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Phase transitions in the early universe could provide an explanation for the observed
baryon asymmetry [1, 2]. Such an investigation requires intricate knowledge of

(non-perturbative)

: in QFT at Ginite temperature]
tunneling phenomena :

- v - _
~ ~~
best treated using the requires us to incorporate
path integral formalism the decay of excited states

This talk: Reassess the (quantum-mechanical) decay of excited states using
functional methods.
Later goals: Get a full real-time picture of tunneling in quantum mechanics, then
incorporate finite-temperature effects.
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There exist numerous methods of attributing a meaningful imaginary part to the local
energies E°°) fitting into roughly two categories:

Wave function techniques based Functional techniques based on the
on (approximate) solutions to the (Euclidean) propagator, employing
Schrodinger equation [3, 4, etc.] path integrals [5, 6, etc.]

directly extendable to field theory
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[5] Callan & Coleman (1977), PRD vol. 16(6)

Late-time behavior of the Euclidean propagator g siwars, et ol (2017), PRD vol. 95(s)

Employing the spectral representation, we can project out the (global) ground state
energy from the late-time behavior of the Euclidean propagator

o
[ (glob)
o o EyT
Ko (0 rsT) = ) 0 (@0) 0 (ar) eXp[_h ’
n=0

which leads to the exact relation

lob g -
E(()go ) _ _hTh_I}I;O{T llog[KE(mFV,:va;Tﬂ}.

One hereby chooses xg = xp = xpy for convenience [5,6].
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Final expression

Taking care of ensuing caveats (zero modes, multi-bounces) yields the ground state
decay width I'g as

d? (T=o0)
sleie] g VBl
Iy = s Z exp (— 7 Sy [[xbounce > .

derc] &+ Vv )]}

“fluctuation factor”
(zero mode contribution X determinant ratio)

N|—

leading exponential

Important: By virtue of analogy, this formula can be transferred to field theory!
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The former procedure critically relied on the limit 7" — oo, which has two disadvantages:
© We can only extract data about the ground state decay width T'y.

© We are required to consider multi-instanton contributions.

Both caveats can be addressed at once by slightly modifying the former analysis. Simple
idea: Project out the global energy E(8°Y) exactly, utilizing

EElb) — _p—1p log{/ dazo/ dxr U(Dl()b (z7) &P () KE(J?O,JUT;T)} ;

then replace ¥#°") () with 1{°)(z) and omit any shot-like contributions [8, 9].

While incapacitating a straightforward transfer to QFT, we employ this ansatz to
gain insights into the instanton method.
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Local wave function

Upshot: Want to affirm the assertion

Elo) — _p-1p; ]og{/ dxo/ dzr m {0 (o) KE($0,$T;T)}

for arbitrary T — need to utilize a uniform WKB approximation for :°°) to guarantee
the correct behavior in the transition region. One finds the structure

77bgoc) () = complicated prefactor x exp [— ;l/ \/M d¢ {1 + O(\/ﬁ)} .
0

usual WKB suppression factor

Note that the only n-dependence is inside the (non-exponential) prefactor.
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Evaluating an endpoint-weighted path integral

Let us see what changes when evaluating a composite path integral of the form

Dg[x] mwgflc)[x(o)] exp ~ Sglz] '
/c([o,T]) < . )

We perform the usual steps in the semi-classical limit A — 07
@ Find the critical paths of the full exponent.

@ Choose an appropriate function basis around the critical paths, expand the exponent
to quadratic order and perform the Gaussian integration (beware of flat directions).

@ Add all contributions with their appropriate weight.
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Evaluating an endpoint-weighted path integral: Exponent

Notice: The exponent gets contributions from the local wave functions, seen best when
splitting them as

(loc)
exp \L
9019 (@) = Y% () D [— Yo (1) >] .



Obtaining the exponent
[e] lelelele)

Evaluating an endpoint-weighted path integral: Exponent

Notice: The exponent gets contributions from the local wave functions, seen best when
splitting them as

(loc)
exp \L
9019 (@) = Y% () D [— Yo (1) >] .

A\ Singular h-dependence

— influences critical
paths non-trivially



Obtaining the exponent
[e] lelelele)

Evaluating an endpoint-weighted path integral: Exponent

Notice: The exponent gets contributions from the local wave functions, seen best when
splitting them as

(loc)
oc oc exp \L
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Polynomial h-dependence / A\ Singular fi-dependence

— only enters the discussion — influences critical
of the fluctuation factor paths non-trivially
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Evaluating an endpoint-weighted path integral: Exponent

Notice: The exponent gets contributions from the local wave functions, seen best when
splitting them as

(loc)
oc oc exp \L
94 (2) = ), eep (@) exp[— ver 1) )] .

Polynomial h-dependence / A\ Singular fi-dependence

— only enters the discussion — influences critical
of the fluctuation factor paths non-trivially

T
Full exponent:  fexp[z] :/ ma;(t) —i—V[ ()] dt + welfpc[ (T )} +¢elfpc[ (0 )} )
0

~~ ’ supplementary boundary
Euclidean action Sg[x] contributions from 1)
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Evaluating an endpoint-weighted path integral: Exponent

Expanding around a critical trajectory x.it(t) yields the expansion

Jexp chrit + Am]] = fexp [[wcrit]]
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Evaluating an endpoint-weighted path integral: Exponent

Expanding around a critical trajectory x.it(t) yields the expansion

fexp |:|:xCI‘1t + A:L’]] fexp [[xcrlt]] / m:l;crlt t) % [xcrit (t)} } A«T(t) dt

Euler-Lagrange equation

 { i)+ 085 o (1)] | ()

right transversality condition

~ {micn ) = 45 (0] } B000

left transversality condition
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Evaluating an endpoint-weighted path integral: Exponent

Expanding around a critical trajectory x.it(t) yields the expansion
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Evaluating an endpoint-weighted path integral: Exponent

Expanding around a critical trajectory x.it(t) yields the expansion

fexp |:|:xCI‘1t + A:L’]] fexp [[xcrlt]] / m:l;crlt t) % [xcrit (t)} } A«T(t) dt

Euler-Lagrange equation

 { i)+ 085 o (1)] | ()

right transversality condition

~{ma0) — s 0] o) + ().

left transversality condition

Because the variations Az(t) are unconstrained at both temporal boundaries, we
encounter additional transversality conditions.
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Restrictions on critical paths

Inserting the ususal WKB supression factor for qpél?;) yields

Lon2_ 2 . . (integrated)

Ferit(t)” = m {V[xcm(t)] + Ecm} ’ Euler-Lagrange equation
. 2 transversality condition
Feri(0) = Rv[ajmt(o)] ’ at the left boundary

. 2 transversality condition

Ferie(T) = = Ev[xcrlt(T)] ’ at the right boundary
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. 2 transversality condition
Feri(0) = Rv[ajmt(o)] ’ at the left boundary
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Ferie(T) = = Ev[xcrlt(T)] ’ at the right boundary

We note that both transversality conditions are virtually redundant, yielding E..; = 0.
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Restrictions on critical paths

Inserting the ususal WKB supression factor for qpél?;) yields

Lon2_ 2 . . (integrated)

Ferit(t)” = m {V[mcm(t)] + Ecm} ’ Euler-Lagrange equation
. 2 transversality condition
Feri(0) = EV[mmt(O)] ’ at the left boundary

. 2 transversality condition

Ferie(T) = = Ev[xcrlt(T)] ’ at the right boundary

We note that both transversality conditions are virtually redundant, yielding E..; = 0.
There are only two admissible solutions, namely

@ the trivial FV solution, and

@ (time-translated) bounce motions — one-parameter family of critical paths.
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Critical bounce trajectories

Admissible finite-time bounce motions are cutouts of the (time-translated) infinite-time
bounce, defined as the representative that turns at exactly ¢t = 0.

()

A x o ::(TZOQ (t - to)

ZTescape

m(to)(T) 1

crit

x(to)(o) 1

crit

TRV -
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Critical bounce trajectories

Admissible finite-time bounce motions are cutouts of the (time-translated) infinite-time
bounce, defined as the representative that turns at exactly ¢t = 0.

()

A

ZTescape

::(T7%> (1‘ - fo)

(to)(T) 1

Lerit

2 (0)

crit

TRV -

Important: ¢y € [0, 7], otherwise the turning point is not traversed
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Critical bounce trajectories

Admissible finite-time bounce motions are cutouts of the (time-translated) infinite-time
bounce, defined as the representative that turns at exactly ¢t = 0.

()

A

ZTescape

::(T7%> (1‘ - fo)

(to)(T) 1

Lerit

2 (0)

crit

TRV -

Important: ¢y € [0, 7], otherwise the turning point is not traversed
— volume of the instanton moduli space is exactly T'
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Exponent for bounce-like trajectories

The important observation is that the full exponent evaluated on the one-parameter
family of bounce solutions is given by

fexp H:mcrlt:ﬂ - wel?pf [ ((:tr(l)t( )] + welgc [ Crlt (T)] + S ngi(l)t]]
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Exponent for bounce-like trajectories

The important observation is that the full exponent evaluated on the one-parameter
family of bounce solutions is given by
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crlt (O) Tturn
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Exponent for bounce-like trajectories

The important observation is that the full exponent evaluated on the one-parameter
family of bounce solutions is given by

fexp [[ ((‘:(l)t)]] (wggpf) [xg(l)t ’ + [ el?;) [xcrlt ’ + [S ngi(l)t]] ]

l

crlt (O) Tturn

:/ V@ e+ [ VEnVE de+ [550) o al0)
0
Tturn

=2 \% 2mV d§ SE[[ bounce)ﬂ :

0

(‘Tlt

This ensures the correct exponential suppression for arbitrary parameter 7.
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A glimpse at the fluctuation factor

The quadratic terms in the former expansion read

T
fe()?;)) [[l’crit + Aﬁﬂ = 77%;02/ Ax(t) { d(d2 N Vv [-Tcrit(t)] }Al’(t) dt
0

wt)? mw?

fluctuation operator Ot

+ % {mAg‘c(T) + Y80 e (T)| Az (T) } Az(T)

(right) restriction on eigenfunctions

-~

- % {mAi’(O) — Y0 [ 26114(0)] Az (0) } Az(0).

(left) restriction on eigenfunctions
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H H [10] Gel'fand & Yaglom (1960), J. Math. Phys. vol. 1(1)
A gllmpse at the fIUCtuatlon faCtor [11] Kirsten & McKane (2004), J. Phys. A vol. 37

The quadratic terms in the former expansion read

2 T 2 V'
fe(fg [[:vcm + Axﬂ = mTw / Ax(t) {_ d(it)Q i [n;:;(t)] } Ax(t)dt
0

fluctuation operator Ot

+ % {mA:b(T) + 09" [0 (T) | A (T) } Ax(T)

(right) restriction on eigenfunctions

- {mM@ 00 [ (0)] Aa(0) } Az (0).

(left) restriction on eigenfunctions

Sole difference to the usual discussion: Utilize Robin boundary conditions instead of
Dirichlet ones for the determinant computation (generalized Gel'fand-Yaglom [10, 11]).
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[12] Levit, Negele, & Paltiel (1980), PRC vol. 22(5)

Flnal reSU|t for the decay Wldth [13] Weiss & Haffner (1983), PRD vol. 27(12)

The aforementioned procedure exactly reproduces the well-known WKB result [12, 13]

2 (loc)] 1 2mw A%\ [mw3 A2 B
n=— tm[m] = 5 (2 ) 22 e (-F).

ground state decay width I}
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© ... we only required single-bounce contributions as long as w1 < exp (h_lﬁ).
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With careful considerations one finds that ...
© ... we only required single-bounce contributions as long as w1 < exp (h_lﬁ).

@ ... the formerly portrayed ansatz yields the correct result only for w1 < ln(h_lﬁ).
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Flnal reSU|t for the decay Wldth [13] Weiss & Haffner (1983), PRD vol. 27(12)

The aforementioned procedure exactly reproduces the well-known WKB result [12, 13]
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ground state decay width I}

With careful considerations one finds that ...
© ... we only required single-bounce contributions as long as w1 < exp (h_lﬁ).
@ ... the formerly portrayed ansatz yields the correct result only for w1 < ln(h_lﬁ).

© ... the method can be generalized to arbitrary partial Wick-rotations ¢ — e'¢, in
which case the bound grows to w7’ < sin(f) ! In(h~'@).
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[12] Levit, Negele, & Paltiel (1980), PRC vol. 22(5)

Flnal reSU|t for the decay Wldth [13] Weiss & Haffner (1983), PRD vol. 27(12)

The aforementioned procedure exactly reproduces the well-known WKB result [12, 13]

2 (loc)] 1 2mw A%\ [mw3 A2 B
n=— tm[m] = 5 (2 ) 22 e (-F).

ground state decay width I}

With careful considerations one finds that ...
© ... we only required single-bounce contributions as long as w1 < exp (h_lﬁ).
@ ... the formerly portrayed ansatz yields the correct result only for w1 < ln(h_lﬁ).
© ... the method can be generalized to arbitrary partial Wick-rotations ¢ — e'¢, in
which case the bound grows to w7’ < sin(f) ! In(h~'@).

Reason: Projection is only valid up to terms of order v/ .
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The former computation should serve as a first step towards resolving the role of
instantons in tunneling:

real time dynamics of a
particle trapped inside a
meta-stable FV region

direct relation instanton solutions in
? Euclidean time
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Concluding remarks

Key conclusion: Solving a composite path integral is in many situations advantageous
to sequentially approximating the involved integrals.

The former computation should serve as a first step towards resolving the role of
instantons in tunneling:

real time dynamics of a
particle trapped inside a
meta-stable FV region

direct relation instanton solutions in
? Euclidean time

Thanks for your attention!
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