Nonperturbative effects from gauging higher-form symmetries

MITP, Effective Theories for Nonperturbative Physics, August 5-16, 2024

Based on arXiv:2110.02981 with Erich Poppitz and arXiv:2407.03416 with Samson Chan

Mohamed Anber Center for Particle Theory Durham University

• Review of Higher-form symmetries

• 1-form global symmetry in SM: gauging and new B&L violation processes

Outline

• 2-form global symmetry in axion-YM: gauging, anomalies, and hadronic structure

Symmetries: the new perspective

- 0-form **global** symmetries act on local fields: $\phi(P) \rightarrow R(G)\phi(P)$
- E.g. $G = U(1), SU(N_f)$ or \mathbb{Z}_N
- G continuous Conserved Noether'
- Modern way: associate the action of G to a 3-manifold (4D theory) $Q(\mathbb{M}_3) = \oint_{\mathbb{N}^{d3}} \star j^{(1)} = \oint_{\mathbb{N}^{d3}} ds \, n_\mu j_\mu, \ U_\xi$ topological • Fusion rule: $U_{q_1}(\mathbb{M}^3)U_{q_2}(\mathbb{M}^3) = U_{q_1q_2}(\mathbb{M}^3)$

82

 $\mathbf{O}\mathbf{I}$

's current
$$d \star j^{(1)} = 0 \leftrightarrow \partial_{\mu} j_{\mu} = 0$$

$$V_g(\mathbb{M}^3) = e^{i\alpha Q(\mathbb{M}_3)}$$

Gaiotto, Kapustin, Seiberg, Willett, 2014

symmetry defect

$$g_1, g_2 \in G$$

0102

Symmetries: the new perspective

- M³ is a topological surface:
- $V(P) \equiv e^{i\phi(P)}$
- $U_g(\mathbb{M}^3)V(P) = R(g)V(P)U_g(\mathbb{M}^3)$

=R(g)

1-form global symmetry

- 1-form global symmetry: charged objects are 1-dimensional Wilson lines
- E.g. $W(S^1) = e^{i \oint_{S^1} A^{(1)}}$, probe n = 1 for U(1) EM
- We have $U(1)^{(1)}$ -form symmetry

- Free Maxwell's eq. $d \star F^{(2)} = \partial_{\mu} F_{\mu\nu}$
- We define $U_{g=e^{i\alpha}}(\mathbb{M}^2) = e^{i\alpha \oint_{\mathbb{M}^2} \star j^{(2)}} = e^{i\alpha \oint_{\mathbb{M}^2} \star F^{(2)}}$: measures the electric flux

$$= 0 \quad \clubsuit \quad d \star j^{(2)} = d \star F^{(2)} = 0$$

• $U_{g_1}(\mathbb{M}^2)U_{g_2}(\mathbb{M}^2) = U_{g_1g_2}(\mathbb{M}^2), \quad U_g(\mathbb{M}^2)W(\mathbb{S}^1) = e^{i\alpha \operatorname{Link}(\mathbb{S}^1,\mathbb{M}^2)}W(\mathbb{S}^1)U_g(\mathbb{M}^2)$

1-form global symmetry

• Assume n = 1 dynamical charges are present

• If only n > 1 charges are present, fundamental Wilson lines are topological

1-form global symmetry in YM

- SU(N) pure Yang-Mills has a $\mathbb{Z}_N^{(1)}$ 1-form global symmetry:
- $W(\mathbb{S}^1) = \operatorname{Tr}_{\Box} e^{i \oint_{\mathbb{S}^1} A^{(1)}}$
- $U_{g=\mathbb{Z}_N}(\mathbb{M}^2)W(\mathbb{S}^1) = e^{i\frac{2\pi k}{N}\operatorname{Link}(\mathbb{S}^1,\mathbb{M}^2)}U(\mathbb{M}^2)W(\mathbb{S}^1)U_{g=\mathbb{Z}_N}$
- Or $\mathbb{Z}_{N}^{(1)}: W \to e^{i\frac{2\pi}{N}W}$
- No topological Wilson lines with dynamical matter in \square :

1-form global symmetry in SM

• Matter contents:

1-form global symmetry in SM

- SM accommodates a $\mathbb{Z}_{6}^{(1)}$ 1-form global symmetry
- Three distinct Wilson lines:

- $W_1 = e^{i \oint_{\mathbb{S}^1} A_1^{(1)}}, U(1)^{(1)}_{\substack{g=e^{i(\alpha = \frac{2\pi}{6})}}} : W_1 \to e^{i\frac{2\pi}{6}}W_1$
- *W* is not screened by SM particle

• E.g.
$$q_L$$
: $e^{i\frac{2\pi}{3}}$ $e^{i\frac{2\pi}{2}}$ $e^{i\frac{2\pi}{6}}$
 $\Box \operatorname{in} SU(3)$ $\Box \operatorname{in} SU(2)$ $q=1$ under $U(1)$

Tong, 2017 MA, Poppitz, 2021

• W₃ = Tr_□ $e^{i\phi_{S1}A_3^{(1)}}$, $\mathbb{Z}_3^{(1)}$: $W_3 \to e^{i\frac{2\pi}{3}}W_3$ • $W_2 = \text{Tr}_{\Box}e^{i\phi_{S1}A_2^{(1)}}$, $\mathbb{Z}_2^{(1)}$: $W_2 \to e^{i\frac{2\pi}{2}}W_2$ $: \mathcal{K} \to \mathcal{A}^{(1)}$, $\mathcal{K} \to \mathcal{K}^{(1)}$, $\mathcal{K} \to e^{i\frac{2\pi}{6}}W_2$ $: \mathcal{K} \to \mathcal{A}^{(1)}$, $\mathcal{K} \to \mathcal{K}^{(1)}$, $\mathcal{K} \to e^{i\frac{2\pi}{6}}W_2$

Gauging a global symmetry

- Gauging 0-form symmetry, 2 steps: $d \star j^{(1)} = 0 \leftrightarrow \oint_{\mathbb{M}^4} A^{(1)} \star j^{(1)}, \quad G^{(0)} : A^{(1)} \to A^{(1)} + d\Lambda^{(0)}$ • $\mathscr{Z} = \int [DA^{(1)}]e^{-S_{YM} - \theta} \underbrace{\frac{1}{8\pi^2} \int_{\mathbb{M}^4} F^{(2)} \wedge F^{(2)}}_{\mathcal{Q}}, \quad F^{(2)} = dA^{(1)} + [A^{(1)}, A^{(1)}], \quad Q \in \mathbb{Z}$
- BPST instantons have $Q \in \mathbb{Z}$, e.g., G = SU(2) instantons in the weak sector • Well understood explicit solutions on $\mathbb{M}^4 = \mathbb{R}^4$
- 't Hooft vertex: $e^{-\frac{8\pi^2}{g_2^2}}q_Lq_Lq_Ll_L \rightarrow |\Delta B| = 1$, applications to baryogengesis

- Gauging $\mathbb{Z}_n^{(1)}$ 1-form symmetry:
- $d \star j^{(2)} = 0 \leftrightarrow \oint_{\mathbb{R}^{d^4}} B^{(2)} \star j^{(2)}, \quad G^{(1)} : B^{(2)} \to B^{(2)} + d\Lambda^{(1)}, \quad dB^{(2)} = 0$

$$\mathscr{Z} = \int [DB^{(2)}]e^{-S_{YM}} - \underbrace{\frac{n}{8\pi^2} \int_{\mathbb{M}^4} B^{(2)} \wedge B^{(2)}}_{\mathcal{Q}}$$

- We may gauge $\mathbb{Z}_{n}^{(1)} \subseteq \mathbb{Z}_{6}^{(1)}$, n = 1, 2, 3, 6

Gauging the $\mathbb{Z}_{6}^{(1)}$ symmetry

-, $Q \in -$ • Four distinct SM(s): $G_n = \frac{SU(3) \times SU(2) \times U(1)}{\mathbb{Z}_n}$, n = 1, 2, 3, 6

- E.g. gauging the full $\mathbb{Z}_6^{(1)}$, i.e., $G_6 = \frac{SU(3) \times SU(2) \times U(1)}{-}$
- Recalling $\mathscr{W} = \underbrace{W_1}_{1} \underbrace{W_2}_{2} \underbrace{W_3}_{3}$, three backgrounds are needed $\rho^{i}\frac{2\pi}{6}$ $\rho^{i}\frac{2\pi}{2}$ $\rho^{i}\frac{2\pi}{3}$
- $\oint_{\mathbb{N}^2} B_1^{(2)} \in \frac{2\pi}{6} \mathbb{Z}, \quad \oint_{\mathbb{N}^2} B_2^{(2)} \in \frac{2\pi}{2} \mathbb{Z}, \quad \oint_{\mathbb{N}^2} B_2^{(2)} \in \frac{2\pi}{2} \mathbb{Z},$ $\oint_{1} B_1^{(2)} = \oint_{1} B_2^{(2)} + B_3^{(2)}$ (SM particles are blind to the combined fluxes)

constraint

Gauging the $\mathbb{Z}_{6}^{(1)}$ symmetry

$$\mathbb{Z}_6$$

$$B_3^{(2)} \in \frac{2\pi}{3}\mathbb{Z},$$

$$\mathbb{M}^2$$

2-cycles are nee
e.g.
$$\mathbb{M}^2 = \mathbb{T}^2 \subset \mathbb{M}$$

• Sum over backgrounds of $B_1^{(2)}$, $B_2^{(2)}$, $B_2^{(3)}$ (omitting the details) $\mathscr{Z}_{G_6} = \int [DB_1^{(2)}DB_2^{(2)}DB_3^{(2)}]e^{-S_{SM}} = \sum_{Q_1,Q_2,Q_3} e^{-S_{SM}} \underbrace{\cdots}_{\text{extra stuff}}$

$$Q_2 \in \frac{1}{2} + \mathbb{Z}, \quad Q_3 \in \frac{1}{3} + \mathbb{Z}, \quad Q_1 =$$

• Are these objects physical?

Gauging the $\mathbb{Z}_{6}^{(1)}$ symmetry

Fractionalinstantons

- Exact (Anti)self-dual instnaton solutions on \mathbb{T}^4
- E.g. $SU(2)/\mathbb{Z}_2$ bundle: $S_2 = \frac{1}{4g_2^2} \int_{\mathbb{T}^4} F_{\mu\nu}$
- (Anti)self-dual solutions: $F_{\mu\nu} = \pm \tilde{F}_{\mu\nu}$
- Explicit solution: symmetric \mathbb{T}^4 with 0 Higgs vev

$$A_1 = \frac{2\pi x^2}{L^2} \frac{\tau^3}{2}, \quad A_3 = \frac{2\pi x^4}{L^2} \frac{\tau^3}{2}, \quad A_2 = \frac{1}{L^2} \frac{\tau^3}{2}$$

constant abelian field strength

$$F_{\mu\nu}F_{\mu\nu} = \pm \frac{8\pi^2}{g_2^2}Q_2 + \int_{\mathbb{T}^4} \left(F_{\mu\nu} \mp \tilde{F}_{\mu\nu}\right)^2$$
$$S_2 = \frac{8\pi^2}{g_2^2}|Q_2|, \quad |Q_2| = \frac{1}{2}$$

 $= A_4 = 0$

't Hooft, 1981 Van Paal, 1984 MA, Poppitz, 2021

Fractionalinstantons

- Similar SU(3) and U(1) solutions exists: (
- Self-duality \longrightarrow stability of SU(2) and SU(3) solutions
- We can relax the symmetric \mathbb{T}^4 :
- Exact self-dual solutions exist if $L_1L_2 = L_2$
- Approximate self-dual solutions for L_1L_2
- All known classical solutions are not localized!

$$Q_3 = \frac{2}{3}, \quad Q_1 = \left(n_1 - \frac{1}{2} - \frac{1}{3}\right) \left(n_2 - \frac{1}{2} - \frac{1}{3}\right)$$

$$L_{3}L_{4}$$
 't Hooft 1981, Van Ball, 1984
 $\neq L_{3}L_{4}$ (expansion in $\Delta = \frac{L_{1}L_{2} - L_{3}L_{4}}{\sqrt{L_{1}L_{2}L_{3}L_{4}}}$)

Antonio González-Arroyo, 2020, M.A., Poppitz 2023

$e^{-S_{SM}}$ $\mathcal{Z}_{G_6} = \sum'$ fractional or integer Q

- $U(1)_R U(1)_I$ is a good symmetry, $U(1)_R + U(1)_I$ is not
- ΔB from fractional instantons:
- New 't Hooft vertex ~ $e^{-(S_1+S_2+S_3)}(q_I)^{I_1}(l_I)^{I_2}(\tilde{e}_R)^{I_3}(\tilde{u}_R)^{I_4}(\tilde{d}_R)^{I_5}$
- BPST 't Hooft vertex ~ $e^{-\frac{8\pi^2}{g_2^2}}q_Lq_Lq_Ll_L$

MA, Poppitz, 2021

- What are we comparing?
- Processes at T = 0

Deforming the solutions

• \mathbb{T}^3 is symmetric: $L^{(-1)} = IR$ cutoff $\gtrsim TeV$ (0 Higgs vev)

$$\frac{1}{2} + \frac{1}{3})^2 + (n_2 + \frac{1}{2} + \frac{1}{3})^2 \Big] < \frac{8\pi^2}{g_2^2(L)}$$

$$\underbrace{S_1}{}$$

$$(80n_f + 6n_H), \quad b_2 = \frac{22}{3} - \frac{4n_f}{3} - \frac{n_H}{6}, \quad b_3 = 11 -$$

• Results:

Gauged 1-form center	n_1	n_2	Smallest $U(1)$ action	ΔB	$L_{\rm critical}^{-1}$ (G
$\mathbb{Z}_6^{(1)}$	-1	-1	$\frac{\pi^2}{9g_1^2}$	0	_
$\mathbb{Z}_6^{(1)}$	-1	0	$\frac{13\pi^2}{9g_1^2}$	$3n_f$	6×10^{34}
$\mathbb{Z}_6^{(1)}$	0	-1	$\frac{13\pi^2}{9g_1^2}$	$3n_f$	6×10^{34}
$\mathbb{Z}_3^{(1)}$	0	0	$\frac{4\pi^2}{9g_1^2}$	$-2n_f$	2.7×10^{2}
$\mathbb{Z}_2^{(1)}$	0	0	$\frac{\pi^2}{g_1^2}$	$-4n_f$	1.5×10^{4}

• Adding extra charged matter (under U(1)) can bring $L_{critical}^{-1}$ below M_P

Cosmology

- Fractional-instanton solution is constant over \mathbb{T}^3 (not localized). Is this interesting? Do we live on \mathbb{T}^3 ?
- Maybe: CMB analysis $L_{\pi^3} > \mathcal{O}(\text{few})L_0$ • Tracing back: $L_H \sim \frac{M_P}{T^2}$, $L_{\mathbb{T}^3} \sim \frac{M_P}{T_1 T}$
- Early Universe $L_{T_3} > L_H$

$$L_0 \sim 12 \, \text{Gpc}$$

$$L_{\mathbb{T}^3} \sim \frac{T}{T_l}$$

Aslanyan, Manohar, Yadav, 2013

• If fractional instantons have a cutoff scale $< L_H$, there might have played a role.

2-form symmetry in axion-YM theory

UV: $\mathscr{L} = YM + Dirac \text{ fermion} + |d\Phi|^2 + \lambda(|\Phi|^2 - v^2)^2 + v\Phi\tilde{\psi}\psi$ in rep. $R \rightarrow \mathbb{Z}_n^{(1)}$ • $\Phi = \rho e^{ia}$, $a \sim a + 2\pi$, and take $v \gg \Lambda$ (strong scale) • UV symmetries: • $U(1)^{(0)\chi} \xrightarrow{} \mathbb{Z}_{2T_R}^{(0)\chi}$ ABJ anomaly Mixed 't Hooft anomaly • $\mathbb{Z}_n^{(1)}$ 1-form symmetry \checkmark • $U(1)^{(0)}_{P}$ \boldsymbol{D}

2-form symmetry in axion-YM theory $\mathscr{L} \supset YM + \frac{v^2}{2} |da|^2 + \frac{T_R a}{8\pi^2} F \wedge F$ At $\Lambda \ll E \ll v$:

- strings)
- $da = \star j^{(3)}, U_g = e^{i\alpha \int_{\mathbb{M}^1} da}$

ABJ anomaly

• Bianchi identity: $d^2a = 0 \leftrightarrow d \star j^{(3)} = 0$ \longrightarrow $U(1)^{(2)}$ symmetry (couples to

Gauging the 2-form symmetry

- This is useful at $E \ll \Lambda$:
- Gauge $U(1)^{(2)}$: introduce $\mathscr{L} \supset \frac{T_R}{2\pi} \star j^{(3)}$ • $\mathscr{Z} = \int [dC^{(3)}][da]e^{-S_{IR}}, \quad S_{IR} = \frac{v^2}{2} |da|^2$
- It is inevitable to IR match a mixed 1-form/0-form 't Hooft anomaly
- $dC^{(3)}$ is the long tail incarnation of $F \wedge F$ below the confinement scale Λ

$$\wedge C^{(3)} = \frac{T_R}{2\pi} da \wedge C^{(3)}$$

$$|^2 + \frac{T_R}{2\pi} da \wedge C^{(3)} + \frac{|dC^{(3)}|^2}{\Lambda^4} + \text{higher orders}$$

MA, Chan, 202

Luscher, 1978 Veneziano, 1979 4

Gauging the 2-form symmetry

- Quantization condition $\int_{\mathbb{M}^4} dC^{(3)} \in 2\pi m, m \in \mathbb{Z}$
- Performing the sum over $m \in \mathbb{Z}$:

$$\mathscr{Z}[a] \sim \sum_{k \in \mathbb{Z}} \exp\left[-i\frac{Nk}{4\pi} \int_{\mathbb{M}^4} B^{(2)} \wedge B^{(2)}\right] \exp\left[-\int_{\mathbb{M}^4} \frac{v^2}{2} |da|^2 + \frac{\Lambda^4}{8\pi^2} \left(T_R a + 2\pi k\right)^2\right]$$

mixed anomaly: $a \rightarrow a + 2\pi/T_R$ • $V(a) \sim \Lambda^4 \min_k \left(T_R a + 2\pi k \right)^2$ • vacua = $\frac{2\pi\ell}{T_R}$, cusps = $\frac{\pi(2\ell+1)}{T_R}$

Gauging the 2-form symmetry

• axion+hadronic walls: $\delta_{DW} \sim \frac{v}{\Lambda^2} \gg \Lambda^{-1}$ $\delta_H \sim \Lambda^{-1}$

$$V(a) \sim \Lambda^4 \min_k \left(T_R a + 2\pi k \right)^2$$
$$T_R = 3$$

3

2

- Gauging higher-form symmetries leads to new nonperturbative effects.
- SM gauge group is still an open question:
- $G_n = \frac{SU(3) \times SU(2) \times U(1)}{\mathbb{Z}_n}$, n = 1, 2, 3, 6
- New fractional instantons on \mathbb{M}^4 : $\Delta B = \Delta L \neq 0$
- picture

Summary

• Axion+YM encompasses 2-form symmetry, and gauging it yields a fully consistent