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Computing the decay rate

B The survival probability of the false vacuum

PFV (t) X G_Ft
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Computing the decay rate

B The survival probability of the false vacuum

PFV (t) X G_Ft

B We can compute the decay rate per unit volume [Callan & Coleman ’77]

r _
= Ae B(1+0(h)

Matthias Carosi | Self-consistent bounce from the 2PI effective action formalism | 12/08/2024



Computing the decay rate TUTI

B The survival probability of the false vacuum

va(t) o e Tt (1.1)

B We can compute the decay rate per unit volume [Callan & Coleman ’77]

; — A B)(1 + Oh)) (1.2

\% Eudidean ackow of
Q sRufion “aterpRediee
belowean Ko wormwe:
e pounca

Matthias Carosi | Self-consistent bounce from the 2PI effective action formalism | 12/08/2024 3



Computing the decay rate TUTI

B The survival probability of the false vacuum

Pry(t) oc e (1.1)

B We can compute the decay rate per unit volume [Callan & Coleman ’77]
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The bounce action

B Introducing the Euclidean action

S[¢] — Sple / dzg [ )2+ V(9)
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The bounce action

B Introducing the Euclidean action
S[6] — Suls / ey [ )4+ V()

B look for trajectories satisfying the EoM

—Ap+V'(p)=0 (1.3)
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The bounce action —V(®) Tum

B Introducing the Euclidean action
S[¢) — Splé /dde [ +V(¢)]

B look for trajectories satisfying the EoM

—Ap+V'(¢) =0 (1.3)
B using O(d) invariance: r? =z} .
(d) r TETE Lm c(>(r\ - C(DFV
¢ d—1do r— 0d

+V'(¢) =0 (1.4)

dr? rodr Ci)(o) - O
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Including quantum corrections
B We want to include quantum corrections for various reasons

[ higher precision

[l enhanced IR modes (e.g. dilatational modes, see Garbrecht&Millington 2018)

Matthias Carosi | Self-consistent bounce from the 2PI effective action formalism | 12/08/2024



Including quantum corrections
B We want to include quantum corrections for various reasons

[ higher precision

[l enhanced IR modes (e.g. dilatational modes, see Garbrecht&Millington 2018)

B First attempt: compute the bounce in the 1PI effective action.
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Including quantum corrections TUTI

B We want to include quantum corrections for various reasons

[ higher precision

[l enhanced IR modes (e.g. dilatational modes, see Garbrecht&Millington 2018)

B First attempt: compute the bounce in the 1PI effective action.
Issues! The spectrum of fluctuations is now completely wrong! No zero modes, no
negative mode, ...
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Including quantum corrections TUTI
B We want to include quantum corrections for various reasons

[ higher precision
[l enhanced IR modes (e.g. dilatational modes, see Garbrecht&Millington 2018)

B First attempt: compute the bounce in the 1PI effective action.
Issues! The spectrum of fluctuations is now completely wrong! No zero modes, no

negative mode, ...

B To solve these issues we employ the 2Pl effective action [Bergner&Bettencourt 2003,
although only Hartree approximation]

Matthias Carosi | Self-consistent bounce from the 2PI effective action formalism | 12/08/2024



Outline

FV decay within the 2PI effective action formalism
The 2PI effective action

The bounce equation of motion

The 2pt function equation of motion

Expanding the self-energy
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The 2PI effective action T|.|T|

B Define a generating functional for the connected 1- and 2-point functions [see e.g. Berges
2004, Introduction to Nonequilibrium QFT]

VIR N / (D] ¢ S T h L et (2.1)
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The 2PI effective action T|.|T|

B Define a generating functional for the connected 1- and 2-point functions [see e.g. Berges
2004, Introduction to Nonequilibrium QFT]

VIR N / (D] ¢ S T h L et (2.1)

B Perform a Legendre transform to obtain the 2PI effective action

1
FZPI[Q‘% G] = W[J7 R] - / J:L’(px - 5/ GzyRmy (22)
x T,y
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The 2PI effective action T|.|T|

B Define a generating functional for the connected 1- and 2-point functions [see e.g. Berges
2004, Introduction to Nonequilibrium QFT]

VIR N / (D] ¢ S T h L et (2.1)

B Perform a Legendre transform to obtain the 2PI effective action

1
Loprlp, Gl = WIJ, R] —/Ja:% - 5/ GayRauy (2.2)
z z,y

B Do a perturbative expansion in loops

1 1
Papile, G] = Sglpl+ 5 Tr ATIG - 5 Trlog G~ 4+ Tafp, G (2.3)
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The bounce equation of motion

B The EoM for the 1pt function is easily obtained

0l2pr

=0
dp(x)

6SE[90] 1 " oI’
— 5o(2) —|—2V (p(2)G(x,x) + 5o
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The 2pt function equation of motion
B The EoM for the connected 2pt function is obtained analogously

0l2pr _ 0
0G(x,y)

— ANz, y) -G x,y) + Z(2,9) = 0

B having defined 5
Iy
by =2—
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The 2pt function equation of motion

B The operator equation reads (we suppress indices for simplicity)

G=A+AYG
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The 2pt function equation of motion Tm

B The operator equation reads (we suppress indices for simplicity)

G=A+AYXG (2.7)

B Representing it diagrammatically makes it clear that G satisfying eq. (2.7) is the
resummed propagator
6= o —1

_ +__.@=
f —— + —O—O— t .-
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Expanding the self-energy Tm

B The term I's contains all 2Pl vacuum diagrams

Q’@*@*@*&*@*"'
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Expanding the self-energy Tm

B The term I's contains all 2Pl vacuum diagrams
- t @ " 5@ ! * v
= O

B The self-energy ¥ is obtained by differentiation, i.e. cutting one leg

%000 O

>G
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Outline

A system of coupled equations
The self-consistent procedure
Renormalising the tadpole

Obtaining the self-consistent bounce

]

]

]
B Renormalising the bubble
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A system of coupled equations Tm

B At 1-loop order we obtain a system of coupled non-linear integrodifferential equations

1
— A+ V/(Qox) + §V”/(‘Px)Ga:a: =0 (3.1)

(= 82 +V"(92)) Gy + [ iz Gy =6 (3.2)
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A system of coupled equations Tm

B At 1-loop order we obtain a system of coupled non-linear integrodifferential equations

1
— A+ V/(cpx) + §V”/(‘Px)Ga:a: =0 (3.1)

(= 82 +V"(92)) Gy + [ iz Gy =6 (3.2)

B Let's make use of the central symmetry of the problem to simplify the equations
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Angular momentum decomposition

B Introduce an angular momentum decomposition

G(z,y) =" Y () Y qoy () Gi(re,my)

(Wy Q0
B Split the self-energy into local and non-local contributions
B Make a similar ansatz for the non-local term

> Y () Y () Bj(ra, 1)

S n) = (T”y I,
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Angular momentum decomposition
B Introduce an angular momentum de(;W—V R= ‘iz -1
1
G(z,y) = m@j > Yiqey () Yoy () Gj(ra, 1y)
B Split the self-energy into local and non-local contributions

B Make a similar ansatz for the non-local term

> Y () Y () Bj(ra, 1)

S n) = (T”y I,
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A system of coupled equations Tm

B We get a system of ordinary integro-differential equations, though now we have infinitely
many of them, all coupled!

1 d 4, d
I P P 4

(1) + V/(p(r)) + 5 V" (p(r))Gaa =0 @6

)2
<_11"(;irrddr + U 1—2 ) + V" (o(r)) + H(r)) Gi(r,r")
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A system of coupled equations Tm

B We get a system of ordinary integro-differential equations, though now we have infinitely
many of them, all coupled!

1 d 4, d
I P P 4

(_1d 4 G+nr)

(1) + V/(p(r)) + 5 V" (p(r))Gaa =0 @6

2
i > + V" (p(r)) + H(r)) Gi(r,r")

B We can only solve this self-consistently
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The self-consistent procedure

1. Solve for the bounce at tree-level

Matthias Carosi | Self-consistent bounce from the 2PI effective action formalism | 12/08/2024

14



The self-consistent procedure

1. Solve for the bounce at tree-level

2. Solve for the Green’s function at tree-level
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The self-consistent procedure Tm

1. Solve for the bounce at tree-level
2. Solve for the Green’s function at tree-level

3. Obtain renormalised self-energies with the propagator obtained in the previous step
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The self-consistent procedure Tm

1. Solve for the bounce at tree-level
2. Solve for the Green’s function at tree-level
3. Obtain renormalised self-energies with the propagator obtained in the previous step

4. Solve for the bounce with 1-loop self-energies
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The self-consistent procedure Tm

1. Solve for the bounce at tree-level

2. Solve for the Green’s function at tree-level

3. Obtain renormalised self-energies with the propagator obtained in the previous step
4. Solve for the bounce with 1-loop self-energies

5. Solve for the Green’s function with 1-loop self-energies
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The self-consistent procedure TUTI

1. Solve for the bounce at tree-level

2. Solve for the Green’s function at tree-level

3. Obtain renormalised self-energies with the propagator obtained in the previous step
4. Solve for the bounce with 1-loop self-energies

5. Solve for the Green’s function with 1-loop self-energies

6. Go back to step 3 and repeat until convergence

Matthias Carosi | Self-consistent bounce from the 2PI effective action formalism | 12/08/2024

14



Renormalising the tadpole
B Take the potential
2
Mo 9 A
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Renormalising the tadpole

B Take the potential
2
_ M2 93 A
V(g)= 50"+ 51"+ ;¢

B The local contribution to the self-energy is
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Renormalising the tadpole

B Take the potential

2 A
V(9) = 56+ 5% + Lot

B The local contribution to the self-energy is

B We must renormalise the coincident Green'’s function
1
Gla,z) = 5 > Yy ()Y 0y (Q) Gy(r,r)
3¢

9 [ee)
TZ
T 5=0

(47r)“+2 r (/1 + )
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Renormalising the tadpole Tm

B The UV divergence is due to the large angular momentum modes: use WKB to obtain
an expression for these

WKB 1 mi(T’)TQ . 4
G = e (1 3 +0(G+m™) (3.11)

2+~ 2(j + k)
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Renormalising the tadpole Tm

B The UV divergence is due to the large angular momentum modes: use WKB to obtain
an expression for these

m2 T
GJE(r,r) = 2(j1+/i) (1 /2 ](bi- K)? o ((j i K)_4)> &1

V\,\;(c\ = \/u(ce(ﬂ} +T7 ()
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Renormalising the tadpole Tm

B The UV divergence is due to the large angular momentum modes: use WKB to obtain
an expression for these

GWVEB(r 1) = ! (1— me(r)r” +O((‘+n)—4)> (3.11)
R T ) 2(j + r)2 J '

B We can use dim. reg. to regularise the sum

G(z,2)],_q_ = ﬁ i(] + 1)2 (Gj(r, r) — G}NKB(T’ 7“)) + {GWKB(x,QL‘)}
=0

k=1—¢€
1 - 2 WKB
T on2y2 > G+ (Gj(r, r)— G e 7’))
=0
1 mg(r)r* 1 2, v 21 1 o9 o
~ 5353 l - + 3 + my(r)r~log 16TH (3.12)
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Renormalising the tadpole Tm

B We can then define the MS-renormalised coincident Green’s function

Gl o) = 5y Y+ 12 (Gl m) — V<P (r, )
j=0

1 1 1
5 ot mi(r)rz log *€2T2M2 (3.13)
32mers |3 4
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Renormalising the tadpole Tm

B We can then define the MS-renormalised coincident Green’s function

Gl =k 3+ 12 (Gy () — G o)
=0

1 1 1
~ 59,22 [3 + mé(r)r2 log 462r2u2] (3.13)

B We can then obtain the on-shell one by subtracting the ¢ = ¢pv result

G(z,2)]°% = [G(z,2)™ — [G(a, 2)5,,.

= 5332 0+1)
2mer s

Gj(r,r) — Go(r,r) +

1 200N _ .02 Lo o
39,2 (mg(r) —m )log4e ! (3.14)
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Renormalising the bubble Tm

B Renormalising the bubble is much harder. It requires finding the divergent structure of
3, defined by

2
2 I'(2 >
G(-Tyy)Q = ((47‘(‘)“+§ r (Ii f)%) Ta:ry ]Z:: J+ I‘i COS G)G (’I"a:a?"y))
_ 2 [(2r) i (J+ Rr)C% (cos§)X(rs, 1y) (3.15)

(47T)R+% T (Ku + %) (Twry R §=0
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Renormalising the bubble Tm

B Renormalising the bubble is much harder. It requires finding the divergent structure of
3, defined by

2
2 = 2 F(2H) 3 FC COS Ty, T
Gle-y)” = ((47r)ff+§ T (Fc—i— %) ToTy)" z_: It 0)C;(ra; y))
2

B (47)* T2 T 16,:2:) ) (wl«y) Z_: Itk C(ECOS 9)? (T2, 7y) (3.15)

cos@ = X3 /

"“\3\
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Renormalising the bubble Tm

B Renormalising the bubble is much harder. It requires finding the divergent structure of
3, defined by

2
2 (2 0
G(%?/)Q = ((477)“+§ r (,.i —/:)%) o ]z:: J+ k)C%(cos )G, (Tx,ry))
2 (2 0
C (4m)RtiT (,i :)l) (raty)" X(:) J + K)CF (cos 0)%(ra, 1y) (3.15)
2 Jj=

B After a long computation, we find

(T2, Ty) Z q G (12, 7y)Ggtj (T, 1y) = Z (T<)2q (1 + (’)(q_Q)) (3.16)

r
q >
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Renormalising the bubble Tm

B Renormalising the bubble is much harder. It requires finding the divergent structure of
3, defined by

2
v ’ - : F(2H) 3 I"i COS Ty, T
ale ((47T)”+5 r (n+ %) TyTy)R z:: i+ 0)Gj(re, y))
2 I'(2k) 0 )G (cos .
C (4m)RtiT (,H ) (wy 2:: I+ 0)%(re, my) (3.15)

B After a long computation, we find (> = MO (@ AR /) €, =min(0, Q)

q
Yi(rg,ry) = Z qQGq(rm,ry)Gq+j(7“m,ry) ~ %Z (1 + (’)(q—Q)) (3.16)
q q
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Renormalising the bubble

B After a long computation, we find

2q
Yi(re,ry) = Z q2Gq(rx,ry)Gq+j(rz,ry) ~ Z <T<) (1 + O(q_2)) (3.17)
q

q
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Renormalising the bubble Tm

B After a long computation, we find

2q
Yi(re,ry) = Z q2Gq(rx,ry)Gq+j(rz,ry) S Z (T<) (1 + O(q_2)) (3.17)
q

q

B This means the divergence is indeed only local

1
E]’(’I“I,T‘y) ~ ;6(7'1 - Ty) (318)
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Renormalising the bubble

B After a long computation, we find

S = X @G ra )Gy = X () (14 06)

q

B This means the divergence is indeed only local

1
Ej(rx,ry) ~ E‘S(T:r - Ty)

B The divergence can be renormalised via local counter-terms
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Outline

Conclusions and outlook
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Conclusions and outlook T|.|T|

Lessons learned

B We can use the 2Pl effective action to systematically include quantum corrections
around a non-trivial field configuration

B Renormalisation in position space, even of simple diagrams, is hard!

B Divergences in position space can be very subtle and must be treated with great care
Our next steps

B Solving the system of equations numerically in d = 2, which is expected to converge fast
B Analysing the effect of the non-local term specifically

B Extend a similar analysis to similar systems, e.g. real-time bubble wall dynamics in a
first-order phase transition
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The translational zero-mode T|.|T|

B The fluctuation operator actually has a zero-mode, related to translational invariance.
Starting from the tree-level EoM

(g e )+ V) = 0

dr rd—1 dr

1 d 4 ,d d—1 .

(- s () 9r) = 0 5
B There is d-many zero-modes in the 5 = 1 sector

B Quantum corrections do not break translational symmetry, thus we must find

(—or ™ o+ o+ V() TI0) ) )

" 1
+/0 dr” ! T_lzj(ﬁ ") b (1) =0 (52)
r o2
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Subtracting the zero-mode TUTI
B The zero-modes are not propagating degrees of freedom and must thus be subtracted
oGt =1t (5.3)

B The operator 1 is the identity on the orthogonal subspace to the one spanned by the
zero-modes

1= 1-) ¢ig; (5.4)
B This defines the subtracted Green’s function G+

B Only using the subtracted Green’s function we can make sure that translational modes
are exact zero-modes also of the quantum theory
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