CP CONSERVATION IN THE STRONG INTERACTIONS

BJÖRN GARBRECHT Technische Universität München

> MITP Mainz AUGUST 8TH, 2024

Collaborators WEN-YUAN AI JUAN CRUZ CARLOS TAMARIT

Outline

- Introduction: QCD θ -parameter, EFT, neutron EDM, topology
- Functional quantization and θ
- Canonical quantization and θ

INTRODUCTION

CP-odd terms in effective field theories Topology CP violation in the strong interactions?

No empirical evidence—neutron electric dipole moment (EDM) strongly constrained: $d_n = (0.0 \pm 1.1_{\rm stat} \pm 0.2_{\rm sys}) \times 10^{-26} e \, {\rm cm}_{\rm [2020 \ @ PSI]}$

$$rac{ ext{QCD with massive quarks}}{\mathcal{L} \supset rac{1}{2g^2} ext{tr} F_{\mu
u} F^{\mu
u} + \sum_{j=1}^{N_f} ar{\psi}_j \left(\mathrm{i} \partial \!\!\!/ - m_j \mathrm{e}^{\mathrm{i} lpha_j \gamma^5}
ight) \psi_j + rac{1}{16\pi^2} heta \, \mathrm{tr} F_{\mu
u} ilde{F}^{\mu
u}$$

Believed to cause a neutron electric dipole moment (EDM) $d_n \sim 10^{-15} e \operatorname{cm} \left(\theta + \sum_j \alpha_j\right)$ [Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]

But does it?

CP violation in the strong interactions?

Believed to cause a neutron electric dipole moment (EDM) $d_n \sim 10^{-15} e \operatorname{cm} \left(\theta + \sum_j \alpha_j\right)$ [Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]

But does it?

CP violation in the strong interactions?

No empirical evidence—neutron electric dipole moment (EDM) strongly constrained: $d_n = (0.0 \pm 1.1_{\rm stat} \pm 0.2_{\rm sys}) \times 10^{-26} e \, {\rm cm}_{\rm [2020 \ @ PSI]}$

$$rac{ ext{QCD with massive quarks}}{\mathcal{L} \supset rac{1}{2g^2} ext{tr} F_{\mu
u} F^{\mu
u} + \sum_{j=1}^{N_f} ar{\psi}_j \left(\mathrm{i} \partial \!\!\!/ - m_j \mathrm{e}^{\mathrm{i} lpha_j \gamma^5}
ight) \psi_j + rac{1}{16\pi^2} heta \, \mathrm{tr} F_{\mu
u} ilde{F}^{\mu
u}$$

Believed to cause a neutron electric dipole moment (EDM) $d_n \sim 10^{-15} e \operatorname{cm} \left(\theta + \sum_j \alpha_j\right)$ [Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]

But does it?

Effective interactions with θ

 ${
m SU}(N_f)_{
m L} imes {
m SU}(N_f)_{
m R}$ global symmetry in the limit of massless quarks

Chiral U(1)_A symmetry of the quarks is anomalous however $\longrightarrow \mathcal{L}$ invariant under [Fujikawa (1979,80)]

chiral trafo		"spurion" trafo
$egin{array}{ll} \psi ightarrow { m e}^{{ m i}eta\gamma_5}\psi \ ar\psi ightarrow ar\psi ightarrow ar\psi { m e}^{{ m i}eta\gamma_5}\psi \end{array}$	plus	$egin{array}{lll} m_j \mathrm{e}^{\mathrm{i} lpha_j \gamma^5} & ightarrow m_j \mathrm{e}^{\mathrm{i} (lpha_j - 2 N_f eta) \gamma^5} \ heta & ightarrow heta + 2 N_f eta \end{array}$

In fact, the "spurions" are those who break the symmetry explicitly. This pattern should be replicated by any effective theory.

Rephasing invariant: $ar{ heta}= heta+ar{lpha}$, where $ar{ar{lpha}}=\sum_{j=1}^{N_f}lpha_j$, $\longrightarrow heta$ is an angle

Integrating out gauge fields: Effective 't Hooft vertex

Tpological effects described by effective 't Hooft vertex (Γ_{N_f} some coefficient): ['t Hooft (1976,86)]

$$\mathcal{L} + rac{1}{16\pi^2} heta \operatorname{tr} F_{\mu
u} ilde{F}^{\mu
u} o \mathcal{L} - \Gamma_{N_f} \mathrm{e}^{\mathrm{i} \xi} \prod_{j=1}^{N_f} (ar{\psi}_j P_\mathrm{L} \psi_j) - \Gamma_{N_f} \mathrm{e}^{-\mathrm{i} \xi} \prod_{j=1}^{N_f} (ar{\psi}_j P_\mathrm{R} \psi_j) \, ,$$

- Effective interaction breaks $U(1)_A$ explicitly $\longrightarrow \eta'$ -mass
- ξ should be expressed in terms of parameters of the fundamental theory

• As a spurion,
$$\xi
ightarrow \xi + 2 N_f eta$$

Two options: $\begin{aligned} \xi &= \theta \text{ (in general misaligned with masses)} &\to CP \text{ violation} \\ \xi &= -\bar{\alpha} \text{ (present claim, aligned with mass terms)} &\to \text{no } CP \text{ violation} \end{aligned}$

In principle, we could have $\xi = c_{\alpha}\bar{\alpha} + c_{\theta}\theta$ for integer $c_{\alpha,\theta}$ (α, θ are angular variables) with $c_{\alpha} + c_{\theta} = 1$. We shall see that this general case is not realized in the explicit calculation.

Effective chiral Lagrangian (χ PT)

Chiral Lagrangian (lowest order terms) inherits "spurious" symmetries:

$$\mathcal{L} = rac{f_{\pi}^2}{4} \operatorname{Tr} \partial_{\mu} U \partial^{\mu} U^{\dagger} + rac{f_{\pi}^2 B_0}{2} \operatorname{Tr}(MU + U^{\dagger} M^{\dagger}) + |\lambda| \mathrm{e}^{-\mathrm{i}\boldsymbol{\ell}} f_{\pi}^4 \det U + |\lambda| \mathrm{e}^{\mathrm{i}\boldsymbol{\ell}} f_{\pi}^4 \det U^{\dagger} + \mathrm{i}\bar{N}\partial N - \left(m_N \bar{N} \tilde{U} P_{\mathrm{L}} N + \mathrm{i}c \bar{N} \tilde{U}^{\dagger} \partial P_{\mathrm{L}} \tilde{U} N + d \bar{N} \tilde{M}^{\dagger} P_{\mathrm{L}} N + e \bar{N} \tilde{U} \tilde{M} \tilde{U} P_{\mathrm{L}} N + \mathrm{h.c.}
ight)$$

 $M = \operatorname{diag}\{m_u \mathrm{e}^{\mathrm{i}lpha_u}, m_d \mathrm{e}^{\mathrm{i}lpha_d}, m_s \mathrm{e}^{\mathrm{i}lpha_s}\}$ nucleon doublet $N = \begin{pmatrix} p \\ n \end{pmatrix}$

Effective interaction $\propto \det U$ cannot be quantitatively reliably handled in χ PT but yet represents pattern of broken axial symmetry.

CP-odd neutron interactions [e.g. Srednicki QFT (2007)]

- Write $U_0 = \langle U \rangle = \text{diag}(\mathrm{e}^{\mathrm{i} arphi_u}, \mathrm{e}^{\mathrm{i} arphi_d}, \mathrm{e}^{\mathrm{i} arphi_s})$
- Substitute φ_i back into \mathcal{L} & suitably redefine $N \to \mathcal{N}(N, U)$

$$egin{aligned} \mathcal{L}_{ ext{neutron}} &\supset -rac{2c+1}{f_\pi} \partial_\mu \pi^a ar{\mathcal{N}} \, T^a \gamma^\mu \gamma_5 \mathcal{N} & CP ext{ even} \ &+rac{2(d+e)ar{m}}{f_\pi} (m{\xi}+m{lpha}_u+m{lpha}_d+m{lpha}_s)ar{\mathcal{N}} \pi^a \, T^a \mathcal{N} & CP ext{ odd} \end{aligned}$$

Neutron electric dipole moment

$$\mathrm{i}\mathcal{M}=-2\mathrm{i}D(q^2)arepsilon_{\mu}^{*}(ec{q})ar{u}_{s'}(ec{p}')rac{\mathrm{i}}{4}[\gamma^{\mu},\gamma^{
u}]q_{
u}\mathrm{i}\gamma_{5}u_{s}(ec{p}) \ \to \mathcal{L}_{\mathrm{eff}}=D(0)ar{n}\underbrace{F_{\mu
u}rac{\mathrm{i}}{4}[\gamma^{\mu},\gamma^{
u}]\mathrm{i}\gamma_{5}}_{\subsetec{S}\cdotec{E}}n \ ec{u}
ightarrow rac{1}{2}rac{1}{r$$

- χ PT value: $d_n = 3.2 imes 10^{-16} (\xi + ar{lpha}) e \, {
 m cm}$
- Experimental bound: $|d_n| < 1.8 \times 10^{-26} e \text{ cm } (90\% \text{ c.l.}) \text{ [nEDM/PSI (2020)]}$
- Calculations e.g. of neutron EDM implicitly assume ξ = θ [e.g. Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]
- However $\xi = -\bar{lpha}$ also perfectly valid by arguments used to this end
- Another signature—weaker bounds: $\eta'
 ightarrow \pi \pi$

Topology in four-dimensional spacetime—winding number Δn

$$egin{aligned} U &= \left(egin{aligned} a_{
m R} + {
m i} a_{
m I} & -b_{
m R} + {
m i} b_{
m I} \ b_{
m R} + {
m i} b_{
m I} & a_{
m R} - {
m i} a_{
m I} \end{array}
ight) \in {
m SU}(2) ext{ for } a_{
m R}^2 + a_{
m I}^2 + b_{
m R}^2 + b_{
m I}^2 = 1 \ \Rightarrow {
m Homotopy: } {
m SU}(3) \supset {
m SU}(2) \cong S^3 \longrightarrow \pi_3({
m SU}(2)) = \pi_3(S^3) = \mathbb{Z} \end{aligned}$$

Theta-term/topological term is a total divergence: gauge invariant $\frac{1}{4} \operatorname{tr} F_{\mu\nu} \tilde{F}_{\mu\nu} = \partial_{\mu} K_{\mu}$ $K_{\mu} = \epsilon_{\mu\nu\alpha\beta} \operatorname{tr} \left[\frac{1}{2} A_{\nu} \partial_{\alpha} A_{\beta} + \frac{1}{3} A_{\nu} A_{\alpha} A_{\beta} \right]$ gauge dependent

Topological quantization for pure gauge $A_\mu o -rac{\mathrm{i}}{q}(\partial_\mu U) U^{-1}$ at $\partial\Omega\cong S^3$

$$\Delta n = \frac{1}{16\pi^2} \int_{\Omega} \mathrm{d}^4 x F_{\mu\nu} \tilde{F}_{\mu\nu} = \frac{1}{4\pi^2} \oint_{\partial\Omega} \mathrm{d}^3 \sigma K_{\perp} \in \mathbb{Z} \quad \text{Haar measure for pure gauge}_{K_{\mu}} = \frac{1}{6} \varepsilon_{\mu\nu\lambda\rho} \mathrm{tr}[(U^{-1}\partial_{\nu} U)(U^{-1}\partial_{\lambda} U)(U^{-1}\partial_{\rho} U)]$$

E.g. take boundary of $\Omega = \mathbb{R}^4$ as a sphere S^3 : 14ine $(f_{4ine}) \simeq O(f_{4ine})$ Or $\Omega = T^4$ (lattice), $\Omega = S^4$ (Euclidean dS): $\Delta n \in \mathbb{Z}$ based on slightly more involved argument

Topology—instantons

Does $\Delta n \neq 0$ imply nontrivial physical field configurations?

Yes, cf. anti-instanton: $A_{\mu}{}^{u}{}_{v} = -\frac{\sigma_{\mu\nu}{}^{u}{}_{v}x_{\nu}}{x^{2} + \rho^{2}}$ (extended solution to *Euclidean* EOMs)

Surface term decays as $1/|x|^3
ightarrow$ surface integral does not need to vanish

Theta term contributes to the action though being a total derivative

Topology on spatial hypersurfaces—point compactification, large gauge transformations

Consider temporal gauge $A^0 = 0$ (in view of canonical quantization)

Chern-Simons functional:

$$W[ec{A}] = rac{1}{4\pi^2} arepsilon_{ijk} \int_V \mathrm{d}^3x \, \mathrm{tr} \left[rac{1}{2} A_i \partial_j A_k - rac{\mathrm{i}}{3} A_i A_j A_k
ight] \equiv rac{1}{4\pi^2} \int_V \mathrm{d}^3x \, K_0$$

Define $\vec{A}_U = U\vec{A}U^{-1} + iU^{-1}\vec{\nabla}U$ (residual gauge freedom in temporal gauge)

Assume $\vec{A} = i U^{-1} \nabla U$ (i.e. pure gauge) on ∂V With extra constraint $U(\vec{x}) \rightarrow \text{const.}$ on ∂V (periodic on T^3) \rightarrow Point compactification, homotopy $V \cong S^3$ ($V \cong T^3$)

 $U^{(n)}$: "large" $(n \neq 0)$ gauge transformation on spacelike $(\tau = \text{const.})$ hypersurface $V \simeq S^3$ $(V \simeq T^3)$ changing the Chern–Simons number by $n = W[\vec{A}_{U^{(n)}}] - W[\vec{A}] \in \mathbb{Z}$ units Topology on spatial hypersurfaces—point compactification, large gauge transformations

Consider temporal gauge $A^0 = 0$ (in view of canonical quantization) Equivalence classes of $U^{(n)}$ (not connected with 1 for Chern-Simons $n \neq 0$) only exist when we require these added *constraints* on $\vec{A}(\vec{x})$ (beyond $A^0(\vec{x}) = 0$) W $x K_0$ Cannot impose these unless properly taken account in canonical formalism Define $\vec{A}_U =$ uge) Unlike Δn , the equivalence classes are a result of a gauge Assume $ec{A} = \mathrm{i}$ With extra constraint $U(x) \to \text{const. on } \partial V \text{ (periodic on } T^{\circ}\text{)}$ space $A = id^{-1}\vec{\tau} U$ $\to \text{Point compactification}$, homotopy $V \cong S^3$ $(V \cong T^3)$ becardons $U^{(n)}$: "large" $(n \neq 0)$ gauge transformation on spacelike $(\tau = \text{const.})$ hypersurface $V \simeq S^3$

 $(\,V\simeq\,T^3)$ changing the Chern–Simons number by $n=W[ec{A}_{U^{(n)}}]-W[ec{A}]\in\mathbb{Z}$ units

FUNCTIONAL QUANTIZATION

Theta in infinite spacetime volume

Why $T ightarrow \infty$

(Implying $\Omega = VT ightarrow \infty$ as opposed to a finite spacetime volume)

To evaluate amplitudes at finite T, project path integral on the state in terms of a wave function(al) $\Psi[\phi(\vec{x})] = \langle \phi(\vec{x}) | \Psi \rangle$ (more on this later): $\langle \Psi_f, t_f | \Psi_i, t_i \rangle = \int \mathcal{D}\phi_f \mathcal{D}\phi_i \langle \Psi_f, t_f | \phi_f \rangle \int \mathcal{D}\phi e^{iS[\phi]} \langle \phi_i | \Psi_i, t_i \rangle$ $|\phi_{i,f}\rangle$ field eigenstates, not energy eigenstates $\begin{pmatrix} \phi(t_f, \vec{x}) = \phi_f(\vec{x}) \\ \phi(t_i, \vec{x}) = \phi_i(\vec{x}) \end{pmatrix}$

Problem: Neither know $\Psi[\phi(ec{x})]$ nor kernels of Schrödinger equation

Way out: Euclidean path integral/project on ground state

$$\lim_{T \to \infty} \frac{e^{-HT}}{e^{-E_0 T}} \quad \text{ or } \quad \lim_{T \to \infty} \frac{e^{-iHT(1-i\varepsilon)}}{e^{-iE_0 T(1-i\varepsilon)}} \quad \begin{array}{c} H: \text{ Hamiltonian} \\ E_0: \text{ ground state energy} \end{array}$$

 \rightarrow Obtain vacuum correlations without bothering about $\Psi[\phi(\vec{x})]$

Boundary configurations & topological quantization

The parameter θ can be viewed as an angular variable (forced by the anomalous chiral current). \longrightarrow

Requires $\Delta n \in \mathbb{Z}$ ("topological quantization") $o \exp(\mathrm{i}S)|_{ heta} = \exp(\mathrm{i}S)|_{ heta+2\pi}$

Readily built into the path integral for $VT \rightarrow \infty$ without constraining boundary conditions by hand:

(Relatively) nonvanishing contributions in *infinite* spacetime only from classical local minima of the Euclidean action & fluctuations about these—these configurations must go to pure gauges at ∞

There is no such restriction/principle to fixed physical bcs. for finite VT.

Indeed, for pure gauge configurations at $\infty \to \Delta n \in \mathbb{Z}$ (as discussed above)

Consequence: $\Delta n \in \mathbb{Z}$ requires $T \to \infty$ first \to in the path integral, take $T \to \infty$, then sum over all topological sectors Δn weighted $\exp(i\Delta n\theta)$

More technically: Integration contour from Lefschetz thimbles

Parametrization of the path integral through steepest descent contours about classical saddle points \longrightarrow Contour integration on Lefschetz thimbles

$$\frac{\partial \phi(x;u)}{\partial u} = \frac{\overline{\delta S_{\mathrm{E}}}[\phi(x;u)]}{\delta \phi(x;u)} \Longrightarrow -\frac{\partial \mathrm{Re}S_{\mathrm{E}}[\phi(x;u)]}{\partial u} \le 0 \text{ and } \frac{\partial \mathrm{Im}S_{\mathrm{E}}[\phi(x;u)]}{\partial u} = 0$$
Each thimble emerges from a critical point and corresponds to one $\Delta n \in \mathbb{Z}$
Keeping VT finite while summing over different Δn does *not* correspond to a nonsingular deformation of the contour
Integration contour sweeps over full thimbles first:
$$Z = \lim_{N \to \infty} \sum_{\Delta n = -N}^{N} \lim_{VT \to \infty} \int_{\Delta n} \mathcal{D}\phi \, \mathrm{e}^{-S_{\mathrm{E}}[\phi]}$$

over full thimbles first:

So is it
$$\xi = -\bar{\alpha}$$
 or $\xi = \theta$?

The effective vertex generates the following correlation functions at tree level:

$$\langle \prod_{j=1}^{N_f} \psi_j(x_j) ar{\psi}_j(x_j')
angle_{ ext{inst}} = \left(\mathrm{e}^{-\mathrm{i}\xi} \prod_{j=1}^{N_f} P_{\mathrm{L}j} + \mathrm{e}^{\mathrm{i}\xi} \prod_{j=1}^{N_f} P_{\mathrm{R}j}
ight) ar{H}(x_1,\ldots,x_1',\ldots)$$

Goal: Compute correlation function and compare with EFT answer above to fix ξ Cf. leading contribution to two-point function

$$egin{aligned} &\langle\psi_i(x)\psi_j(x')
angle=&\mathrm{i}S_{0\mathrm{inst}\,ij}(x,x')\ &\mathrm{i}S_{0\mathrm{inst}\,ij}(x,x')=&(-\gamma^\mu\partial_\mu+\mathrm{i}m_i\mathrm{e}^{-\mathrm{i}lpha_i\gamma^5})\intrac{\mathrm{d}^4p}{(2\pi)^4}\mathrm{e}^{-\mathrm{i}p(x-x')}rac{\delta_{ij}}{p^2-m_i^2+\mathrm{i}\epsilon} \end{aligned}$$

So $\xi = \theta / \xi = -\bar{\alpha}$ implies *CP*-violation/no *CP*-violation

Only one explicit calculation based on dilute instanton gas (DIGA) finding $\xi = \theta$ ['t Hooft (1986)]

Fermion correlations

- Obtain correlation functions from Green's functions in fixed background of instantons and anti-instantons
- Interfere all instanton configurations
 - First, within one topological sector
 - Then over the different sectors

Green's function in *n*-instanton, \bar{n} -anti-instanton background (DIGA)

$$\mathrm{i}S_{n,ar{n}}(x,x')pprox\mathrm{i}S_{0\mathrm{inst}}(x,x')+\sum_{ar{
u}=1}^{ar{n}}rac{\hat{\psi}_{0\mathrm{L}}(x-x_{0,ar{
u}})\hat{\psi}^{\dagger}_{0\mathrm{L}}(x'-x_{0,ar{
u}})}{m\mathrm{e}^{-\mathrm{i}lpha}}+\sum_{
u=1}^{n}rac{\hat{\psi}_{0\mathrm{R}}(x-x_{0,
u})\hat{\psi}^{\dagger}_{0\mathrm{R}}(x'-x_{0,
u})}{m\mathrm{e}^{\mathrm{i}lpha}}$$

Comments:

- For small masses, zero modes dominate close to the cores of instantons, far away from instantons the solution goes to the zero-instanton configuration [Diakonov, Petrov (1986)]
- Alignment of phase α between Lagrangian mass and instanton-induced $\chi SB \longrightarrow No$ indication of *CP* violation here

Fermion correlations

- Obtain correlation functions from Green's functions in fixed background of instantons and anti-instantons
- Interfere all instanton configurations
 - First, within one topological sector
 - Then over the different sectors

Green's function in *n*-instanton, \bar{n} -anti-instanton background (DIGA)

$$\mathbf{i}S_{n,\bar{n}}(x,x') \approx \mathbf{i}S_{0\text{inst}}(x,x') + \sum_{\nu=1}^{\bar{n}} \frac{\hat{\psi}_{0\text{L}}(x-x_{0,\bar{\nu}})\hat{\psi}_{0\text{L}}^{\dagger}(x'-x_{0,\bar{\nu}})}{me^{-i\alpha}} + \sum_{\nu=1}^{n} \frac{\hat{\psi}_{0\text{R}}(x-x_{0,\nu})\hat{\psi}_{0\text{R}}^{\dagger}(x'-x_{0,\nu})}{me^{i\alpha}} \\ \mathbf{j}_{0\text{inst}}(x,x') = (-\gamma^{\mu}\partial_{\mu} + \mathbf{i}me^{-i\alpha\gamma^{5}}) \int \frac{\mathrm{d}^{4}p}{(2\pi)^{4}} e^{-\mathbf{i}p(x-x')} \frac{1}{p^{2} - m^{2} + \mathbf{i}\epsilon}$$

- For small masses, zero modes dominate close to the cores of instantons, far away from instantons the solution goes to the zero-instanton configuration [Diakonov, Petrov (1986)]
- Alignment of phase α between Lagrangian mass and instanton-induced $\chi SB \longrightarrow No$ indication of *CP* violation here

Fermion correlations

- Obtain correlation functions from Green's functions in fixed background of instantons and anti-instantons
- Interfere all instanton configurations
 - First, within one topological sector
 - Then over the different sectors

Green's function in *n*-instanton, \bar{n} -anti-instanton background (DIGA)

$$\mathrm{i}S_{n,ar{n}}(x,x')pprox\mathrm{i}S_{0\mathrm{inst}}(x,x')+\sum_{ar{
u}=1}^{ar{n}}rac{\hat{\psi}_{0\mathrm{L}}(x-x_{0,ar{
u}})\hat{\psi}^{\dagger}_{0\mathrm{L}}(x'-x_{0,ar{
u}})}{m\mathrm{e}^{-\mathrm{i}lpha}}+\sum_{
u=1}^{n}rac{\hat{\psi}_{0\mathrm{R}}(x-x_{0,
u})\hat{\psi}^{\dagger}_{0\mathrm{R}}(x'-x_{0,
u})}{m\mathrm{e}^{\mathrm{i}lpha}}$$

Comments:

- For small masses, zero modes dominate close to the cores of instantons, far away from instantons the solution goes to the zero-instanton configuration [Diakonov, Petrov (1986)]
- Alignment of phase α between Lagrangian mass and instanton-induced $\chi SB \longrightarrow No$ indication of *CP* violation here

Interferences within the topological sectors

Within a topological sector, interfere/sum/integrate over

- all instanton/anti-instanton numbers $n + \bar{n}$ with $\Delta n = n \bar{n}$ fixed
- locations of all instantons/anti-instantons
- remaining collective coordinates
- \longrightarrow Dilute instanton gas approximation (skip technicalities)

Can also obtain coincident fermion correlations using the index theorem and anomalous current only

Correlation function for fixed Δn

$$\begin{split} \langle \psi(x)\bar{\psi}(x')\rangle_{\Delta n} = &\sum_{\substack{\bar{n},n\geq 0\\n-\bar{n}=\Delta n}} \frac{1}{\bar{n}!n!} \Big[\bar{h}(x,x') \left(\frac{\bar{n}}{me^{-i\alpha}} P_{\rm L} + \frac{n}{me^{i\alpha}} P_{\rm R} \right) (VT)^{\bar{n}+n-1} + \mathrm{i}S_{0\mathrm{inst}}(x,x') (VT)^{\bar{n}+n} \Big] \\ &\times (\mathrm{i}\kappa)^{\bar{n}+n} (-1)^{n+\bar{n}} \mathrm{e}^{\mathrm{i}\Delta n(\alpha+\theta)} \\ &= \Big[\Big(\mathrm{e}^{\mathrm{i}\alpha} I_{\Delta n+1}(2\mathrm{i}\kappa VT) P_{\rm L} + \mathrm{e}^{-\mathrm{i}\alpha} I_{\Delta n-1}(2\mathrm{i}\kappa VT) P_{\rm R} \Big) \frac{\mathrm{i}\kappa}{m} \, \bar{h}(x,x') + I_{\Delta n}(2\mathrm{i}\kappa VT) \mathrm{i}S_{0\mathrm{inst}}(x,x') \Big] \\ &\times (-1)^{\Delta n} \mathrm{e}^{\mathrm{i}\Delta n(\alpha+\theta)} \end{split}$$

Instantons per spacetime volume: i $\kappa \propto \mathrm{e}^{-S_\mathrm{E}}$

 χ SB rank-two spinor-tensor from integrating quark zero-modes over the locations of the instantons: $\bar{h}(x, x')$ Modified Bessel function: $I_{\nu}(x)$

Sum is dominated by particular value of $n pprox ar{n}$: [Diakonov, Petrov (1986)]

$$\langle n
angle = rac{\sum_{n=0}^{\infty}nrac{(\kappa\,VT)^n}{n!}}{\sum_{n=0}^{\infty}rac{(\kappa\,VT)^n}{n!}} = \kappa\,VT \ , \quad rac{\sqrt{\langle (n-\langle n
angle)^2
angle}}{\langle n
angle} = rac{1}{\sqrt{\kappa\,VT}} \ , \quad ext{cf.} \lim_{x o\infty}rac{I_{\Delta n}(\mathrm{i}x\,\mathrm{e}^{-\mathrm{i}0^+})}{I_{\Delta n'}(\mathrm{i}x\,\mathrm{e}^{-\mathrm{i}0^+})} = 1$$

 \longrightarrow No relative *CP* phase between mass and instanton induced breaking of χ ral symmetry—alignment in infinite-volume limit

Correspondingly, partition function for fixed Δn : [cf. Leutwyler, Smilga (1992)]

$$Z_{\Delta n} = I_{\Delta n}(2\mathrm{i}\kappa\,VT)\,(-1)^{\Delta n}\mathrm{e}^{\mathrm{i}\Delta n(lpha+ heta)}$$

Note: The topological phase $e^{i\Delta n(\alpha+\theta)}$ multiplies $\langle \psi(x)\bar{\psi}(x')\rangle_{\Delta n}$ and $Z_{\Delta n}$ entirely—not just the contributions induced by instantons.

Other correlation functions (n point, stress-energy, for some observer,...) are calculated from the Feynman diagram with the Green's function in the n instanton, \bar{n} anti-instanton background.

Then it remains to average over n, \bar{n} , locations and remaining collective coordinates.

There is no CP violation/misalignment of phases to this end. It remains to consider the interference between the topological sectors.

Interferences among topological sectors (are immaterial)

Topological quantization \leftrightarrow Interference between sectors for $VT \rightarrow \infty$

Fermion correlator

$$egin{aligned} \langle \psi(x)ar{\psi}(x')
angle &=& \lim_{N
ightarrow\infty} \sum_{VT
ightarrow\infty}^N \sum_{\Delta n=-N}^N \langle \psi(x)ar{\psi}(x')
angle_{\Delta n} \ &=& \mathrm{i}S_{0\mathrm{inst}}(x,x') + \mathrm{i}\kappaar{h}(x,x')m^{-1}\mathrm{e}^{-\mathrm{i}lpha\gamma^5} \quad (\mathrm{same\ as\ for\ fixed\ }\Delta n) \end{aligned}$$

Recall: $\mathrm{i}S_{\mathrm{0inst}}(x,x') = (-\gamma^{\mu}\partial_{\mu} + \mathrm{i}m\mathrm{e}^{-\mathrm{i}lpha\gamma^5})\int rac{\mathrm{d}^4 p}{(2\pi)^4}\mathrm{e}^{-\mathrm{i}p(x-x')}rac{1}{p^2-m^2+\mathrm{i}\epsilon}$

 \longrightarrow No relative *CP*-phase between mass and instanton term $\longrightarrow \xi = -\alpha$ $\longrightarrow CP$ is conserved

Limits ordered the other way around

First sum over all Δn as well:

$$= \left[-\left(\mathrm{e}^{-\mathrm{i}\theta} P_{\mathrm{L}} + \mathrm{e}^{\mathrm{i}\theta} P_{\mathrm{R}} \right) \frac{\mathrm{i}\kappa}{m} \bar{h}(x,x') + \mathrm{i}S_{\mathrm{0inst}}(x,x') \right] \mathrm{e}^{-2\mathrm{i}\kappa VT\cos(\alpha+\theta)}$$

$$Z o \sum_{n,ar{n}} rac{1}{n!ar{n}!} (-\mathrm{i}\kappa\,VT)^{ar{n}+n} \mathrm{e}^{-\mathrm{i}(ar{n}-n)(lpha+ heta)} = \mathrm{e}^{-2\mathrm{i}\kappa\,VT\cos(lpha+ heta)}$$

Then, $VT \to \infty$ trivial as VT-dependence cancels \longrightarrow Relative CP phase leading to CP-violating observables

However: Changing the order does not correspond to a nonsingular integration contour.

Reduced argument without instantons

- Take $\langle F(x)\tilde{F}(x)\rangle$ as measure for *CP* violation
- Each element in the sequence over N vanishes (not so when limits ordered the other way around):

$$\langle F(x) ilde{F}(x)
angle = \lim_{N
ightarrow\infty \atop N\in\mathbb{N}} \lim_{VT
ightarrow\infty} rac{\sum_{\Delta n=-N}^{N}rac{\Delta n}{VT}Z_{\Delta n}}{\sum_{\Delta n=-N}^{N}Z_{\Delta n}} = 0$$

Index theorem: No L/R imbalance in fermion zero modes \rightarrow Zero modes remain aligned with quark mass after interference of Δn -sectors

CANONICAL QUANTIZATION (in finite and infinite volumes)

Theta vacuum, standard story

Take, $A^0 = 0$, assume in addition:

$$\text{For } |\vec{x}| \to \infty \text{: } \vec{A}(\vec{x}) = \mathrm{i} \, U^{-1}(\vec{x}) \vec{\nabla} \, U(\vec{x}) \text{ and } U(\vec{x}) \to \text{const.} \quad \text{But why? } \stackrel{[\text{cf. Jackiw}}{}{}_{(1980)]}$$

Consider initial and final states, taking $x_4 \to \pm \infty$ \to Construct from pure gauge configurations on these surfaces, with $\Delta n = \frac{1}{16\pi^2} \int d^4 x F_{\mu\nu} \tilde{F}_{\mu\nu} = n_\infty - n_{-\infty}$ gauge invariant $n_{\pm\infty} = \frac{1}{4\pi^2} \int_{x^4 = \pm\infty} d^3 \sigma K_{\perp} \in \mathbb{Z}$ Chern-Simons number point comnot gauge invariant pactification $f_{\mu\nu} = \frac{1}{2\pi^2} \int_{x^4 = \pm\infty} d^3 \sigma K_{\perp} \in \mathbb{Z}$ Chern-Simons number point com $f_{\mu\nu} = \frac{1}{4\pi^2} \int_{x^4 = \pm\infty} d^3 \sigma K_{\perp} \in \mathbb{Z}$ Chern-Simons number point com $f_{\mu\nu} = \frac{1}{4\pi^2} \int_{x^4 = \pm\infty} d^3 \sigma K_{\perp} \in \mathbb{Z}$ Chern-Simons number point com $f_{\mu\nu} = \frac{1}{4\pi^2} \int_{x^4 = \pm\infty} d^3 \sigma K_{\perp} \in \mathbb{Z}$ Chern-Simons number point com $f_{\mu\nu} = \frac{1}{4\pi^2} \int_{x^4 = \pm\infty} d^3 \sigma K_{\perp} \in \mathbb{Z}$ Chern-Simons number point com $f_{\mu\nu} = \frac{1}{4\pi^2} \int_{x^4 = \pm\infty} d^3 \sigma K_{\perp} \in \mathbb{Z}$ Chern-Simons number point com $f_{\mu\nu} = \frac{1}{4\pi^2} \int_{x^4 = \pm\infty} d^3 \sigma K_{\perp} \in \mathbb{Z}$ Chern-Simons number point com $f_{\mu\nu} = \frac{1}{4\pi^2} \int_{x^4 = \pm\infty} d^3 \sigma K_{\perp} \in \mathbb{Z}$

Gauge transformations change $n_{\pm\infty}$ by same number of integer units

Gauge invariant (up to phase) state $|\theta\rangle = \sum_{n} e^{-in\theta} |n\rangle$ [Callan, Dashen, Gross (1976); Jackiw, Rebbi (1976); Jackiw (1980)]

Standard story: two loose ends

The prevacua $|n\rangle$ are field eigenstates, very different from the ground state Resolutions:

- Take $T \to \infty$ in the path integral to project on the ground state: $|\text{vac}\rangle = e^{-HT} \sum_{n} e^{-in\theta} |n\rangle, \ T \to \infty \text{ (cf. } VT \to \infty \text{ in previous part)}$
- Or use the symmetries and no further properties of the wave functional [Jackiw, Rebbi (1976); Jackiw (1980)]

States are not normalizable in the proper sense because $\langle \theta^{(i)} | \theta^{(j)} \rangle = \delta(\theta^{(i)} - \theta^{(j)})$ [cf. e.g. Callan, Dashen, Gross (1976); issue taken by Okubo, Marshak (1992)]

Without ado, this contradicts 1st postulate of quantum mechanics.

Possible resolutions:

- Construct wave packets—not acceptable however because gauge invariance should be exact
- Use gauge fixing in order to normalize states (which is what we will do here)

Possible resolutions:

- Construct wave packets—not acceptable however because gauge invariance should be exact
- Use gauge fixing in order to normalize states (which is what we will do here)

Standard story: two loose ends

The prevacua $|n\rangle$ are field eigenstates, very different from the ground state Resolutions:

- Take $T \to \infty$ in the path integral to project on the ground state: $|\text{vac}\rangle = e^{-HT} \sum_{n} e^{-in\theta} |n\rangle, \ T \to \infty \text{ (cf. } VT \to \infty \text{ in previous part)}$
- Or use the symmetries and no further properties of the wave functional [Jackiw, Rebbi (1976); Jackiw (1980)]

States are not normalizable in the proper sense because $\langle \theta^{(i)} | \theta^{(j)} \rangle = \delta(\theta^{(i)} - \theta^{(j)})$ [cf. e.g. Callan, Dashen, Gross (1976); issue taken by Okubo, Marshak (1992)]

Without ado, this contradicts 1st postulate of quantum mechanics.

Possible resolutions:

- Construct wave packets—not acceptable however because gauge invariance should be exact
- Use gauge fixing in order to normalize states (which is what we will do here)

Canonical quantization of the gauge field

Minkowski spacetime, temporal gauge $A^0 = 0$, no sources \longrightarrow

$$egin{array}{ll} gec{E}^a =& -\partial/\partial t \ ec{A}^a \ gec{B}^a =& ec{
abla} imes ec{A}^a - 1/2 f^{abc} ec{A}^a imes ec{A}^b \end{array}$$

Canonical momentum conjugate to \vec{A}^a :

$$gec{\Pi}^a = -ec{E}^a + rac{g^2}{8\pi^2} hetaec{B}^a$$

The corresponding operator must observe the commutation relations:

No constraints on ∂V accounted for $\Psi[\vec{A}]$ must be defined for $U(\vec{x}) \neq \text{const.}$ on ∂V Residual gauge dofs.: Throw out unphysical states "First quantize, then constrain"

$$[A^{a,i}(ec{x}),\Pi^{b,j}(ec{x}^{\,\prime})] = \mathrm{i} \delta^{ij} \delta^{ab} \delta^3(ec{x}-ec{x}^{\,\prime})\,, \quad [\Pi^{a,i}(ec{x}),\Pi^{b,j}(ec{x}^{\,\prime})] = 0$$

These commutators hold for $(\theta_{\Pi} \text{ arbitrary}) \vec{\Pi}^{a} = \frac{\delta}{i\delta \vec{A}^{a}} + \theta_{\Pi} \frac{g}{8\pi^{2}} \vec{B}^{a}$ Hamiltonian density:

$$\mathcal{H} = rac{1}{2} \left((ec{B}^{\,a})^2 + (ec{B}^{\,a})^2
ight) = rac{1}{2} \left(\left(g rac{\delta}{\mathrm{i} \delta ec{A}^{\,a}} - rac{g^2}{8\pi^2} (heta - heta_\Pi) ec{B}^{\,a}
ight)^2 + (ec{B}^{\,a})^2
ight)^2$$

[Jackiw (1980)]

Wave functional in gauge theory (temporal gauge $A_0 = 0$)

$$\text{Since } [\,W[\vec{A}],H] = \texttt{0, can find states } \Psi_{\theta^{(i)}}[\vec{A}_{(U_4^{(1)})^n}] = \texttt{e}^{\texttt{i} n \theta^{(i)}} \Psi_{\theta^{(i)}}[\vec{A}]$$

Wave functionals not properly normalizable

$$\int \mathcal{D}\vec{A} \,\Psi_{\theta^{(i)}}^{(a)*}[\vec{A}] \Psi_{\theta^{(j)}}^{(b)}[\vec{A}] = \sum_{\nu=-\infty}^{\infty} \int_{0 \le W[\vec{A}] < 1} \mathcal{D}\vec{A} \,\mathrm{e}^{-\mathrm{i}(\theta^{(i)} - \theta^{(j)})(W[\vec{A}] + \nu)} \psi_{\theta^{(i)}}^{(a)*}[\vec{A}] \psi_{\theta^{(j)}}^{(b)}[\vec{A}]$$
$$= 2\pi\delta(\theta^{(i)} - \theta^{(j)}) \int_{0 \le W[\vec{A}] < 1} \mathcal{D}\vec{A} \,\mathrm{e}^{-\mathrm{i}(\theta^{(i)} - \theta^{(j)})W[\vec{A}]} \psi_{\theta^{(i)}}^{(a)*}[\vec{A}] \psi_{\theta^{(j)}}^{(b)}[\vec{A}]$$
$$= 2\pi\delta(\theta^{(i)} - \theta^{(j)})\delta_{ab}$$

Cf. T^4 /lattice:

$$Z=\sum\limits_{a}\int \mathcal{D}ec{A}\,\Psi^{(a)*}_{ heta^{(i)}}[ec{A}]{
m e}^{-eta H}\Psi^{(b)}_{ heta^{(i)}}[ec{A}]$$

Not properly normalizable either

Crystal or circle?

The functionals $\Psi_{\theta}(\vec{A})$ with above periodicity properties can be viewed as Bloch states.

Bloch states live on a crystal: $\vec{A}_{U_4^{(1)}}$ is a *different* site than \vec{A} $\vec{A}_{U_4^{(1)}}$ is a *different* site than \vec{A} $\vec{A}_{U_4^{(1)}}$ is a *redundant* description of the configuration \vec{A} —corresponding to $\varphi \rightarrow \varphi + 2\pi n$ on a circle

On a crystal: Bloch states do not correpsond to normalized wave functions, these are rather wave packets made up of Bloch states. Packets, however, not translation (gauge) invariant

On a circle: Truncation of the inner product according to a single period leads to properly normalizable states, corresponding here to gauge fixing $\vec{A} \in \mathcal{A}$ so that each physical configuration appears one time and one time only:

$$\int_{\mathcal{A}} \underbrace{\mathcal{D}\vec{A} f_{\mathcal{A}}[\vec{A}]}_{\substack{\text{gauge invariant}\\ \text{under change of } \mathcal{A}}} \Psi_{\theta^{(i)}}^{(a)*}[\vec{A}] \Psi_{\theta^{(j)}}^{(b)}[\vec{A}]$$

Note: Under gauge fixed inner product,
$$\Psi_{\theta^{(i)}}^{(a)}$$
, $\Psi_{\theta^{(j)}}^{(b)}$ no longer orthogonal for $\theta^{(i)} \neq \theta^{(j)}$

Form of the wave functional

Require: $\frac{\delta}{i\delta \vec{A}(\vec{x})}$ should remain Hermitian under restricted inner product $\implies \Psi^{(a)}[\vec{A}] \stackrel{(*)}{=} \Psi^{(a)}[\vec{A}]_{g.i.} \exp(i\varphi[\vec{A}]) \text{ valid for } all \ U(\vec{x}) \text{ (also nonconstant on boundary)}$ gauge invariant \nearrow independent of state (a) Problem: $\int d^3x \operatorname{tr} \vec{B} \cdot \frac{\delta}{i\delta \vec{A}}$ leads to dependence of pure gauge on other directions \longrightarrow "Diagonalize" H: $\Psi'[\vec{A}] = e^{-i(\theta - \theta_{\Pi}) W[\vec{A}]} \Psi[\vec{A}]$. $rac{\delta}{\deltaec{A}(ec{x})}W[ec{A}] = rac{g}{8\pi^2}ec{B}(ec{x})$

Only trivial one-dimensional representations of SU(2)

$$\Psi[\vec{A}_U] = e^{i\varphi[\vec{A}_U]}\Psi[\vec{A}] \text{ (eigenstate of } U\text{)}, \qquad U_3 = U_2 U_1$$

$$e^{i\varphi[\vec{A}_{U_3}]} = e^{i\varphi[\vec{A}_{U_2}]}e^{i\varphi[\vec{A}_{U_1}]} \Rightarrow e^{i\varphi[\vec{A}_{U_2}U_1]} - e^{i\varphi[\vec{A}_{U_1}U_2]} = 0$$

$$\Rightarrow \Psi'[\vec{A}] \text{ is gauge invariant}$$

Throw states not satisfying (*) out of the Hilbert space $\rightarrow CP$ conserved

Gauß' law

For $\Omega(\vec{x})$ an infinitesimal generator of gauge transformations \longrightarrow Noether charge:

$$egin{aligned} Q(\Omega) =& rac{1}{g}\int \mathrm{d}^3x\,\mathrm{tr}\left[\Pi^i(D^i\Omega)
ight] = \int_V \mathrm{d}^3x\,\mathrm{tr}\left[\left(-E^i+rac{g^2}{8\pi^2} heta B^i
ight)D^i\Omega
ight] \ &= \int \mathrm{d}^3x\,\mathrm{tr}\left[\Omega D^i\left(E^i-rac{g^2}{8\pi^2} heta B^i
ight)
ight] + \int_{\partial V} \mathrm{d}\,a^i\,\mathrm{tr}\left[\Omega\left(-E^i+rac{g^2}{8\pi^2} heta B^i
ight)
ight] \end{aligned}$$

For $\Omega(\vec{x}) = 0$ when $\vec{x} \in \partial V$ and since Ψ' is gauge invariant \rightarrow Gauß' law: $\vec{D} \cdot \vec{E} \Psi'[\vec{A}] = 0$

Usually, the argument is made the other way around: Impose Gauß' law to throw states out of the Hilbert space

Since $[Q(\Omega), W[\vec{A}]] = 0$ for $\Omega(\vec{x}) = 0$ when $\vec{x} \in \partial V$ this also holds when $\Psi'[\vec{A}] \to e^{i\tilde{\theta} W[\vec{A}]} \Psi'[\vec{A}]$, so imposing Gauß' law does not fix $\tilde{\theta}$, does not tell us about large gauge transformations

Nondiagonal basis

Redefining derivatives w.r.t. \vec{A} as

$$ec{D}_{ec{A}}\Psi[ec{A}] = \mathrm{i}\left(rac{\delta}{\mathrm{i}\deltaec{A}} - (heta- heta_{\Pi})rac{g}{8\pi^2}ec{B}
ight)\Psi[ec{A}]$$

corresponds to a canonical transformation of the momentum operator.

Induces translation as

$$T[\Deltaec{A}]\Psi[ec{A}]=\mathrm{e}^{-\mathrm{i}(heta- heta_{\Pi})ig(W[ec{A}+\Deltaec{A}]-W[ec{A}]ig)}\Psi[ec{A}+\Deltaec{A}]$$

For a shift $\Delta \vec{A}_{gauge}$ corresponding to a *general* gauge transformation: gauge invariant

$$T[\Delta ec{A}_{ ext{gauge}}]\Psi[ec{A}] = \Psi[ec{A}] \quad ext{if} \quad \Psi[ec{A}] = ext{e}^{ ext{i}(heta - heta_{\Pi}) \, W[ec{A}]} \Psi_{ ext{g.i.}}[ec{A}]$$

Agrees with reasoning & result in the diagonal basis $\theta - \theta_{\Pi}$ in $\Psi_{\theta-\theta_{\Pi}}$ is pinned to $\theta - \theta_{\Pi}$ in *H* so that *CP* is conserved

Conclusion

There is no CP violation in QCD.

Challenges to the standard calculation and resolutions:

- Taking $T \to \infty$ after summing over sectors corresponds to an inequivalent deformation of the integration contour
 - Maintain contour and order of limits
- No point compactification/topology in temporal gauge (w/o extra constraint) Identify the Hilbert space with gauge invariant observables for all gauge transformations on spatial hypersurfaces
- \bullet θ -vacua are not properly normalizable

Above Hilbert space allows to restrict inner product to integrate over each physical configuration one time and one time only

THANK YOU!