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Motivation

Phase transitions in the early universe could provide an explanation for the observed
baryon asymmetry [1, 2].

Such an investigation requires intricate knowledge of

(non-perturbative)
tunneling phenomena

[2] Garbrecht (2020), Prog. Part. Nucl. Phys. vol. 110
[1] Sakharov (1967), Pisma Zh. Eksp. Teor. Fiz. vol. 5
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Define the decay rate as:

Γn = −2
ℏ

Im
[
E

(loc)
n

]
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Extracting decay rates

There exist numerous methods of attributing a meaningful imaginary part to the local
energies En
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Late-time behavior of the Euclidean propagator

Employing the spectral representation, we can project out the (global) ground state
energy from the late-time behavior of the Euclidean propagator

KE
(
x0, xT ;T

)
=

∞∑
n=0

ψ
(glob)
n (x0)ψ(glob)

n (xT ) exp
[

−E
(glob)
n T

ℏ

]
,
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which leads to the exact relation
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One hereby chooses x0 = xT = xFV for convenience [5,6].

[6] Schwartz, et al. (2017), PRD vol. 95(8)
[5] Callan & Coleman (1977), PRD vol. 16(6)
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Coleman’s conjecture

We require information about E0
(loc), so how is the relation

E
(glob)
0 = −ℏ lim

T →∞

{
T−1 log

[
K

(shot)
E (T )︸ ︷︷ ︸

dominant

+K
(FV)
E (T ) +�������XXXXXXXK

(bounce)
E (T )︸ ︷︷ ︸

exponentially suppressed

]}
of any use?
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Dropping the steepest descent contour
associated with the shot solution [6, 7],
one conjectures the identity

E
(loc)
0

(∗)= −ℏ lim
T →∞

{
T−1 log

[
K

(FV)
E + 1

2K
(bounce)
E

]}
.

xshot(t)

xbounce(t)

xFV(t)

Jbounce

JFV Jshot

[7] Ai, Garbrecht & Tamarit (2019), JHEP vol. 12
[6] Schwartz, et al. (2017), PRD vol. 95(8)
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Final expression

Taking care of ensuing caveats (zero modes, multi-bounces) yields the ground state
decay width Γ0 as

Γ0 =

√
SE

q
x

(T =∞)
bounce

y

2πℏ

∣∣∣∣∣∣∣∣∣
det′

ζ

{
− d2

dt2 +V ′′
[
x

(T =∞)
bounce (t)

]}
detζ

{
− d2

dt2 +V ′′[xFV(t)
]}

∣∣∣∣∣∣∣∣∣
−1

2

exp
(

− 1
ℏ
SE

q
x

(T =∞)
bounce

y)
.
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Problems of the traditional approach

The former procedure critically relied on the limit T → ∞, which has two disadvantages:

1 We can only extract data about the ground state decay width Γ0.
2 We are required to consider multi-instanton contributions.
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Problems of the traditional approach

The former procedure critically relied on the limit T → ∞, which has two disadvantages:
1 We can only extract data about the ground state decay width Γ0.
2 We are required to consider multi-instanton contributions.

Both caveats can be addressed at once by slightly modifying the former analysis.

Simple
idea: Project out the global energy En

(glob) exactly, utilizing

E(glob)
n = −T−1ℏ log

{� ∞

−∞
dx0

� ∞

−∞
dxT ψ

(glob)
n (xT ) ψ(glob)

n (x0)KE
(
x0, xT ;T

)}
,

then replace ψn(glob)(x) with ψn(loc)(x) and omit any shot-like contributions [8, 9].

[9] Liang & Müller-Kirsten (1995), PRD vol. 51(2)
[8] Liang & Müller-Kirsten (1994), PRD vol. 50(10)
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Local wave function

Two naturally arising candidates for ψn(loc)(x):

1 Harmonic oscillator states — good approximation near xFV
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Local wave function

Upshot: Want to affirm the assertion

E(loc)
n = −T−1ℏ log

{� ∞

−∞
dx0

� ∞

−∞
dxT ψ

(loc)
n (xT ) ψ(loc)

n (x0)KE
(
x0, xT ;T

)}
for arbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary Tarbitrary T

−→ need to utilize a uniform WKB approximation for ψ(loc)
n to guarantee

the correct behavior in the transition region. One finds the structure

ψ(loc)
n (x) = complicated prefactor × exp

[
− 1
ℏ

� x

0

√
2mV (ξ) dξ

]
︸ ︷︷ ︸

usual WKB suppression factor

[
1 + O

(√
ℏ
)]
.

Note that the only n-dependence is inside the (non-exponential) prefactor.
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Comparison to traditional WKB procedures
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Comparison to traditional WKB procedures

x

V (x)

False Vacuum Barrier True Vacuum

matching matching

quadratic turning point

plane wave WKB approximation

linear turning point

xFV

xturnVFV

ω

Implicit assumption:

E
(loc)
n = ℏω

(
n+ 1

2

)[
1 + O

(√
ℏ
)]

with n∈N being O(1).
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Methods of evaluation

There are two ways of computing the expression� ∞

−∞
dx0

� ∞

−∞
dxT ψ

(loc)
n (xT ) ψ(loc)

n (x0)

� x(T )=xT

x(0)=x0

DEJxK exp
(

−SEJxK
ℏ

)
.
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Sequential semi-classical evaluation
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[9] Liang & Müller-Kirsten (1995), PRD vol. 51(2)
[8] Liang & Müller-Kirsten (1994), PRD vol. 50(10)
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Methods of evaluation

There are two ways of computing the expression� ∞

−∞
dx0
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dxT ψ

(loc)
n (xT ) ψ(loc)

n (x0)

� x(T )=xT

x(0)=x0

DEJxK exp
(

−SEJxK
ℏ

)
.

Sequential semi-classical evaluation
of all integrals involved [8, 9]

Rewriting the expression into a
single composite path integral

Method of choice, manifests symmetries

[9] Liang & Müller-Kirsten (1995), PRD vol. 51(2)
[8] Liang & Müller-Kirsten (1994), PRD vol. 50(10)
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Evaluating an endpoint-weighted path integral

Let us see what changes when evaluating a composite path integral of the form�
C
(
[0, T ]

)DEJxK ψ(loc)
n

[
x(T )

]
ψ(loc)

n

[
x(0)

]
exp

(
−SEJxK

ℏ

)
.

We perform the usual steps in the semi-classical limit ℏ → 0+:
Find the critical paths of the fullfullfullfullfullfullfullfullfullfullfullfullfullfullfullfullfull exponent.
Choose an appropriate function basis around the critical paths, expand the exponent
to quadratic order and perform the Gaussian integration (beware of flat directions).
Add all contributions with their appropriate weight.
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Evaluating an endpoint-weighted path integral: Exponent

Notice: The exponent gets contributions from the local wave functions, seen best when
splitting them as

ψ(loc)
n (x) = ψ(loc)

n,non-exp(x) exp
[

− ψ
(loc)
exp (x)
ℏ

]
.
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Singular ℏℏℏ-dependence
−→ influences critical

paths non-trivially
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2 + V
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x(t)
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Euclidean action SEJxK

+ ψ(loc)
exp

[
x(T )

]
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exp
[
x(0)

]︸ ︷︷ ︸
supplementary boundary
contributions from ψn

(loc)
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Singular ℏℏℏ-dependence
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paths non-trivially

Polynomial ℏℏℏ-dependence
−→ only enters the discussion

of the fluctuation factor
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Evaluating an endpoint-weighted path integral: Exponent

Expanding around a critical trajectory xcrit(t) yields the expansion

fexp

r
xcrit + ∆x

z
= fexp

q
xcrit

y
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Evaluating an endpoint-weighted path integral: Exponent

Expanding around a critical trajectory xcrit(t) yields the expansion

fexp

r
xcrit + ∆x

z
= fexp

q
xcrit

y
−

� T

0

{
mẍcrit(t) − V ′

[
xcrit(t)

]︸ ︷︷ ︸
Euler-Lagrange equation

}
∆x(t) dt

+
{
mẋcrit(T ) + ψ(loc)′

exp
[
xcrit(T )

]︸ ︷︷ ︸
right transversality condition

}
∆x(T )

−
{
mẋcrit(0) − ψ(loc)′

exp
[
xcrit(0)

]︸ ︷︷ ︸
left transversality condition

}
∆x(0)

+ O
(
∆x2) .

Because the variations ∆x(t) are unconstrained at both temporal boundaries, we
encounter additional transversality conditions.
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Restrictions on critical paths

Inserting the ususal WKB supression factor for ψ(loc)
exp yields

ẋcrit(t)
2 = 2

m

{
V
[
xcrit(t)

]
+ Ecrit

}
,

(integrated)
Euler-Lagrange equation

ẋcrit(0) =
√

2
m
V
[
xcrit(0)

]
,

transversality condition
at the left boundary

ẋcrit(T ) = −
√

2
m
V
[
xcrit(T )

]
.

transversality condition
at the right boundary

We note that both transversality conditions are virtually redundant, yielding Ecrit = 0.
There are only two admissible solutions, namely

1 the trivial FV solution, and
2 (time-translated) bounce motions −→ one-parameter family of critical paths.
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Restrictions on critical paths

Inserting the ususal WKB supression factor for ψ(loc)
exp yields

ẋcrit(t)
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m
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V
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xcrit(t)

]
+ Ecrit

}
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(integrated)
Euler-Lagrange equation
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2
m
V
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Critical bounce trajectories
Admissible finite-time bounce motions are cutouts of the (time-translated) infinite-time
bounce, defined as the representative that turns at exactly t = 0.

xFV

xescape

x
(t0)
crit (T )

x
(t0)
crit (0)

t0 T0
t

x(t)
x
(T=∞)
bounce (t) x

(T=∞)
bounce

(
t− t0

)

Important: t0 ∈ [0, T ], otherwise the turning point is not traversed
−→ volume of the instanton moduli space is exactly T
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Exponent for bounce-like trajectories

The important observation is that the full exponent evaluated on the one-parameter
family of bounce solutions is given by

fexp
q
x

(t0)
crit

y
= ψ(loc)

exp
[
x

(t0)
crit (0)

]
+ ψ(loc)

exp
[
x

(t0)
crit (T )

]
+ SE

q
x

(t0)
crit

y
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This ensures the correct exponential suppression for arbitrary parameter T .
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A glimpse at the fluctuation factor
The quadratic terms in the former expansion read

fexp
(2)

r
xcrit + ∆x

z
= mω2

2

� T

0
∆x(t)

{
− d2

d(ωt)2 +
V ′[xcrit(t)

]
mω2︸ ︷︷ ︸

fluctuation operator Ocrit

}
∆x(t) dt

+ 1
2

{
m∆ẋ(T ) + ψ(loc)′′

exp
[
xcrit(T )

]
∆x(T )︸ ︷︷ ︸

(right) restriction on eigenfunctions

}
∆x(T )

− 1
2

{
m∆ẋ(0) − ψ(loc)′′

exp
[
xcrit(0)

]
∆x(0)︸ ︷︷ ︸

(left) restriction on eigenfunctions

}
∆x(0) .
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Sole difference to the usual discussion: Utilize Robin boundary conditions instead of
Dirichlet ones for the determinant computation (generalized Gel’fand-Yaglom [10, 11]).

[11] Kirsten & McKane (2004), J. Phys. A vol. 37
[10] Gel’fand & Yaglom (1960), J. Math. Phys. vol. 1(1)



21/22

Introduction Traditional instanton method Decay of excited states: Idea Obtaining the exponent Fluctuation factor and result

Final result for the decay width

The aforementioned procedure exactly reproduces the well-known WKB result [12, 13]

Γn = −2
ℏ

Im
[
E

(loc)
n

]
= 1
n!

(
2mωA2

ℏ

)n√
mω3A2

πℏ
exp

(
−B

ℏ

)
︸ ︷︷ ︸

ground state decay width Γ0

.

[13] Weiss & Häffner (1983), PRD vol. 27(12)
[12] Levit, Negele, & Paltiel (1980), PRC vol. 22(5)
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mω3A2
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ground state decay width Γ0

.

With careful considerations one finds that ...

1 ... we only required single-bounce contributions as long as ωT ≪ exp
(
ℏ−1B

)
.

2 ... the formerly portrayed ansatz yields the correct result only for ωT ≪ ln
(
ℏ−1B

)
.

3 ... the method can be generalized to arbitrary partial Wick-rotations t 7→ eiθt, in
which case the bound grows to ωT ≪ sin(θ)−1 ln

(
ℏ−1B

)
.

Reason: Projection is only valid up to terms of order
√
ℏ .

[13] Weiss & Häffner (1983), PRD vol. 27(12)
[12] Levit, Negele, & Paltiel (1980), PRC vol. 22(5)



21/22

Introduction Traditional instanton method Decay of excited states: Idea Obtaining the exponent Fluctuation factor and result

Final result for the decay width

The aforementioned procedure exactly reproduces the well-known WKB result [12, 13]

Γn = −2
ℏ

Im
[
E

(loc)
n

]
= 1
n!

(
2mωA2

ℏ

)n√
mω3A2

πℏ
exp

(
−B

ℏ

)
︸ ︷︷ ︸

ground state decay width Γ0

.

With careful considerations one finds that ...
1 ... we only required single-bounce contributions as long as ωT ≪ exp

(
ℏ−1B

)
.

2 ... the formerly portrayed ansatz yields the correct result only for ωT ≪ ln
(
ℏ−1B

)
.

3 ... the method can be generalized to arbitrary partial Wick-rotations t 7→ eiθt, in
which case the bound grows to ωT ≪ sin(θ)−1 ln

(
ℏ−1B

)
.

Reason: Projection is only valid up to terms of order
√
ℏ .

[13] Weiss & Häffner (1983), PRD vol. 27(12)
[12] Levit, Negele, & Paltiel (1980), PRC vol. 22(5)



21/22

Introduction Traditional instanton method Decay of excited states: Idea Obtaining the exponent Fluctuation factor and result

Final result for the decay width

The aforementioned procedure exactly reproduces the well-known WKB result [12, 13]

Γn = −2
ℏ

Im
[
E

(loc)
n

]
= 1
n!

(
2mωA2

ℏ

)n√
mω3A2

πℏ
exp

(
−B

ℏ

)
︸ ︷︷ ︸

ground state decay width Γ0

.

With careful considerations one finds that ...
1 ... we only required single-bounce contributions as long as ωT ≪ exp

(
ℏ−1B

)
.

2 ... the formerly portrayed ansatz yields the correct result only for ωT ≪ ln
(
ℏ−1B

)
.

3 ... the method can be generalized to arbitrary partial Wick-rotations t 7→ eiθt, in
which case the bound grows to ωT ≪ sin(θ)−1 ln

(
ℏ−1B

)
.

Reason: Projection is only valid up to terms of order
√
ℏ .

[13] Weiss & Häffner (1983), PRD vol. 27(12)
[12] Levit, Negele, & Paltiel (1980), PRC vol. 22(5)



21/22

Introduction Traditional instanton method Decay of excited states: Idea Obtaining the exponent Fluctuation factor and result

Final result for the decay width

The aforementioned procedure exactly reproduces the well-known WKB result [12, 13]

Γn = −2
ℏ

Im
[
E

(loc)
n

]
= 1
n!

(
2mωA2

ℏ

)n√
mω3A2

πℏ
exp

(
−B

ℏ

)
︸ ︷︷ ︸

ground state decay width Γ0

.

With careful considerations one finds that ...
1 ... we only required single-bounce contributions as long as ωT ≪ exp

(
ℏ−1B

)
.

2 ... the formerly portrayed ansatz yields the correct result only for ωT ≪ ln
(
ℏ−1B

)
.

3 ... the method can be generalized to arbitrary partial Wick-rotations t 7→ eiθt, in
which case the bound grows to ωT ≪ sin(θ)−1 ln

(
ℏ−1B

)
.

Reason: Projection is only valid up to terms of order
√
ℏ .

[13] Weiss & Häffner (1983), PRD vol. 27(12)
[12] Levit, Negele, & Paltiel (1980), PRC vol. 22(5)



21/22

Introduction Traditional instanton method Decay of excited states: Idea Obtaining the exponent Fluctuation factor and result

Final result for the decay width

The aforementioned procedure exactly reproduces the well-known WKB result [12, 13]

Γn = −2
ℏ

Im
[
E

(loc)
n

]
= 1
n!

(
2mωA2

ℏ

)n√
mω3A2

πℏ
exp

(
−B

ℏ

)
︸ ︷︷ ︸

ground state decay width Γ0

.

With careful considerations one finds that ...
1 ... we only required single-bounce contributions as long as ωT ≪ exp

(
ℏ−1B

)
.

2 ... the formerly portrayed ansatz yields the correct result only for ωT ≪ ln
(
ℏ−1B

)
.

3 ... the method can be generalized to arbitrary partial Wick-rotations t 7→ eiθt, in
which case the bound grows to ωT ≪ sin(θ)−1 ln

(
ℏ−1B

)
.

Reason: Projection is only valid up to terms of order
√
ℏ .

[13] Weiss & Häffner (1983), PRD vol. 27(12)
[12] Levit, Negele, & Paltiel (1980), PRC vol. 22(5)



22/22

Introduction Traditional instanton method Decay of excited states: Idea Obtaining the exponent Fluctuation factor and result

Concluding remarks

Key conclusion: Solving a composite path integral is in many situations advantageous
to sequentially approximating the involved integrals.

The former computation should serve as a first step towards resolving the role of
instantons in tunneling:

real time dynamics of a
particle trapped inside a
meta-stable FV region ?

direct relation instanton solutions in
Euclidean time

Thanks for your attention!
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