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Computing the decay rate

⌅ The survival probability of the false vacuum

PFV(t) Ã e
≠�t (1.1)

⌅ We can compute the decay rate per unit volume [Callan & Coleman ’77]

�
V

= Ae
≠B (1 + O(~)) (1.2)
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The bounce action

⌅ Introducing the Euclidean action

S[„] ≠æ SE [„] =
⁄

dd
xE

51
2(ˆi„)2 + V („)

6

⌅ look for trajectories satisfying the EoM

≠ � „ + V
Õ(„) = 0 (1.3)

⌅ using O(d) invariance: r
2 = x

i
Ex

i
E

≠
d2

„

dr2
≠

d ≠ 1
r

d„

dr
+ V

Õ(„) = 0 (1.4)
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Including quantum corrections

⌅ We want to include quantum corrections for various reasons

⇤ higher precision

⇤ enhanced IR modes (e.g. dilatational modes, see Garbrecht&Millington 2018)

⌅ First attempt: compute the bounce in the 1PI effective action.
Issues! The spectrum of fluctuations is now completely wrong! No zero modes, no
negative mode, ...

⌅ To solve these issues we employ the 2PI effective action [Bergner&Bettencourt 2003,
although only Hartree approximation]
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The 2PI effective action

⌅ Define a generating functional for the connected 1- and 2-point functions [see e.g. Berges
2004, Introduction to Nonequilibrium QFT]

e
W [J,R] = N

⁄
[D„] e

≠SE [„]≠
s

x
Jx„y≠ 1

2

s
x,y

„xRxy„y (2.1)

⌅ Perform a Legendre transform to obtain the 2PI effective action

�2P I [Ï, G] = W [J, R] ≠

⁄

x
JxÏx ≠

1
2

⁄

x,y
GxyRxy (2.2)

⌅ Do a perturbative expansion in loops

�2P I [Ï, G] = SE [Ï] + 1
2 Tr �≠1

G ≠
1
2 Tr log G

≠1 + �2[Ï, G] (2.3)
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The bounce equation of motion

⌅ The EoM for the 1pt function is easily obtained

”�2P I

”Ï(x) = 0

=∆
”SE [Ï]
”Ï(x) + 1

2V
ÕÕÕ(Ï(x))G(x, x) + ”�2

”Ï
= 0 (2.4)
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The 2pt function equation of motion

⌅ The EoM for the connected 2pt function is obtained analogously

”�2P I

”G(x, y) = 0

=∆ �≠1(x, y) ≠ G
≠1(x, y) + �(x, y) = 0 (2.5)

⌅ having defined

�(x, y) = 2 ”�2

”G(x, y) (2.6)
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The 2pt function equation of motion

⌅ The operator equation reads (we suppress indices for simplicity)

G = � + � � G (2.7)

⌅ Representing it diagrammatically makes it clear that G satisfying eq. (2.7) is the
resummed propagator
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Expanding the self-energy

⌅ The term �2 contains all 2PI vacuum diagrams

⌅ The self-energy � is obtained by differentiation, i.e. cutting one leg
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A system of coupled equations

⌅ At 1-loop order we obtain a system of coupled non-linear integrodifferential equations

≠ �x Ïx + V
Õ(Ïx) + 1

2V
ÕÕÕ(Ïx)Gxx = 0 (3.1)

!
≠ �x +V

ÕÕ(Ïx)
"

Gxy +
⁄

z
�xz Gzy = ”

(d)

xy (3.2)

⌅ Let’s make use of the central symmetry of the problem to simplify the equations

Matthias Carosi | Self-consistent bounce from the 2PI effective action formalism | 12/08/2024 11



A system of coupled equations

⌅ At 1-loop order we obtain a system of coupled non-linear integrodifferential equations

≠ �x Ïx + V
Õ(Ïx) + 1

2V
ÕÕÕ(Ïx)Gxx = 0 (3.1)

!
≠ �x +V

ÕÕ(Ïx)
"

Gxy +
⁄

z
�xz Gzy = ”

(d)

xy (3.2)

⌅ Let’s make use of the central symmetry of the problem to simplify the equations

Matthias Carosi | Self-consistent bounce from the 2PI effective action formalism | 12/08/2024 11



Angular momentum decomposition

⌅ Introduce an angular momentum decomposition

G(x, y) = 1
(rxry)Ÿ

ÿ

j,{¸}
Yj,{¸} (�x) Yj,{¸} (�y) Gj(rx, ry) (3.3)

⌅ Split the self-energy into local and non-local contributions

�(x, y) = ”
(d)(x ≠ y)�(x) + �n.l.(x, y) (3.4)

⌅ Make a similar ansatz for the non-local term

�n.l.(x, y) = 1
(rxry)Ÿ

ÿ

j,{¸}
Yj,{¸} (�x) Yj,{¸} (�y) �j(rx, ry) (3.5)
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A system of coupled equations

⌅ We get a system of ordinary integro-differential equations, though now we have infinitely
many of them, all coupled!

≠
1

rd≠1

d
dr

r
d≠1

d
dr

Ï(r) + V
Õ(Ï(r)) + 1

2V
ÕÕÕ(Ï(r))Gxx = 0 (3.6)

A

≠
1
r

d
dr

r
d
dr

+ (j + Ÿ)2

r2
+ V

ÕÕ(Ï(r)) + �(r)
B

Gj(r, r
Õ)

+
⁄ Œ

0

dr
ÕÕ

r
ÕÕ �j(r, r

ÕÕ) Gj(rÕÕ
, r

Õ) = 1
r

”(r ≠ r
Õ) (3.7)

⌅ We can only solve this self-consistently
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The self-consistent procedure

1. Solve for the bounce at tree-level

2. Solve for the Green’s function at tree-level

3. Obtain renormalised self-energies with the propagator obtained in the previous step

4. Solve for the bounce with 1-loop self-energies

5. Solve for the Green’s function with 1-loop self-energies

6. Go back to step 3 and repeat until convergence
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Renormalising the tadpole

⌅ Take the potential

V („) = m
2

2 „
2 + g

3!„
3 + ⁄

4!„
4 (3.8)

⌅ The local contribution to the self-energy is

�(r) = ⁄

2 G(x, x) (3.9)

⌅ We must renormalise the coincident Green’s function

G(x, x) = 1
r2Ÿ

ÿ

j,{¸}
Yj,{¸} (�) Yj,{¸} (�) Gj(r, r)

= 2
(4fi)Ÿ+

1
2

1
�

1
Ÿ + 1

2

2 1
r2Ÿ

x

Œÿ

j=0

(j + Ÿ)�(j + 2Ÿ)
�(j + 1) Gj(r, r) (3.10)
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Renormalising the tadpole

⌅ The UV divergence is due to the large angular momentum modes: use WKB to obtain
an expression for these

G
WKB

j (r, r) = 1
2(j + Ÿ)

A

1 ≠
m

2

„(r)r2

2(j + Ÿ)2
+ O

1
(j + Ÿ)≠4

2B

(3.11)

⌅ We can use dim. reg. to regularise the sum

[G(x, x)]Ÿ=1≠‘ = 1
2fi2r2

Œÿ

j=0

(j + 1)2
1
Gj(r, r) ≠ G

WKB

j (r, r)
2

+
Ë
G

WKB(x, x)
È

Ÿ=1≠‘

= 1
2fi2r2

Œÿ

j=0

(j + 1)2
1
Gj(r, r) ≠ G

WKB

j (r, r)
2

≠
1

32fi2r2

C
m

2

„(r)r2

‘
+ 1

3 + m
2

„(r)r2 log 1
4e

2
r

2
µ

2

D

(3.12)
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Renormalising the tadpole

⌅ We can then define the MS-renormalised coincident Green’s function

[G(x, x)]MS = 1
2fi2r2

Œÿ

j=0

(j + 1)2
1
Gj(r, r) ≠ G

WKB

j (r, r)
2

≠
1

32fi2r2

51
3 + m

2

„(r)r2 log 1
4e

2
r

2
µ

2

6
(3.13)

⌅ We can then obtain the on-shell one by subtracting the „ © „FV result

[G(x, x)]OS = [G(x, x)]MS
≠ [G(x, x)]MS

„©„FV

= 1
2fi2r2

Œÿ

j=0

(j + 1)2

C

Gj(r, r) ≠ G0,j(r, r) +
(m2

„(r) ≠ m
2)r2

4(j + 1)3

D

≠
1

32fi2
(m2

„(r) ≠ m
2) log 1

4e
2
r

2
µ

2 (3.14)
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Renormalising the bubble

⌅ Renormalising the bubble is much harder. It requires finding the divergent structure of
�j defined by

G(x, y)2 =

Q

a 2
(4fi)Ÿ+

1
2

�(2Ÿ)
�

1
Ÿ + 1

2

2 1
(rxry)Ÿ

Œÿ

j=0

(j + Ÿ)CŸ
j (cos ◊)Gj(rx, ry)

R

b
2

= 2
(4fi)Ÿ+

1
2

�(2Ÿ)
�

1
Ÿ + 1

2

2 1
(rxry)Ÿ

Œÿ

j=0

(j + Ÿ)CŸ
j (cos ◊)�j(rx, ry) (3.15)

⌅ After a long computation, we find

�j(rx, ry) ¥

ÿ

q

q
2
Gq(rx, ry)Gq+j(rx, ry) ¥

ÿ

q

3
r<

r>

42q 1
1 + O(q≠2)

2
(3.16)
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Renormalising the bubble

⌅ After a long computation, we find

�j(rx, ry) ¥
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q

q
2
Gq(rx, ry)Gq+j(rx, ry) ¥

ÿ

q

3
r<

r>

42q 1
1 + O(q≠2)

2
(3.17)

⌅ This means the divergence is indeed only local

�j(rx, ry) ¥
1
‘

”(rx ≠ ry) (3.18)

⌅ The divergence can be renormalised via local counter-terms
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Conclusions and outlook

Lessons learned
⌅ We can use the 2PI effective action to systematically include quantum corrections

around a non-trivial field configuration

⌅ Renormalisation in position space, even of simple diagrams, is hard!

⌅ Divergences in position space can be very subtle and must be treated with great care

Our next steps
⌅ Solving the system of equations numerically in d = 2, which is expected to converge fast

⌅ Analysing the effect of the non-local term specifically

⌅ Extend a similar analysis to similar systems, e.g. real-time bubble wall dynamics in a
first-order phase transition
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The translational zero-mode

⌅ The fluctuation operator actually has a zero-mode, related to translational invariance.
Starting from the tree-level EoM

d
dr

3
≠

1
rd≠1

d
dr

r
d≠1

d
dr

Ï(r) + V
Õ(Ï(r))

4
= 0

=∆

3
≠

1
rd≠1

d
dr

r
d≠1

d
dr

+ d ≠ 1
r2

+ V
ÕÕ(Ï(r))

4
Ï̇(r) = 0 (5.1)

⌅ There is d-many zero-modes in the j = 1 sector
⌅ Quantum corrections do not break translational symmetry, thus we must find

3
≠

1
rd≠1

d
dr

r
d≠1

d
dr

+ d ≠ 1
r2

+ V
ÕÕ(Ï(r)) + �(r)

4
„tr(r)

+
⁄ Œ

0

dr
ÕÕ

r
ÕÕd≠1

1
r

ÕÕ d
2 ≠1

�j(r, r
ÕÕ) „tr(rÕÕ) = 0 (5.2)
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Subtracting the zero-mode

⌅ The zero-modes are not propagating degrees of freedom and must thus be subtracted

OG
‹ = 1‹ (5.3)

⌅ The operator 1‹ is the identity on the orthogonal subspace to the one spanned by the
zero-modes

1‹ = 1≠

ÿ

i

„i„
ú
i (5.4)

⌅ This defines the subtracted Green’s function G
‹

⌅ Only using the subtracted Green’s function we can make sure that translational modes
are exact zero-modes also of the quantum theory
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