Left-right symmetric model
  - A minimal esthetic extension of SM
- $\rightarrow$  Generic domain walls in left-right symmetric models
  - Leptogenesis
  - Gravitational waves
- $\rightarrow$  Supersymmetric version and SO(10) embedding
  - strategies for DW removal
  - Relating CP violation to EDM
- $\rightarrow$  Possibility of a two peak Gravitational Wave signal

U A Yajnik Domain Walls

# 1 Genesis of baryogenesis

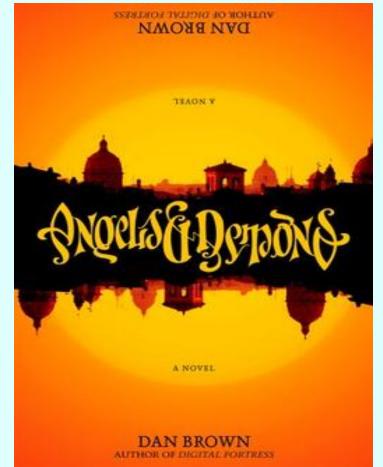
Just a little asymmetry

Annus Mirablis of Cosmology Two discoveries of 1964

- $\rightarrow$  CP violation in  $\kappa^0 \overline{\kappa^0}$
- → CMB !!!

Weinberg comment in Brandeis Lectures 1964.

Sakharov model elucidating the criteria 1967



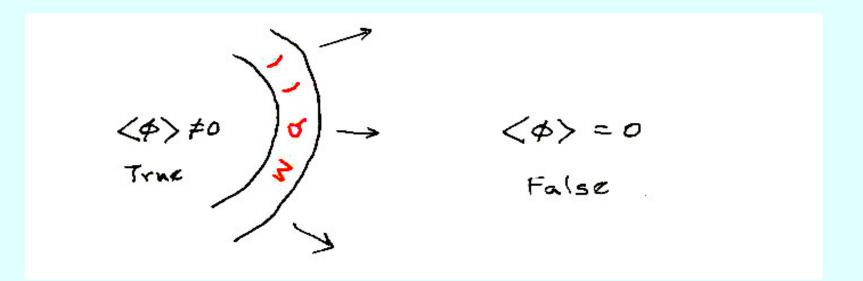
### 1.1 GUT baryogenesis

- Out of equibrium decays of GUT scale leptoquarks
- The Particle Physics rates and expansion rate of the Universe compete : out-of-equilibrium decays

$$\Gamma_{_{X}} \cong \alpha_{_{X}} m_{_{X}}^2 / T; \qquad H \cong g_{_{\star}}^{1/2} T^2 / M_{_{\text{Pl}}}$$

### 1.2 Electroweak baryogenesis (Low scale)

- Expansion rate *H* too slow at electroweak scale
  - need another source of out of equilibrium conditions
  - moving phase boundaries of a First Order Phase Transition (FOPT)



 But First order phase transition (FOPT) in SM requires Higgs mass to be ≤90GeV

# 2 Baryogenesis from leptogenesis

Replay the Baryon asymmetry recipes for Leptons

- Thermal solution : Out of equilibrium decays of Majorana neutrinos – high scale
- Phase transition : Moving phase boundaries of Left-Right symmetric model – can be low scale

### 2.1 Difficulties of High scale leptogenesis

out-of-equilibrium decays of heavy Majorana neutrinos [ see eg. Buchmüller, Di Bari and Plümacher (2004) ]

• Getting Majorana neutrinos to be in equilibrium

$$M_N \gtrsim \mathcal{O}(10^9) \text{GeV}\left(\frac{2.5 \times 10^{-3}}{Y_N}\right) \left(\frac{0.05 \text{eV}}{m_V}\right)$$

 Have sufficiently large CP violation – assuming see-saw mechanism and 3 generations

$$|\varepsilon_{_{CP}}| \leq 10^{-7} \left(\frac{M_1}{10^9 \text{GeV}}\right) \left(\frac{m_3}{0.05 \text{eV}}\right)$$

 Preventing washout of the produced asymmetry by the same Majorana neutrino mediated processes

# 3 Left-right symmetric model

(Mohapatra and Senjanovic 1970's; predecessor Pati and Salam 1974)

|           |                                |             | $T_L^3$ $+\frac{1}{\frac{1}{2}}$ $-\frac{1}{\frac{1}{2}}$ | $T_R^3$<br>0<br>0<br>$+\frac{1}{2}$<br>$-\frac{1}{2}$<br>3 | $\frac{1}{2}X$                                                                             | Q                                                                                                                  |
|-----------|--------------------------------|-------------|-----------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| ſ         | V <sub>L</sub>                 | ]           | $+\frac{1}{2}$                                            | 0                                                          | $-\frac{1}{2}$                                                                             | 0                                                                                                                  |
| l         | e_                             | J           | $-\frac{1}{2}$                                            | 0                                                          | $-\frac{1}{2}$                                                                             | -1                                                                                                                 |
| ſ         | V <sub>R</sub>                 | ]           | 0                                                         | $+\frac{1}{2}$                                             | $-\frac{1}{2}$                                                                             | 0                                                                                                                  |
| l         | $e_R^-$                        | J           | 0                                                         | $-\frac{1}{2}$                                             | $-\frac{1}{2}$                                                                             | -1                                                                                                                 |
|           |                                |             |                                                           |                                                            |                                                                                            |                                                                                                                    |
|           |                                |             | $T_L^3$                                                   | $T_R^3$                                                    | $\frac{1}{2}X$                                                                             | Q                                                                                                                  |
| [         | u_                             | ]           | $\tau_L^3 + \frac{1}{2}$                                  | τ <sub>R</sub> <sup>3</sup><br>Ο                           | $\frac{\frac{1}{2}X}{+\frac{1}{6}}$                                                        | Q                                                                                                                  |
| [<br>[    | u_<br>dL                       | ]<br>]      | $T_L^3$ $+\frac{1}{\frac{1}{2}}$ $-\frac{1}{\frac{1}{2}}$ | τ <sub>R</sub> <sup>3</sup><br>Ο<br>Ο                      | $\frac{\frac{1}{2}X}{\frac{1}{6}}$                                                         | Q                                                                                                                  |
| <br> <br> | u<br>L<br>dL<br>u <sub>R</sub> | ]<br>J<br>] | $T_L^3$ $+\frac{1}{2}$ $-\frac{1}{2}$ $0$                 | $\tau_R^3$ $0$ $0$ $+\frac{1}{2}$ $-\frac{1}{2}$           | $\frac{\frac{1}{2}X}{\frac{1}{6}} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$ | $ \begin{array}{c} Q \\ +\frac{2}{3} \\ -\frac{1}{3} \\ +\frac{2}{3} \\ +\frac{1}{3} \\ -\frac{1}{3} \end{array} $ |

#### 3.0.1 Higgs sector – suitable for neutrino see-saw

$$\Phi = (1, 2, 2, 0)$$
  
$$\Delta_L = (1, 3, 1, 2), \quad \Delta_R = (1, 1, 3, 2)$$

In the notation

Choice of vev

$$\Delta_{L} \equiv \Delta_{L}^{i} \tau_{L}^{i} = \begin{pmatrix} \Delta^{+} & \Delta^{++} \\ \Delta^{0} & \Delta^{-} \end{pmatrix}$$
$$\Delta_{L} \rangle = \begin{pmatrix} 0 & 0 \\ l & 0 \end{pmatrix}, \qquad \langle \Delta_{R} \rangle = \begin{pmatrix} 0 & 0 \\ r & 0 \end{pmatrix},$$
$$\Phi = \begin{pmatrix} \kappa & 0 \\ 0 & \kappa' \end{pmatrix}$$

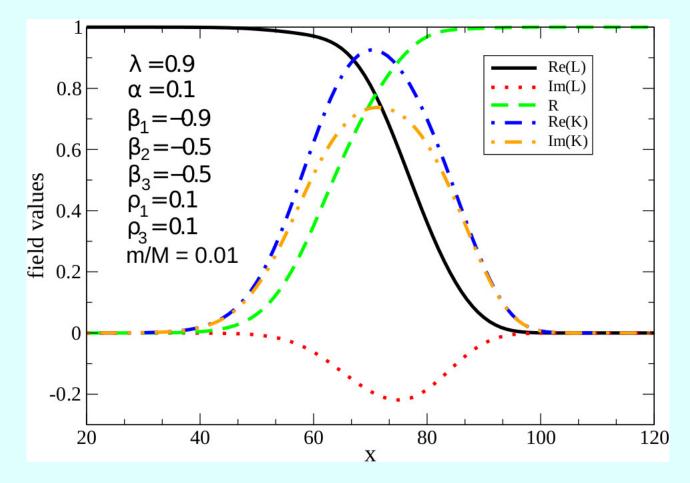
U A Yajnik Domain Walls

- Introduced new species  $V_{p} \rightarrow as$  a partner to  $e_{p}^{-}$
- New gauge symmetry SU(2)
- Need a new hypercharge  $X \rightarrow turns$  out to be exactly B L
- In praise of B L ...
  - the only conserved charge of SM which is not gauged!
  - Hereby it gains the status of being gauged
- Emerges naturally in SO(10) unification

# 4 L-genesis in left-right symmetric world

- Assume flip symmetry  $SU(2)_L \leftrightarrow SU(2)_R$  (possible in SO(10))
- B L automatically a local symmetry ensures we start with a clean slate B L = 0 at the Big Bang
- Two kinds of vacua  $SU(2)_L$  breaking or  $SU(2)_R$  breaking
  - one desirable, the other accidental
- Big Bang universe has horizons
  - patchwork of both kinds of domains
- So we have
  - $\rightarrow$  L number violation for Majorana neutrinos
  - $\rightarrow$  Out of equilibrium wall motion (bring us to SM)
  - $\rightarrow$  *CP* violation transient values in the core of the DW

### Moving phase boundaries at $SU(2)_R$ breaking [Sarkar, Abhishek and UAY]



How can we verify this? The parable of the cow and the grass. Electroweak baryogenesis models rely on

- a cosmological phase transition
- Movement of bubble walls
- CP violation within the width of the wall

The *CP* phase is transient : both time and space dependent.

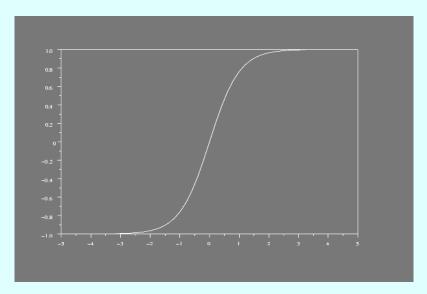
Further,

- Thermal letpgenesis with high scale has difficulties
- The EW Bgenesis scenarios can be adapted to BSM for leptogenesis

How to relate transient *CP* violation to low energy physics.

#### Key issues :

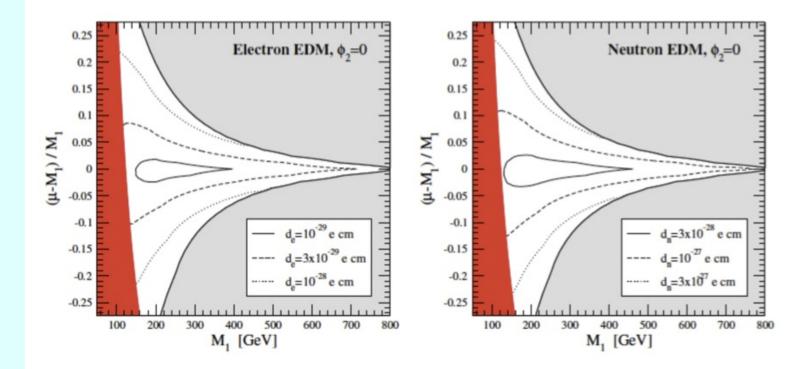
- Bubble walls are solitonic solutions
  - Space dependent *CP* phase is also solitonic
    - Machine errors in end values can produce a completely different curve.
  - Difficulty relating values at a finite boundary to interior values.



• Bubble walls occur at finite temprature. Need to relate finite temprature parameter values to observable zero temperature values.

### 4.1 Relating CP violation to EDM

#### In MSSM++ models,



Morrissey and Ramsey-Musolf (2012)

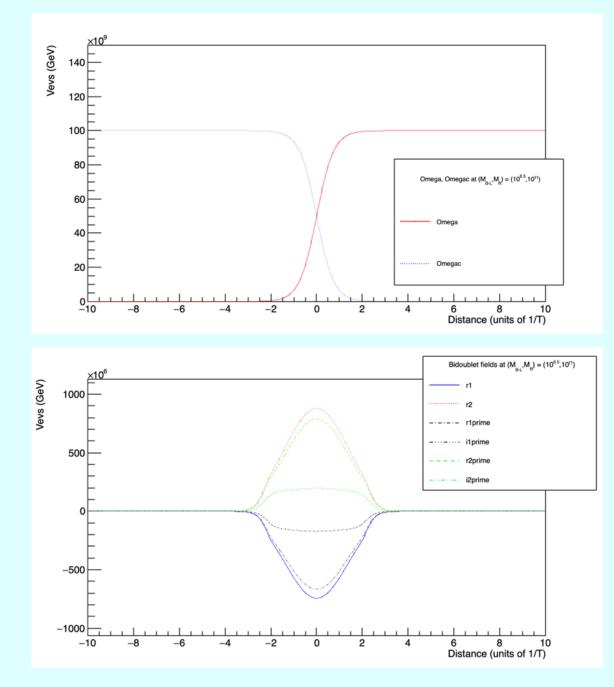
$$d_f \cong \sin \delta_{CP} \left( \frac{m_f}{MeV} \right) \left( \frac{1 \text{TeV}}{M} \right)^2 \times 10^{-26} e \text{ cm}$$

# 5 A renormalisable SUSY LR model

[Benakli, Aulakh, Senjanovic (1997)]

- Higgs content : superfields Bidoublet  $\Phi$ , Triplets  $\Delta_L$ ,  $\Delta_R$ ,  $\Delta_L^c$ ,  $\Delta_R^c$  with  $B L = \pm 2$ , and new Triplets  $\Omega_L$ ,  $\Omega_R$  with B L = 0.
  - Renormalisable model
- Two stage gauge symm breaking :  $M_R \sim SU(2)_R \rightarrow U(1)_R$ and  $M_{B-L} \sim U(1)_R \otimes U(1)_{B-L} \rightarrow U(1)_Y$
- Avoid new mass scale by imposing an R symmetry  $\rightarrow M_{B-L}^2 \approx M_{EW} M_R$

$$W = m_{\Delta} \left( \operatorname{Tr} \Delta \,\overline{\Delta} + \operatorname{Tr} \Delta_{c} \,\overline{\Delta}_{c} \right) + \frac{m_{\Omega}}{2} \left( \operatorname{Tr} \Omega^{2} + \operatorname{Tr} \Omega_{c}^{2} \right) + \mu_{ij} \operatorname{Tr} \tau_{2} \,\Phi_{i}^{T} \tau_{2} \,\Phi_{j} + a \left( \operatorname{Tr} \Delta \,\Omega \,\overline{\Delta} + \operatorname{Tr} \Delta_{c} \,\Omega_{c} \,\overline{\Delta}_{c} \right) + \alpha_{ij} \left( \operatorname{Tr} \Omega \,\Phi_{i} \,\tau_{2} \,\Phi_{j}^{T} \,\tau_{2} + \operatorname{Tr} \Omega_{c} \,\Phi_{i}^{T} \,\tau_{2} \,\Phi_{j} \,\tau_{2} \right)$$



### Piyali Banerjee and UAY JHEP (2021)

#### U A Yajnik Domain Walls

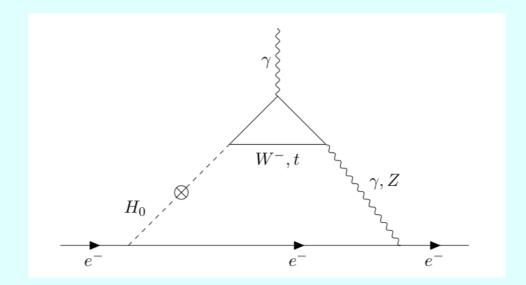
### 5.1 Corroborating with EDM

- Assume all scalar vevs entering the DW are taken to be corrected by temperature correction  $O(g^2 \tau^2)$
- In a simple bidouble Higgs model, a 1-loop formula for EDM is

$$\frac{d_e}{e} \sim \frac{\alpha m_e}{4\pi M_h^2} \sin \delta$$

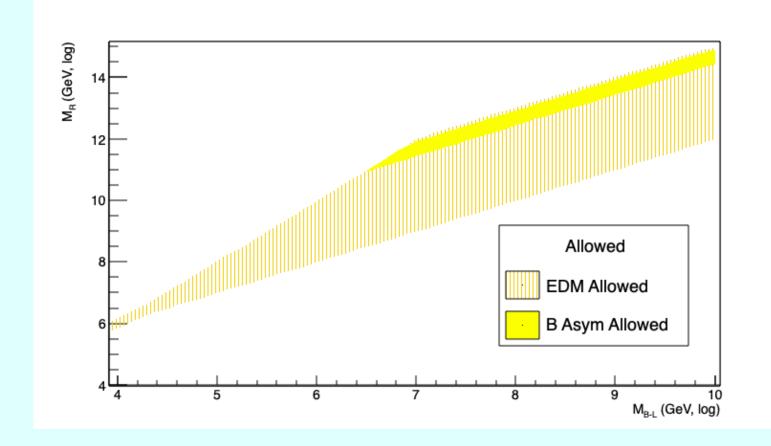
• For large values of  $M_{B-L}$  and  $M_R$  two loop effects arising from the neutral scalars dominate the one loop

$$(d_e / e)|_{\text{twoloop}} = \frac{G_F m_e \alpha \sin \delta}{\pi^3 \sqrt{2}} (f_{W,HYY} (M_W^2 / M_h^2) + f_{W,HZY} (M_W^2 / M_h^2) + f_{t,HZY} (M_W^2 / M_h^2) + f_{t,HZY} (M_t^2 / M_h^2)).$$



and four other such diagrams

Thus we obtain constraints on the mass scales  $M_R$  and  $M_{B-L}$ .



- → Interesting lesson : the *R*-symmetry compatible formula of Benaqli, Aulakh and Senjanovic is in tension.
- $\rightarrow$  Can be repaired by including the  $m_{\Omega}\Omega\Omega$  term in superpotential

Left – Right models a tale of two phase transitions

# 6 Phase transition gravitational waves

mostly Caprini, Durrer, Servant, Binétruy, Hindmarsh ... 2009 – 2019; Kosowsky and Turner(1993); Huber and Konstandin(2008); Weir (2016)

1. Bubble collisions

$$h^{2} \Omega_{env}(f) = 1.67 \times 10^{-5} \left(\frac{H_{\star}}{\beta}\right)^{2} \left(\frac{\kappa_{c} \alpha}{1+\alpha}\right)^{2} \left(\frac{100}{g_{\star}}\right)^{\frac{1}{3}} \left(\frac{0.11 \, v_{w}^{3}}{0.42 + v_{w}^{2}}\right)^{\frac{3.8 \, (f/f_{env})^{2.8}}{1+2.8 \, (f/f_{env})^{3.8}}$$
  
where  $H_{\star} = H(T_{n})$ 

2. Sound waves

Pressure waves created in the plasma by movement of DW

$$h^{2} \Omega_{sw}(f) = 2.65 \times 10^{-6} \left(\frac{H_{\star}}{\beta}\right) \left(\frac{\kappa_{sw} \alpha}{1+\alpha}\right)^{2} \left(\frac{100}{g_{\star}}\right)^{\frac{1}{3}} v_{w} \left(\frac{f}{f_{sw}}\right)^{3} \left(\frac{7}{4+3(f/f_{sw})^{2}}\right)^{7/2}$$
  
with peak frequency

$$f_{sw} = \frac{1.9 \times 10^{-5}}{V_{W}} \left(\frac{\beta}{H_{*}}\right) \left(\frac{T_{*}}{100 \text{GeV}}\right) \left(\frac{g_{*}}{100}\right)^{\frac{1}{6}} \text{Hz}$$

#### U A Yajnik Domain Walls

3. MHD turbulence

$$h^{2} \Omega_{\text{turb}}(f) = \left(\frac{H_{*}}{\beta}\right) \left(\frac{K_{\text{turb}} \alpha}{1+\alpha}\right)^{\frac{3}{2}} \left(\frac{100}{g_{*}}\right)^{1/3} v_{w} \frac{3.35 \times 10^{-4} (f/f_{\text{turb}})^{3}}{\left[1 + (f/f_{\text{turb}})\right]^{\frac{11}{3}} (1+8 \pi f/h_{*})^{\frac{11}{3}}}$$

### 6.1 The two phase transitions

Zafri A. Borboruah and UAY ArXiv 2022; PRD2024 Tree level Higgs potential for  $\Delta_R$  vev r

$$V_0(r) \approx \frac{\rho_1}{4} (r^2 - \eta^2)^2$$

and similar for 1.

The effective potential to be used

$$V_{\rm eff}(r, \tau) = V_{\rm O}(r) + V_{\rm CW}(r) + V_{\rm FT}(r, \tau) + V_{\rm D}(r, \tau)$$

including Coleman–Weinberg, Finite temperature and daisy digrams. Finally, with both L and R contributions :

$$V_{eff}^{total}(r, l, T) = V_{eff}(r, T) + V_{eff}(l, T)$$

Two types of phase transitions

I. Kibble mechanism – "Causal horizon limited SOPT"

Characterised by Ginzberg temperature

$$\xi_G^3 \Delta_c V_{eff} = T_G$$

and its length scale  $\rho_1$  a quartic coupling,  $\eta$  a vev

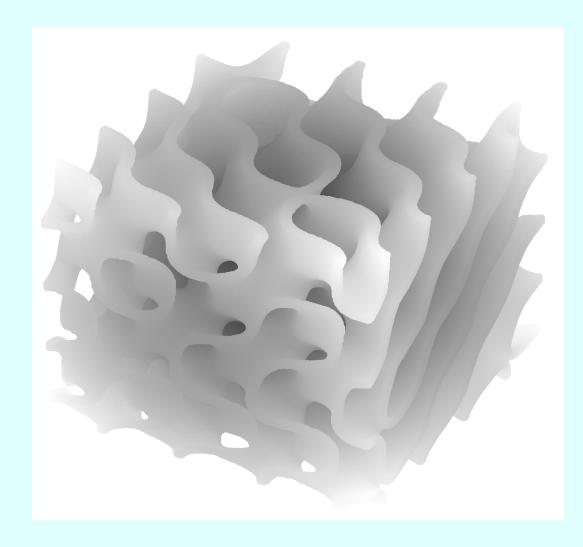
$$\xi_{\mathcal{G}} \simeq \frac{1}{2\rho_1 \eta}$$

Instead of diverging idefinitely, the putative SOPT has a scale

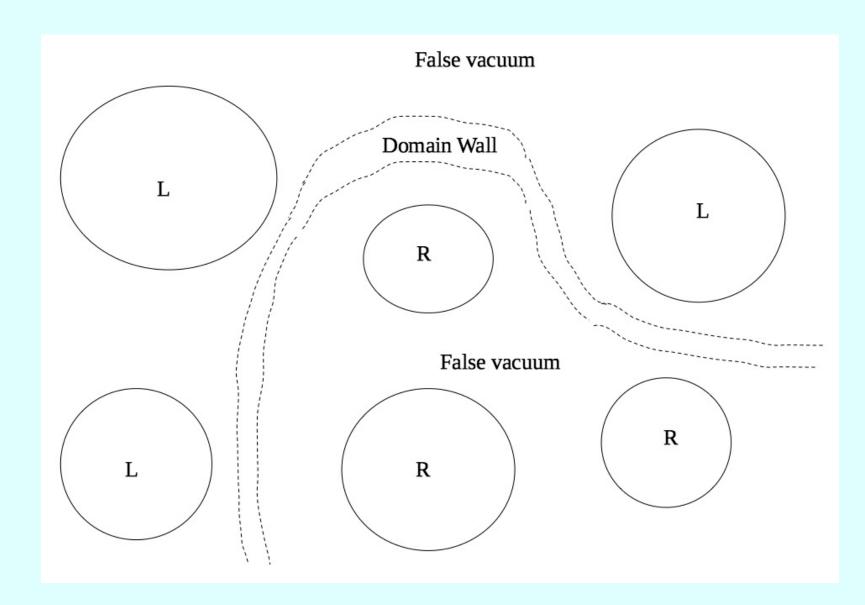
$$\xi_{causal} = \left(\frac{M_{Pl}}{\sqrt{\mathcal{N}} m_r^2 T_c^2}\right)^{1/3}$$

We treat these walls by direct simulation "crumbling walls" by introducing a bias term to break L-R

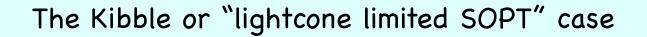
U A Yajnik Domain Walls

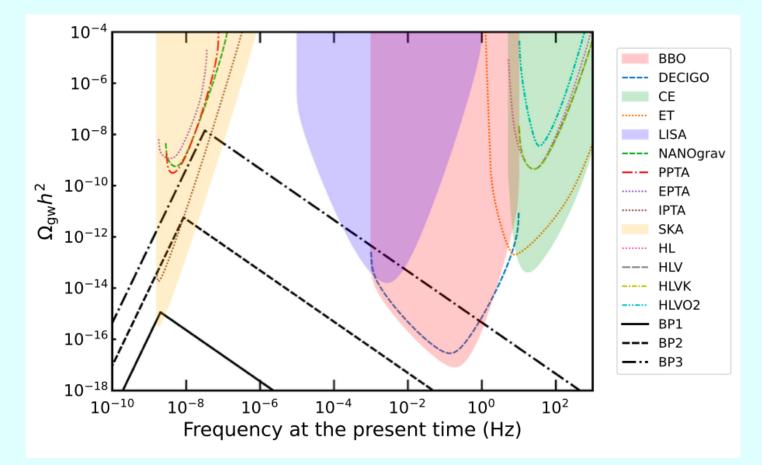


- II. Degenerate field FOPT
  - →  $Z_2$  of *D*-parity for each *L* and *R* sectors effectively gives a  $Z_4$  with two distinct fields  $\Delta_L$  and  $\Delta_R$
  - → The left-like and the right-like phases percolate individually
  - → Where the two percolated regions meet, there is a domain wall, until the whole Universe is filled with a frustrated network of domain walls
  - $\rightarrow$  This needs to be treated as
    - standard FOPT for bubbles
    - followed by the result of crumbling walls separating percolated regions



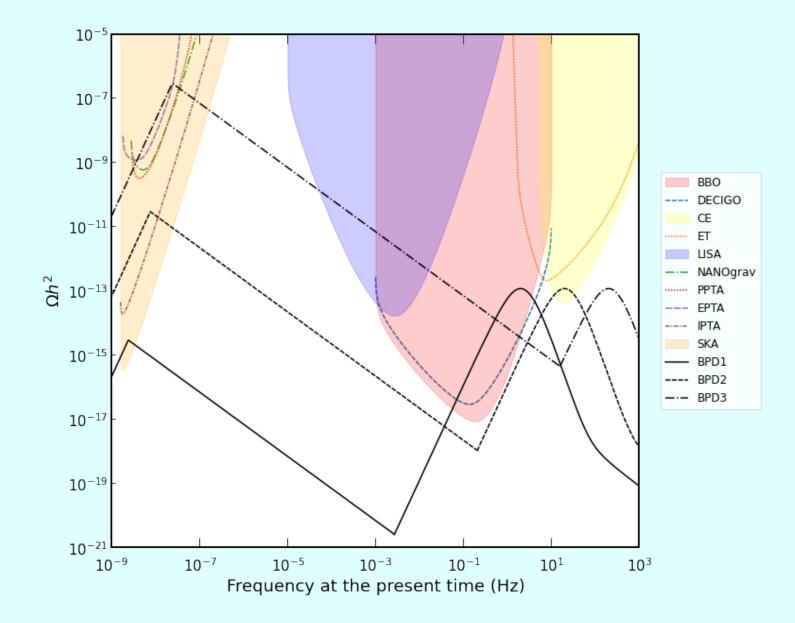
### 6.2 L-R two phase transition results



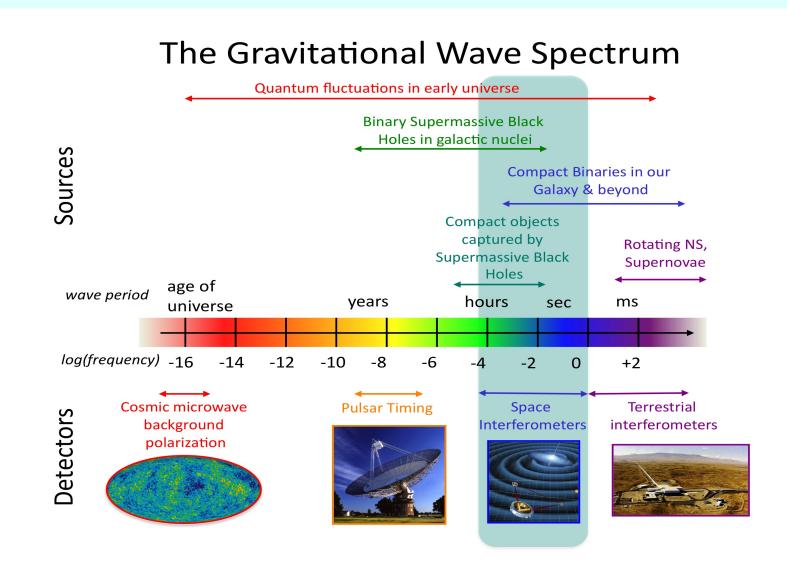


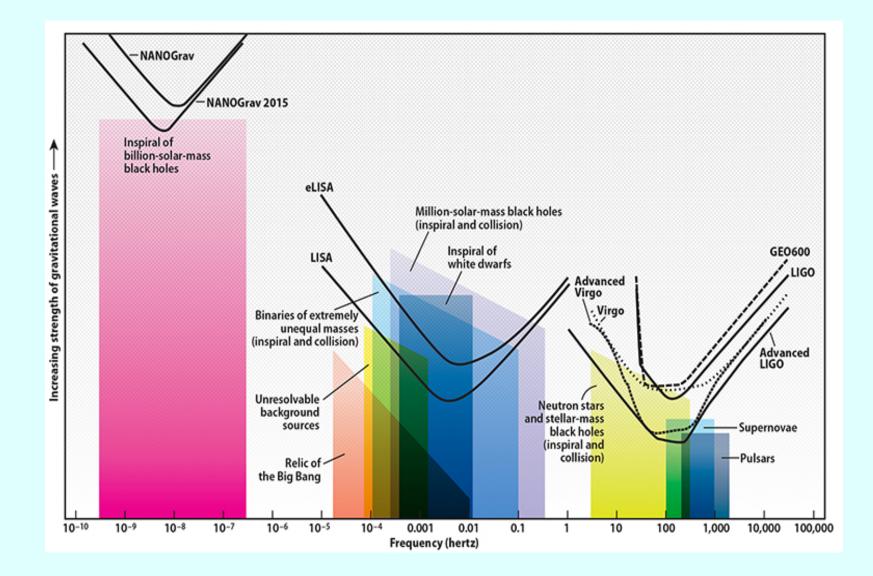
Benchmark points 1,2,3  $M_R = 10^4$ ,  $10^5$ ,  $10^6$  GeV

The Degenerate field FOPT case - two peaked spectrum



### 6.3 GW the observational propsects





## 6.4 Key experiments beyond LISA range

Already functioning

- Pulsar timing array radio telescopes

   PPTA, IPTA, EPTA –> NANOGrav
   uGMRT (2017) correlated data of 300–500 MHz and 1260–1460
   MHz
- GAIA orbiting sky scanning optical telescope till 2025 Astrometry – µarc-sec accuracy for about 2 billion objects GWs from individually resolvable supermassive black hole binaries

# 7 Conclusion

- $\rightarrow$  GUT Bgenesis and EW Bgenesis are unrealistic possibilities
- $\rightarrow$  Thermal leptogenesis requires fine tuning
- → Low (TeV to PeV) scale leptogenesis viable through phase transition Domain Walls
- → Presented the case of L-R models transient CP phase relation to its zero temperature value Mü
  - to be verified through Electron EDM
- $\rightarrow$  Two possibilities for the L-R case; 2-peak signal for FOPT.

# Danke schön!

Typeset with TEXMACS