

Using gauge/gravity duality for calculations in Composite Higgs models

Werner Porod (Uni. Würzburg)

Work with Johanna Erdmenger, Nick Evans, Yang Liu, Kostas Rigatos PRL **126** (2021), 071602; JHEP **02** (2021), 058; Universe **9** (2023), 289; JHEP **07** (2024), 169

> Effective Theories for Nonperturbative Physics 7 August 2024

SO(5) → SO(4) breaking ⇒ 4 Nambu-Goldstone bosons in (2, 2) of SU(2)_L × SU(2)_R
 Y = T^{3R} + X, U(1)_X needed to get correctly the hypercharges of the fermions

UNIVERSITÄT WÜRZBURG

Composite Higgs, basic idea

'Minimal Composite Higgs framework'

Composite Higgs, basic idea

'Minimal Composite Higgs framework'

Fermion masses and couplings: partial compositeness

Higgs transforms non-linearly under G. ⇒ no Yukawa interaction if fermion are elementary (transform linearly). Possible solution: mix elementary fermions with composite resonances.

Elementary fermions (in SO(5)) rep.)

$$\begin{split} q_L &= \frac{1}{\sqrt{2}} (\mathrm{i}\, d_L, \mathrm{d}_L, \mathrm{i}\, u_L, -u_L, 0)^T \\ q_R &= (0, 0, 0, 0, u_R)^T \end{split}$$

Composite fermions (in SO(5)) rep.)

$$\Psi = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathrm{i}B - \mathrm{i}X_{5/3} \\ B + X_{5/3} \\ \mathrm{i}T + \mathrm{i}X_{2/3} \\ -T + X_{2/3} \\ \sqrt{2}\tilde{T} \end{pmatrix}$$

Generic Composite Higgs set-up

Possible solution to hierarchy problem

- Generate a scale $\Lambda_{HC} \ll M_{pl}$ through a new confining gauge group
- Interpret Higgs as a pseudo-Nambu-Goldstone boson (pNGB) of a spontaneously broken global symmetry of the new strong sector, G/H

(Georgi, Kaplan, PLB 136 (1984), 136)

'Price' to pay

- additional resonances at the scale Λ_{HC} (vectors, vector-like fermions, scalars)
- additional light pNGBs/ extended scalar sector
- deviations of the Higgs couplings from their SM values of O(v/f)

ЪB

List of "minimal" CHM UV embeddings

UNIVERSITÄT WÜRZBURG

$G_{\rm HC}$	ψ	x	Restrictions	$-q_\chi/q_\psi$	Y_{χ}	Non Conformal	Model Name
	Real	Real	SU(5)/SO(5)	\times SU(6),	/SO(6)		
$SO(N_{\rm HC})$	$5 \times S_2$	$6 \times \mathbf{F}$	$N_{\rm HC} \geq 55$	$\frac{5(N_{\rm HC}+2)}{6}$	1/3	/	
$SO(N_{\rm HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$N_{\rm HC} \geq 15$	$\frac{5(N_{\rm HC}-2)}{6}$	1/3	/	
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$6 \times \mathbf{Spin}$	$N_{\rm HC}=7,9$	$\frac{5}{6}$, $\frac{5}{12}$	1/3	$N_{\rm HC}=7,9$	M1, M2
$SO(N_{\rm HC})$	$5 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\rm HC}=7,9$	$\frac{5}{6}, \frac{5}{3}$	2/3	$N_{\rm HC}=7,9$	M3, M4
	Real	Pseudo-Real	SU(5)/SO(5)) × SU(6)	/Sp(6)		
$Sp(2N_{\rm HC})$	$5 \times \mathbf{Ad}$	$6 imes \mathbf{F}$	$2N_{\rm HC} \geq 12$	$\frac{5(N_{\rm HC}+1)}{3}$	1/3	/	
$Sp(2N_{\rm HC})$	$5 \times \mathbf{A}_2$	$6 \times \mathbf{F}$	$2N_{\rm HC} \geq 4$	$\tfrac{5(N_{\rm HC}-1)}{3}$	1/3	$2N_{\rm HC}=4$	M5
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$6 \times \mathbf{Spin}$	$N_{\rm HC}=11,13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	1	
	Real	Complex	SU(5)/SO(5)	\times SU(3) ²	/SU(3)		
$SU(N_{\rm HC})$	$5 \times \mathbf{A}_2$	$3 imes ({f F}, \overline{f F})$	$N_{\rm HC} = 4$	53	1/3	$N_{ m HC} = 4$	M6
$SO(N_{\rm HC})$	$5 \times \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{\rm HC}=10,14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{ m HC}=10$	M7
	Pseudo-Real	Real	SU(4)/Sp(4)	\times SU(6)/	SO(6)		
$Sp(2N_{HC})$	$4 \times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{ m HC} \le 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC} = 4$	M8
$SO(N_{\rm HC})$	$4 \times \mathbf{Spin}$	$6 imes \mathbf{F}$	$N_{\rm HC}=11,13$	$\frac{8}{3}, \frac{16}{3}$	2/3	$N_{ m HC} = 11$	M9
	Complex	Real	$SU(4)^2/SU(4)$) × SU(6)	/SO(6)		
$SO(N_{\rm HC})$	$4\times(\mathbf{Spin},\overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$N_{ m HC} = 10$	8 3	2/3	$N_{ m HC} = 10$	M10
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{\rm HC} = 4$	23	2/3	$N_{\rm HC} = 4$	M11
	Complex	Complex	$SU(4)^{2}/SU(4)$	\times SU(3) ²	² /SU(3)		
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 imes (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$N_{\rm HC} \geq 5$	$\frac{4}{3(N_{\rm HC}-2)}$	2/3	$N_{ m HC} = 5$	M12
$SU(N_{\rm HC})$	$4 \times (\mathbf{F}, \overline{\mathbf{F}})$	$3 \times (\mathbf{S}_2, \overline{\mathbf{S}}_2)$	$N_{ m HC} \ge 5$	$\frac{4}{3(N_{\rm HC}+2)}$	2/3	/	

G. Ferretti, JHEP 06 (2016), 107; A. Belyaev et al. JHEP 01 (2017), 094

(W. Porod, Uni. Würzburg)

UNIVERSITÄT WÜRZBURG

String theory origin of the gauge/gravity duality

 $\mathcal{N} = 4$ Supersymmetric SU(N) gauge theory in four dimensions $(N \to \infty \text{ limit})$ \Leftrightarrow Supersymmetric Super

Supergravity on the space ${\sf AdS}_5 imes S^5$

J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1998), 231

F

Breaking of conformal symmetry and supersymmetry

Deformation of AdS_5

 5^{th} dimension \Leftrightarrow energy scale

Deformation of S^5 : breaking of supersymmetry

 \Rightarrow Generalized AdS/CFT Correspondence: Gauge/Gravity Duality

see e.g. J. Erdmenger et al, Eur. Phys. J. A 35 (2008), 81 for a review

Quarks in the gauge/gravity duality

duality acts twice

$$\begin{split} \mathcal{N} &= 4 \ SU(N) \ \text{Super Yang-Mills theory} \\ & \text{coupled to} \\ \mathcal{N} &= 2 \ \text{fundamental hypermultiplet} \\ \text{A. Karch and E. Katz, JHEP 06 (2002), 043} \\ \end{split}$$

Gauge/gravity duality, basics

How does gauge/gravity duality work?

dilation \Leftrightarrow running of gauge couplings

$$\int d^4x \partial_\mu \phi \partial^\mu \phi \,, \quad x \to \mathrm{e}^{-\alpha} x \quad \phi \to \mathrm{e}^{\alpha} \phi$$

dilaton become spacetime symmetry of AdS

 $\rho \to {\rm e}^\alpha \rho$

 ρ is a continuos mass dimension \rightarrow RG scale

(W. Porod, Uni. Würzburg)

Gauge/gravity duality, calculations in CH models

How does gauge/gravity duality work?

$\sqrt{-\det q}$ $= \rho^3$

Field theory side

UNIVERSITÄT WÜRZBURG

Operators and sources appear as fields in the bulk, e.g.

 $\int d^4x \, m \, \bar{\psi} \psi$

m is the quark mass and c the condensate

 $c = \langle \bar{\psi}\psi \rangle$

$$\left. \begin{array}{cccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \rho^2 & 0 & 0 \\ 0 & \rho^2 & 0 \\ 0 & 0 & \frac{1}{\rho^2} \end{array} \right) \right|^{1/2} \\$$

AdS side

A field for the mass/condensate

 $\int d^4x \int d\rho \frac{1}{2} \rho^3 (\partial_\rho L)^2$

$$\Rightarrow \quad \partial_{\rho} \left(\rho^3 \partial_{\rho} L \right) = 0$$

$$\Rightarrow L = m + \frac{c}{\rho^2}$$

Gauge/gravity duality, basics

Holographically we can change the dimension of our operator by adding a mass term

$$\begin{split} \partial_{\rho} \left(\rho^{3} \partial_{\rho} L \right) &- \rho \, \Delta m^{2} L = 0 \quad , \quad \gamma(\gamma - 2) = \Delta m^{2} \\ \Rightarrow L &= \frac{m}{\rho^{\gamma}} + \frac{c}{\rho^{2 - \gamma}} \end{split}$$

 $\Delta m^2 = -1$ corresponds to $\gamma = 1$ and is special – the Breitenlohner Freedman bound instability . . .

So we can include a running coupling by a running mass squared for the scalar.

Top down derivation:

UNIVERSITÄT WÜRZBURG

- several string constructions e.g. probe D7 branes in D3 backgrounds
- ► neglect back reaction of probe branes on metric `⇔' quenched approximation on lattice

R. Alvares, N. Evans, K.-Young arXiv:1204.2474 (hep-ph); M. Jarvinen, E. Kiritsis arXiv:1112.1261 (hep-ph)

Dynamic AdS/YM

UNIVERSITÄT WÜRZBURG

$$\begin{split} S &= \int d^4x \int d\rho \, \mathrm{Tr} \left[\frac{1}{\rho^2 + |X|^2} |DX| + \frac{\Delta m^2}{\rho^2} |X|^2 \right] \\ X &= L(\rho) \mathrm{e}^{2\mathrm{i}\pi\xi^a(x)T^a} \,, \qquad d^2s = \frac{d^2\rho}{\rho^2 + |X|^2} + (\rho^2 + |X|^2) d^2x \end{split}$$

L = |X| is now the dynamical field whose solution will determine the condensate as a function of m - the phase is the pion.

We use the top-down IR boundary condition on mass-shell: $L'(\rho = L) = 0$

X enters into the AdS metric to cut off the radial scale at the value of m or the condensate - no hard wall. gauge/gravity duality: $X \Leftrightarrow \bar{q}q$

The gauge dynamics is input through a guess for $\Delta m = \gamma(\gamma - 2)$ with

$$\gamma = \frac{3(N_c^2 - 1)}{4\pi N_c} \alpha$$

in case of $SU(N_c)$. The only free parameters are N_c , N_f , m , Λ_{UV}

T. Alho, N. Evans, K. Tuominen arXiv:1307.4896 (hep-ph)

Formation of the Chiral Condensate

Gauge/gravity duality, basics

UNIVERSITÄT WÜRZBURG

We solve for the vacuum configuration of L = |X|

 $\partial_\rho \left(\rho^3 \partial_\rho L(\rho)\right) - \rho \, \Delta m^2(\rho) L(\rho) = 0 \,, \quad L'(\rho = L) = 0 \quad \text{and} \quad L(\rho) = \rho$

 $N_c = 3, N_f = 2, \mu = \sqrt{\rho^2 + L^2}$ m = 0 the $L(\rho)$: $L_{IR} = 0.43$ quark masses from bottom to top: 0, 0.05, 0.25, 0.5, 0.75, 1

Meson Fluctuations

$$\begin{split} S &= \int d^4x \int d\rho \, \mathrm{Tr} \left[\frac{1}{\rho^2 + |X|^2} |DX| + \frac{\Delta m^2}{\rho^2} |X|^2 \right] + \frac{1}{2\kappa^2} (F_V^2 + F_A^2) \\ L &= L_0 + \delta(x) e^{ikx} \quad k^2 = -M^2 \\ \partial_\rho (\rho^3 \partial_\rho \delta) - \Delta m^2 \, \rho \, \delta - \rho \, L_0 \, \delta \frac{\partial \Delta m^2}{\partial L} \bigg|_{L_0} + M^2 \frac{\rho^3}{(L_0^2 + \rho^2)^2} \delta = 0 \end{split}$$

The source free solutions pick out particular mass states, the σ (or $f_0)$ and its radial excited states

The gauge fields let us also study the operators and states

 $ar{u}\gamma_{\mu}u
ightarrow
ho$ meson , $ar{u}\gamma_{\mu}\gamma_{5}u
ightarrow a$ meson

QCD Dynamics – $N_c = 3$, $N_f = 2$, $m_q = 0$

$$\mu \frac{d\alpha}{d\mu} = -b_0 \alpha^2 \qquad b_0 = \frac{1}{6\pi} \left(11N_c - (N_f + \bar{N}_f) \right), \qquad \gamma = \frac{3(N_c^2 - 1)}{4N_c \pi} \alpha.$$

Two-loop contribution included as well

Observables	QCD	AdS/SU(3)	Deviation
(MeV)		2 F 2 $ar{F}$	
M_{ρ}	775	775*	fitted
M_A	1230	1183	- 4%
M_S	500/990	973	+64%/-2%
M_B	938	1451	+43%
f_{π}	93	55.6	-50%
$f_{ ho}$	345	321	- 7%
f_A	433	368	-16%
$M_{\rho,n=1}$	1465	1678	+14%
$M_{A,n=1}$	1655	1922	+19%
$M_{S,n=1}$	990 / 1200-1500	2009	+64%/+35%
$M_{B,n=1}$	1440	2406	+50%

The predictions for masses and decay constants (in MeV) for $N_f=2$ massless QCD. The ρ -meson mass has been used to set the scale (indicated by the *).

- scale fixed by V-meson
- f_{π} needs a mass term
- baryon mass high
- radial exitations wrong no string physics included

Perfecting with HDOs

The weakly coupled gravity dual should only live between the red lines

probably we need HDOs at the UV scale to include matching effect and stringy effects in the gravity model

 $\frac{g_S^2}{\Lambda_{UV}^2} |\bar{q}q|^2 - \frac{g_V^2}{\Lambda_{UV}^2} |\bar{q}\gamma^\mu q|^2 - \frac{g_A^2}{\Lambda_{UV}^2} |\bar{q}\gamma^\mu \gamma_5 q|^2$ $\frac{g_B^2}{\Lambda_{UV}^5} |qqq|^2$

Ob	servables	QCD	Dynamic AdS/QCD	HDO coupling	
	(MeV)			, ,	
	M_V	775	775	sets scale	
	M_A	1230	1230	fitted by $g_A^2 = 5.76149$	
	M_S	500/990	597	prediction $+20\%/-40\%$	
	M_B	938	938	fitted by $g_{B}^{2} = 25.1558$	
	$f\pi$	93	93	fitted by $g_{S}^{2} = 4.58981$	Pretty good
	f_V	345	345	fitted by $g_V^2 = 4.64807$	but we've los
	f_A	433	444	prediction $+2.5\%$	
M	V.n=1	1465	1532	prediction +4.5%	predictivity
M	$A_n = 1$	1655	1789	prediction +8%	
M	S.n=1	990/1200-1500	1449	prediction $+46\%/0\%$	
M	B, n=1	1440	1529	prediction +6%	

The spectrum and the decay constants for two-flavour QCD with HDOs used to improve the spectrum. t some

WÜRZBURG

Gauge group Sp(4), 4F, 6 A_2 , global: $SU(4) \times SU(6)/Sp(4) \times SO(6)$

- The sextet quarks A_2 are expected to condense first and break $SU(6) \rightarrow SO(6)$. Their main job: form FA_2F baryon top partners.
- Then the fundamentals F break $SU(4) \rightarrow Sp(4)$ this is where the Higgs is generated. (It's the same condensation as in QCD)

$$b_0 = \frac{1}{6\pi} \left(11(N+1) - N_{f_1} - 2(N-1)N_{f_2} \right)$$

$$\gamma_{A_2} = \frac{3}{2\pi} N\alpha,$$

$$\gamma_F = \frac{3}{2\pi} \frac{2N+1}{4} \alpha,$$

with N = 4, $n_{f_2} = 4$ and $N_{f_2} = 6$ (two-loop contributions included as well) These fix Δm^2 and hence the model Quenching: set $N_{f_1} = N_{f_2} = 0$ in b_i

Gauge group Sp(4), 4F, 6 A_2 , global: $SU(4) \times SU(6)/Sp(4) \times SO(6)$

blue line: F

UNIVERSITÄT

- orange line: A_2
- red line: F but A₂ integrated out when it condensates
- dashed green: F + additional HDO-terms such that it matches in the IR the A₂ representation.
- yellow line: quenched models for the A_2
- purple line: quenched models for the F

How you decouple the quarks is important and unknown

UNIVERSITÄT WÜRZBURG

Gauge group Sp(4), 4F, 6 A_2 , global: $SU(4) \times SU(6)/Sp(4) \times SO(6)$

	AdS/Sp(4)	AdS/Sp(4)	AdS/Sp(4)	lattice ^a	lattice ^b
	no decouple	A2 decouple	quench	quench	unquench
$f_{\pi A_2}$	0.120	0.120	0.103	0.1453(12)	
$f_{\pi F}$	0.0569	0.0701	0.0756	0.1079(52)	0.1018(83)
M_{VA_2}	1*]*	1*	1.000(32)	
f_{VA_2}	0.517	0.517	0.518	0.508(18)	
M_{VF}	0.61	0.814	0.962	0.83(19)	0.83(27)
f_{VF}	0.271	0.364	0.428	0.411(58)	0.430(86)
M_{AA_2}	1.35	1.35	1.28	1.75 (13)	
f_{AA_2}	0.520	0.520	0.524	0.794(70)	
M_{AF}	0.938	1.19	1.36	1.32(18)	1.34(14)
f _{AF}	0.303	0.399	0.462	0.54(11)	0.559(76)
M_{SA_2}	0.375	0.375	1.14	1.65(15)	
M_{SF}	0.325	0.902	1.25	1.52 (11)	1.40(19)
M_{BA_2}	1.85	1.85	1.86		
M_{BF}	1.13	1.53	1.79		

^a Ed Bennett et al., PRD **101** (2020), 074516; ^b Ed Bennett et al., JHEP **12** (2019), 053

- We set the scale in the A₂ sector the pattern of mass scales is right A, S meson sectors are a little light
- The F sector is lighter than the A_2 s and then also in the right pattern

UNIVERSITÄT

WÜRZBURG

Gauge group Sp(4), 4F, 6 A_2 , global: $SU(4) \times SU(6)/Sp(4) \times SO(6)$

	AdS/Sp(4)	AdS/Sp(4)	AdS/Sp(4)	lattice ^a	lattice ^b
	no decouple	A2 decouple	quench	quench	unquench
$f_{\pi A_2}$	0.120	0.120	0.103	0.1453(12)	
$f_{\pi F}$	0.0569	0.0701	0.0756	0.1079(52)	0.1018(83)
M_{VA_2}	1*	1*	1*	1.000(32)	
f_{VA_2}	0.517	0.517	0.518	0.508(18)	
M_{VF}	0.61	0.814	0.962	0.83(19)	0.83(27)
f_{VF}	0.271	0.364	0.428	0.411(58)	0.430(86)
M_{AA_2}	1.35	1.35	1.28	1.75 (13)	
f_{AA2}	0.520	0.520	0.524	0.794(70)	
M_{AF}	0.938	1.19	1.36	1.32(18)	1.34(14)
f_{AF}	0.303	0.399	0.462	0.54(11)	0.559(76)
M_{SA_2}	0.375	0.375	1.14	1.65(15)	
M_{SF}	0.325	0.902	1.25	1.52 (11)	1.40(19)
M_{BA2}	1.85	1.85	1.86		
M_{BF}	1.13	1.53	1.79		

^a Ed Bennett et al., PRD **101** (2020), 074516; ^b Ed Bennett et al., JHEP **12** (2019), 053

- holographic modeling useful to study effect of changes in the running
- the gap between the F and A_2 sector grows (in particular if A_2 not decoupled)
- the slower the running the lighter the scalar mass becomes is the biggest change
- prediction for baryons: between FFF and $A_2A_2A_2$ values

Gauge group Sp(4), 4F, 6 A_2 , global: $SU(4) \times SU(6)/Sp(4) \times SO(6)$

Top Yukawa coupling:

UNIVERSITÄT WÜRZBURG

Plausible forms for the Z factors up to O(1) couplings (this is beyond quadratic order in the holographic model)

$$Z_3 \simeq \int d\rho \ \rho^3 \ \frac{\partial_\rho \pi(\rho) \ \psi_B(\rho)^2}{(\rho^2 + L^2)^2} , \qquad Z = \tilde{Z} \simeq \int d\rho \ \rho^3 \partial_\rho \psi_B(\rho)$$

$$\Rightarrow Y_t \simeq 0.01 - 0.1 \quad \text{naturally if} \quad \Delta_{UV} \simeq \text{ few TeV}$$

Confirmed on the lattice

(W. Porod, Uni. Würzburg)

Composite Higgs models

Gauge group Sp(4), 4F, 6 A_2 , global: $SU(4) \times SU(6)/Sp(4) \times SO(6)$

Important: We can lower the top partner mass using a HDO

This is a new mechanism to generate the large top mass in these models – drives the top partner baryon mass to half the vector meson mass

F

Non-abelian set-up

Basic idea: mass differences correspond to D7 brane separation ⇒ starting point non-abelian DBI action

$$\begin{split} S_{N_f} &= -\tau_p \int d^{p+1} \xi e^{-\phi} \operatorname{STr} \left(\sqrt{-\det(P[G_{rs} + G_{ra}(Q^{-1} - \delta)^{ab}G_{sb}] + T^{-1}F_{rs})} \sqrt{\det Q^a}_b \right) \\ Q^a{}_b &= \delta^a{}_b + \operatorname{i} T\left[X^a, X^c \right] G_{cb} \\ \operatorname{STr}(A_1 \dots A_n) &\equiv \frac{1}{n!} \sum \operatorname{Tr} \left(A_1 \dots A_n + \text{ all permutations} \right), \end{split}$$

 $G_{ab}(r^2)$ have matrix structure, e.g., for the case of diagonal real masses in SU(2)

$$G_{\rho\rho} = rac{1}{r^2}$$
 with $r^2 = \begin{pmatrix} r_u^2 & 0 \\ 0 & r_d^2 \end{pmatrix}$

 \Rightarrow coupled Sturm-Liouville problem

[†] J. Erdmenger, N. Evans, Y. Liu and W.P., Universe **9** (2023) no.6, 289; JHEP **07** (2024), 169

QCD, $N_f = 3$, Embeddings

Non-abelian flavour groups

UNIVERSITÄT WÜRZBURG

$$G_{\rho\rho} = \frac{1}{r^2} \quad \text{with} \quad r^2 = \begin{pmatrix} r_u^2 & 0 & 0\\ 0 & r_d^2 & 0\\ 0 & 0 & r_s^2 \end{pmatrix} \quad \text{and} \quad r_i^2 = \rho^2 + L_i^2$$

 \Rightarrow eqs. for L_i (i = u, d, s) decouple:

QCD, $N_f = 3$, meson masses

UNIVERSITÄT WÜRZBURG

Observables	QCD (MeV)	$N_f = 3$ –Split Masses (MeV)	Deviation
$M_{ ho(770)}$, $\omega(782)$	775.26 ± 0.23	775*	fitted
$M_{K^{*}(892)}$	891.67 ± 0.26	1009	12%
$M_{\phi(1020)}$	1019.46 ± 0.02	1048	3%
$M_{a_1(1260)}, M_{f_1(1285)}$	1230 ± 40	1104	11%
$M_{K_1(1400)}$	1403 ± 7	1377	2%
$M_{f_1(1420)}$	1426.3 ± 0.9	1713	18%
$M_{a_0(980)}$, $M_{f_0(980)}$	980 ± 20	929	5%
$M_{K_{0}^{*}(700)}$	845 ± 17	876	4%
$M_{f_0(1370)}$	1350 ± 150	970	34%
M_{π}	$139.57 \pm O(10^{-4})$	139	<1%
M_K	497.61 ± 0.01	584	16%
$M_{\eta'}$	957.78 ± 0.06	791	19%

quark masses: $m_u = m_d = 3.1 \text{ MeV}$ and $m_s = 95.7 \text{ MeV}$

- \blacktriangleright We have holographic models that describe chiral symmetry breaking due to the running of γ and HDO interactions
- compare to lattice results and look for changes as we unquench, and extra flavours beyond the lattice
- We have proposed a new HDO method to raise the top Yukawa coupling in these models
- non-Abelian DBI to get mass splitting between different representations for mesons
- What next
 - non-Abelian DBI to get mass splitting between different representations for baryons
 - Inclusion of tow-index representations in brane picture

Backup

Quarks in the gauge/gravity duality

Add D7-Branes (eight-dimensional surfaces) to ten-dimensional space

(thanks to J. Erdmenger)

Quarks: Low energy limit of open strings between D3- and D7-Branes

a la AdS/QCd, see J. Erlich, E. Katz, D. T. Son and M. A. Stephanov, PRL 95 (2005), 261602

Decay constants are determined by allowing a source to couple to a physical state

Now we need to fix the normalizations of the holographic linear perturbations ...

For the physical states we canonically normalize the kinetic terms...

For the source solutions we fix κ and the norms so that we match perturbative results for e.g. Π_{VV} in the UV

$$N_V^2 = N_A^2 = \frac{g_5^2 d(R) N_f(R)}{48\pi^2}$$

Baryons

In D3/D7 system some quark-gaugino-quark tri-fermion states are described by world volume fermions on the D7 – it does not seem unreasonable to include three quark states in this way therefore

$$S_{1/2} = \int d^4x \int \rho \, \rho^3 \bar{\Psi} (D_{AdS} - m) \Psi$$

The four component fermion satisfies the second order equation

$$\left(\partial_{
ho}^2 + \mathcal{P}_1\partial_{
ho} + rac{M_B^2}{r^4} + \mathcal{P}_2rac{1}{r^4} - rac{m^2}{r^2} - \mathcal{P}_3rac{m}{r^3} \; \gamma^{
ho}
ight)\psi = 0\,,$$

where M_B is the baryon mass and

$$\begin{aligned} \mathcal{P}_1 &= \frac{6}{r^2} \left(\rho + L_0 \ \partial_\rho L_0 \right) \,, \\ \mathcal{P}_2 &= 2 \left((\rho^2 + L_0^2) L \partial_\rho^2 L_0 + (\rho^2 + 3L_0^2) (\partial_\rho L_0)^2 + 4\rho L_0 \partial_\rho L_0 + 3\rho^2 + L_0^2 \right) \,, \\ \mathcal{P}_3 &= (\rho + L_0 \ \partial_\rho L_0) \,. \end{aligned}$$

G. F. de Teramond and S. J. Brodsky, PRL **94** (2005), 201601; R. Abt, J. Erdmenger, N. Evans and K. S. Rigatos, JHEP **11** (2019), 160

(W. Porod, Uni. Würzburg)

Backup

Higher Dimension/Nambu Jona-Lasinio Operators

$$\mathcal{L} = \bar{\psi}_L \partial \!\!\!/ \psi_L + \bar{\psi}_R \partial \!\!\!/ \psi_R + \frac{g^2}{\Lambda_{UV}} \, \bar{\psi}_L \psi_R \, \bar{\psi}_R \psi_L$$

Calculate effective potential

Backup

Witten's Multi-Trace Operator Prescription

E. Witten hep-th/0112258; N. Evans + K. Kim arXiv:1601.02824 (hep-th)

$$\frac{g^2}{\Lambda_{UV}}\,\bar\psi_L\psi_R\,\bar\psi_R\psi_L\to\frac{g^2}{\Lambda_{UV}}\,\langle\bar\psi_L\psi_R\rangle\,\bar\psi_R\psi_L\to\frac{m^2\Lambda_{UV}}{g^2}\qquad\text{so add}\qquad S=\int\mathcal{L}+\frac{L^2\rho^2}{g^2}\Big|_{\Lambda_{UV}}$$

On variation

$$0 = \text{E.-L. eqn} + \frac{\partial \mathcal{L}}{\partial L'} \delta L \bigg|_{\Lambda_{IR,UV}} + \left. \frac{2L\rho^2}{g^2} \delta L \right|_{\Lambda_{UV}}$$

The Euler Lagrange equation solutions are left unchanged but we pick those that satisfy the UV and IR boundary conditions. Now we let the mass vary in the UV and need

SU(4), 3F, 3 \bar{F} , 5A₂; $SU(5) \times SU(3)_L \times SU(3)_R / SO(5) \times SU(3)$

(G. Ferretti, JHEP 06 (2014), 142)

Here the A_2 symmetry breaking generates the SM Higgs; FA_2F top partners

Backup

	Lattice ^{a} $4A_2, 2F, 2\bar{F}$ unquench	$\begin{array}{l} \operatorname{AdS}/SU(4)\\ 4A_2, 2F, 2\bar{F}\\ \operatorname{no}\operatorname{decouple} \end{array}$	$\begin{array}{c} \operatorname{AdS}/SU(4) \\ 4A_2, 2F, 2\bar{F} \\ \operatorname{decouple} \end{array}$	$\begin{array}{l} \operatorname{AdS}\!/SU(4) \\ 5A_2, 3F, 3\bar{F} \\ \operatorname{no} \operatorname{decouple} \end{array}$	$\begin{array}{c} \operatorname{AdS}/SU(4)\\ 5A_2,3F,3\bar{F}\\ \operatorname{decouple} \end{array}$	$\begin{array}{c} \operatorname{AdS}/SU(4)\\ 5A_2, 3F, 3\bar{F}\\ \text{quench} \end{array}$
$f_{\pi A 2}$	0.15(4)	0.0997	0.0997	0.111	0.111	0.102
$f_{\pi F}$ M_{VA2}	0.11(2) 1.00(4)	0.0949 1*	0.0953 1*	0.0844 1*	0.109 1*	0.892 1*
f_{VA2}	0.68(5)	0.489	0.489	0.516	0.516	0.517
M_{VF} f_{VF} M_{AAO}	0.93(7) 0.49(7)	0.933 0.458 1.37	0.939 0.461 1.37	0.890 0.437 1.32	0.904 0.491 1.32	0.976 0.479 1.28
f A A O		0.505	0.505	0.521	0.521	0.522
M_{AF} f_{AF} M_{SAO}		1.37 0.501 0.873	1.37 0.504 0.873	1.21 0.453 0.684	1.23 0.509 0.684	1.28 0.492 1.18
M_{SF}		1.03	1.02	0.811	0.798	1.25
M_{JA_2}	3.9(3)	2.21	2.21	2.21	2.21	2.22
M_{JF} M_{BA_2}	2.0(2) 1.4(1)	2.07 1.85	2.08 1.85	1.97 1.85	2.00 1.85	2.17 1.86
M_{BF}	1.4(1)	1.74	1.75	1.65	1.68	1.81

 a V. Ayyar et al., PRD **97** (2018), 074505: (unquenched) SU(4) 2F, $2\bar{F}$, $4A_2$

- pattern agree quite well in particular M_{VF} and M_{JF}
- M_{JA_2} off and also M_{BF} on the lattice below our estimate

UNIVERSITÄT WÜRZBURG

Backup

SU(4), 3F, 3 \bar{F} , 5A₂; $SU(5) \times SU(3)_L \times SU(3)_R / SO(5) \times SU(3)$

	Lattice a $4A_{2}, 2F, 2ar{F}$ unquench	$\begin{array}{l} \operatorname{AdS}/SU(4)\\ 4A_2,2F,2\bar{F}\\ \operatorname{no}\operatorname{decouple} \end{array}$	$\begin{array}{c} \operatorname{AdS}/SU(4) \\ 4A_2, 2F, 2\bar{F} \\ \operatorname{decouple} \end{array}$	$\begin{array}{l} \operatorname{AdS}/SU(4)\\ 5A_2,3F,3\bar{F}\\ \operatorname{no}\operatorname{decouple} \end{array}$	$\begin{array}{c} \operatorname{AdS}/SU(4)\\ 5A_2,3F,3\bar{F}\\ \operatorname{decouple} \end{array}$	$\begin{array}{c} \operatorname{AdS}/SU(4)\\ 5A_2, 3F, 3\bar{F}\\ \text{quench} \end{array}$
$f_{\pi A 2}$	0.15(4)	0.0997	0.0997	0.111	0.111	0.102
$f_{\pi F}$	0.11(2)	0.0949	0.0953	0.0844	0.109	0.892
M_{VA_2}	1.00(4)	1*	1*	1*	1*	1*
f_{VA_2}	0.68(5)	0.489	0.489	0.516	0.516	0.517
M_{VF}	0.93(7)	0.933	0.939	0.890	0.904	0.976
f_{VF}	0.49(7)	0.458	0.461	0.437	0.491	0.479
MAA2		1.37	1.37	1.32	1.32	1.28
f_{AA_2}		0.505	0.505	0.521	0.521	0.522
M_{AF}		1.37	1.37	1.21	1.23	1.28
f_{AF}		0.501	0.504	0.453	0.509	0.492
M _{SA2}		0.873	0.873	0.684	0.684	1.18
MSE		1.03	1.02	0.811	0.798	1.25
M_{JA_2}	3.9(3)	2.21	2.21	2.21	2.21	2.22
MIE	2.0(2)	2.07	2.08	1.97	2.00	2.17
MBAa	1.4(1)	1.85	1.85	1.85	1.85	1.86
MBF	1.4(1)	1.74	1.75	1.65	1.68	1.81

- Adding extra flavours is not a huge change
- Scalar masses get lighter by adding extra flavours

Backup $SU(4), 3F, 3\bar{F}, 5A_2; SU(5) \times SU(3)_L \times SU(3)_R/SO(5) \times SU(3)$

Top Yukawa coupling: similar as before, need additional HDO

$$\mathcal{L}_{HDO} = \frac{g_T^2}{\Lambda_{UV}^5} |FA_2 F|^2 \,.$$

This is a new mechanism to generate the large top mass in these models – we drive the top partner baryon mass to about 1/3 the vector meson mass

AR