Based on arXiv:2110.02981 with Erich Poppitz and arXiv:2407.03416 with Samson Chan

Nonperturbative effects from gauging higher-form symmetries

Mohamed Anber Center for Particle Theory Durham University

MITP, Effective Theories for Nonperturbative Physics, August 5-16, 2024

• Review of Higher-form symmetries

• 1-form global symmetry in SM: gauging and new B&L violation processes

Outline

• 2-form global symmetry in axion-YM: gauging, anomalies, and hadronic structure

Symmetries: the new perspective

- 0-form global symmetries act on local fields: $\phi(P) \to R(G)\phi(P)$
- E.g. $G = U(1)$, $SU(N_f)$ or \mathbb{Z}_N
- G continuous \Box Conserved Noether's current $d \star j$
- Modern way: associate the action of G to a 3 -manifold $(4D$ theory) • $Q(M_3) = \oint_{M^3} \star j^{(1)} = \oint_{M^3} ds n_{\mu} j_{\mu}$ • Fusion rule: (1) topological $=\oint_{\mathbb{M}^3} ds n_\mu j_\mu, U_g(\mathbb{M}^3)$ U_{g_1} (M^3) $\big) U_{g_2}$ (M^3) $) = U_{g_1g_2}$ (M^3)

's current
$$
d \star j^{(1)} = 0 \leftrightarrow \partial_{\mu} j_{\mu} = 0
$$

$$
g(\mathbb{M}^3) = e^{i\alpha Q(\mathbb{M}_3)}
$$

symmetry defect

$$
^3) \t g_1, g_2 \in G
$$

Gaiotto, Kapustin, Seiberg, Willett, 2014

Symmetries: the new perspective

- \mathbb{M}^3 is a topological surface: $\Big($ $\Big)$ =
- $V(P) \equiv e^{i\phi(P)}$
- $U_g(M^3)V(P) = R(g)V(P)U_g(M^3)$)

=*R*(*g*)

1**-form global symmetry**

- 1-form global symmetry: charged objects are 1-dimensional Wilson lines
- E.g. $W(S^1) = e^{i \oint_S A^{(1)}}$, probe $n = 1$ for $U(1)$ EM
- We have $U(1)^{(1)}$ -form symmetry (1)

- **Free Maxwell's** eq. $d \times F^{(2)} = \partial_{\mu} F_{\mu\nu}$
- We define $U_{g=e^{i\alpha}}(\mathbb{M}^2) = e^{i\alpha \oint_{\mathbb{M}^2} \star j^{(2)}} = e^{i\alpha \oint_{\mathbb{M}^2} \star F^{(2)}}$: measures the electric flux
- U_{g_1} (M^2) $\big) U_{g_2}$ (M^2) $) = U_{g_1g_2}$

 (W^2) , $U_g(W^2)W(S^1) = e^{i\alpha L}ink(S^1)$,^{M²) $W(\mathbb{S}^{1})U_{g}(\mathbb{M}^{2})$})

$$
= 0 \qquad \longrightarrow \qquad d \star j^{(2)} = d \star F^{(2)} = 0
$$

1**-form global symmetry**

• Assume $n = 1$ dynamical charges are present

• If only $n > 1$ charges are present, fundamental Wilson lines are topological

1**-form global symmetry in YM**

- SU(N) pure Yang-Mills has a $\mathbb{Z}_N^{(1)}$ 1 form global symmetry: *^N* 1−
- $W(\mathbb{S}^1) = Tr_{\square}e^{i\oint_{\mathbb{S}^1}A^{(1)}}$
- $U_{g=\mathbb{Z}_N}$ $(M^2)W(S^1) = e^{i\frac{2\pi k}{N}L}$ ink(S¹
- Or $\mathbb{Z}_N^{(1)}$: $W \to e^{i\frac{2\pi}{N}}$ $\frac{2\pi}{N}W$
- No topological Wilson lines with dynamical matter in \square :

 $(W^{2})U(W^{2})W(S^{1})$ $\big) U_{g=\mathbb{Z}_N}$

1**-form global symmetry in SM**

• Matter contents:

All fields above (but the Higgs *h*) are left-handed Weyl spinors and we have not included

1**-form global symmetry in SM**

- SM accommodates a $\mathbb{Z}_6^{(1)}$ 1-form global symmetry $\begin{smallmatrix} (1) & 1 \\ 6 & 1 \end{smallmatrix}$
- Three distinct Wilson lines:
- $W_3 = Tr_{\Box} e^{i \oint_{\Im} A_3^{(1)}}$, $W_3 = Tr_{\Box}e^{i\oint_{\Im}A_3^{(1)}}, Z_3^{(1)}: W_3 \to e^{i\frac{2\pi}{3}}W_3$
- $W_2 = Tr_{\Box} e^{i \oint_{\Im} A_2^{(1)}}$, $W_2 = Tr_{\Box}e^{i\oint_{\Im}A_2^{(1)}}, Z_2^{(1)}: W_2 \to e^{i\frac{2\pi}{2}}W_2$
- $W_1 = e^{i \oint_{\mathbb{S}^1} A_1^{(1)}}$, \sum_{1}^{1} , $U(1)$ (1) *g*=*e i*(*α*= 2*π* $\frac{2\pi}{6}$: $W_1 \to e^{i\frac{2\pi}{6}} W_1$
- $\mathcal W$ is not screened by SM particle

 $= W_1 W_2 W_3$ $\mathbb{Z}_6^{(1)}$: $\mathbb{W} \rightarrow e^{i\frac{2\pi}{6}}$ 6

5.8.
$$
q_L
$$
: $e^{i\frac{2\pi}{3}}$ $e^{i\frac{2\pi}{2}}$ $e^{i\frac{2\pi}{6}}$ $e^{i\frac{2\pi}{6}}$
 \Box in $SU(3)$ \Box in $SU(2)$ $q=1$ under $U(1)$

Tong, 2017 MA, Poppitz, 2021

 $LCM(2,3) = 6$

Gauging a global symmetry

- Gauging 0-form symmetry, 2 steps: • $d \star j$ $G^{(1)} = 0 \leftrightarrow \oint_{\mathbb{M}^4} A^{(1)} \star j^{(1)}, \quad G^{(0)} : A^{(1)} \to A^{(1)} + d\Lambda^{(0)}$ $=$ $[DA^{(1)}]$]*e* −*SYM*−*θ* $\frac{1}{8\pi^2}\int_{\mathbb{M}^4} F^{(2)} \wedge F^{(2)}$ *Q* $, \quad F^{(2)} = dA^{(1)} + [A^{(1)}, A^{(1)}], \quad Q \in \mathbb{Z}$
-
- BPST instantons have $Q \in \mathbb{Z}$, e.g., $G = SU(2)$ instantons in the weak sector • Well understood explicit solutions on $\mathbb{M}^4 = \mathbb{R}^4$
- 't Hooft vertex: $e^{-\frac{2}{g_2}}q_Lq_Lq_Ll_L \rightarrow |\Delta B| = 1$, applications to baryogengesis $-\frac{8\pi^2}{a^2}$ $g_2^2 q_L q_L l_L \rightarrow |\Delta B| = 1$

- Gauging $\mathbb{Z}_n^{(1)}$ 1-form symmetry: $\binom{1}{n}$ 1
- \bullet $d \star j$ $G^{(2)} = 0 \leftrightarrow \oint_{\mathbb{M}^4} B^{(2)} \star j^{(2)}, \quad G^{(1)} : B^{(2)} \to B^{(2)} + d\Lambda^{(1)}, \quad dB^{(2)} = 0$

Gauging the $\mathbb{Z}_6^{(1)}$ symmetry 6

, *Q* ∈ \mathbb{Z} *n* $SU(3) \times SU(2) \times U(1)$ ℤ*n* $n = 1, 2, 3, 6$

$$
\mathscr{Z} = \int [DB^{(2)}]e^{-S_{YM} - \frac{n}{8\pi^2} \int_{\mathbb{M}^4} B^{(2)} \wedge B^{(2)}}
$$

- We may gauge $\mathbb{Z}_n^{(1)} \subseteq \mathbb{Z}_6^{(1)}$ $\binom{1}{6}, \quad n = 1, 2, 3, 6$
- Four distinct SM(s): $G_n =$

- E.g. gauging the full $\mathbb{Z}_6^{(1)}$, i.e., $\mathbb{Z}_6^{(1)}$ $\binom{11}{6}$, i.e., $G_6 =$ $SU(3) \times SU(2) \times U(1)$
- Recalling $\mathcal{W} = W_1 W_2 W_3$, three backgrounds are needed $\overline{}$ *e* $i\frac{2\pi}{6}$ 6 *e* W_2 $\overline{}$ $i\frac{2\pi}{2}$ 2 *e W*3 $\overline{}$ $i\frac{2\pi}{3}$ 3
- $\oint_{\mathbb{R}^{3}} B_1^{(2)} \in \frac{\mathbb{Z}}{6}$, $\oint_{\mathbb{R}^{3}} B_2^{(2)} \in \frac{\mathbb{Z}}{2}$, $\oint_{\mathbb{R}^{3}} B_3^{(2)} \in \frac{\mathbb{Z}}{3}$, • (SM particles are blind to the combined fluxes) $\int_{\mathbb{M}^2}$ $B_1^{(2)}$ $i^{(2)} \in$ 2*π* $\overline{}^{\mathbb{Z}}, \quad \oint_{\mathbb{M}^2}$ $B_\gamma^{(2)}$ $2^{(2)} \in$ 2*π* $\frac{1}{2}\mathbb{Z}$, $\oint_{\mathbb{M}^2}$ $B_3^{(2)}$ $3^{(2)} \in$ 2*π* 3 \mathbb{Z} $\int_{\mathbb{M}^2}$ $B_1^{(2)}$ 1 $=\oint_{\mathbb{M}^2}$ $B_2^{(2)} + B_3^{(2)}$

 $$ 6

$$
\mathbb{Z}_6
$$

$$
B_3^{(2)} \in \frac{2\pi}{3}\mathbb{Z},
$$

constraint

2-cycles are needed
e.g.
$$
M^2 = T^2 \subset M^4 = T^4
$$

• Sum over backgrounds of $B_1^{(2)}$, $B_2^{(2)}$, $B_2^{(3)}$ (omitting the details) • $G₆$ $=$ $\left[$ $[DB_1^{(2)}DB_2^{(2)}DB_3^{(2)}]e^{-S_{SM}} = \sum_{\alpha}$

Gauging the $\mathbb{Z}_6^{(1)}$ symmetry 6

$$
Q_2 \in \frac{1}{2} + \mathbb{Z}, \quad Q_3 \in \frac{1}{3} + \mathbb{Z}, \quad Q_1 =
$$

• Are these objects physical?

Fractional instantons

- Exact (Anti)self-dual instnaton solutions on \mathbb{T}^4
- E.g. $SU(2)/\mathbb{Z}_2$ bundle: $S_2 =$ 1 4*g*² $\frac{2}{2}$ J_{T4}
- (Anti)self-dual solutions: $F_{\mu\nu} = \pm \tilde{F}$
- Explicit solution: symmetric \mathbb{T}^4 with 0 Higgs vev

•

$$
\int_{\mathbb{T}^4} F_{\mu\nu} F_{\mu\nu} = \pm \frac{8\pi^2}{g_2^2} Q_2 + \int_{\mathbb{T}^4} \left(F_{\mu\nu} \mp \tilde{F}_{\mu\nu} \right)^2
$$

$$
\int_{\mu\nu} \bullet S_2 = \frac{8\pi^2}{g_2^2} |Q_2|, \quad |Q_2| = \frac{1}{2}
$$

 $=A_4=0$

$$
A_1 = \frac{2\pi x^2}{L^2} \frac{\tau^3}{2}, \quad A_3 = \frac{2\pi x^4}{L^2} \frac{\tau^3}{2}, \quad A_2 =
$$

constant abelian field strength

't Hooft, 1981 Van Paal, 1984 MA, Poppitz, 2021

Fractional instantons

- Similar $SU(3)$ and $U(1)$ solutions exists: $Q_3 =$
- Self-duality \longrightarrow stability of $SU(2)$ and $SU(3)$ solutions
- We can relax the symmetric \mathbb{T}^4 :
- Exact self-dual solutions exist if $L_1L_2 = L_3L_4$
-
- All known **classical** solutions are **not localized**!

• Exact self-dual solutions exist if
$$
L_1L_2 = L_3L_4
$$
 't Hooft 1981, Van Ball, 1984
• Approximate self-dual solutions for $L_1L_2 \neq L_3L_4$ (expansion in $\Delta = \frac{L_1L_2 - L_3L_4}{\sqrt{L_1L_2L_3L_4}}$)

$$
Q_3 = \frac{2}{3}, \quad Q_1 = \left(n_1 - \frac{1}{2} - \frac{1}{3}\right)\left(n_2 - \frac{1}{2} - \frac{1}{3}\right)
$$

[Antonio González-Arroyo](https://inspirehep.net/authors/1018056)**,** 2020, M.A., Poppitz 2023

$\mathscr{L}_{G_6} = \qquad \qquad \sum_{\text{free of } \mathscr{L}_{G_6}}$ fractional or integer *Q* $e^{-S_{SM}}$

- $U(1)_B U(1)_L$ is a good symmetry, $U(1)_B + U(1)_L$ is not $U(1)_B - U(1)_L$ is a good symmetry, $U(1)_B + U(1)_L$
- Δ*B* from fractional instantons:
- New 't Hooft vertex $\sim e^{-(S_1+S_2+S_3)}$ (*qL*)
- BPST 't Hooft vertex ∼ *e* $-\frac{8\pi^2}{a^2}$ *g*2 ² *qLqLqLl L*

*I*1(*l L*) $I_2(\tilde{e}_R)$ $I_3(\tilde{u}_R)$ I_4 ($\tilde d$ *R*) I_{5} MA, Poppitz, 2021

- What are we comparing?
- Processes at $T=0$

Deforming the solutions

• \mathbb{T}^3 is symmetric: $L^{(-1)} = \text{IR cutoff} \geq \text{TeV}$ (0 Higgs vev)

$$
\left[1 + \frac{1}{3}\right)^2 + (n_2 + \frac{1}{2} + \frac{1}{3})^2
$$
 $\le \frac{8\pi^2}{g_2^2(L)}$
 S_1 BPST

$$
(80n_f + 6n_H), \quad b_2 = \frac{22}{3} - \frac{4n_f}{3} - \frac{n_H}{6}, \quad b_3 = 11 - \frac{4}{3}
$$

• Results:

• Adding extra charged matter (under *U*(1)) can bring $L_{critical}^{-1}$ below M_P

critical MP

Cosmology

- Fractional-instanton **solution is constant** over \mathbb{T}^3 (**not localized**). Is this interesting? Do we live on \mathbb{T}^3 ? 3
- Maybe: CMB analysis $L_{\mathbb{T}^3} > \mathcal{O}(\text{few})L_0$, • Tracing back: *LH* ∼ $L_{\mathbb{T}^3} > \mathcal{O}(\text{few})L_0, L_0 \sim 12 \text{ Gpc}$ *MP* $\frac{1}{T^2}$, $L_{\mathbb{T}^3}$ ~ *MP* $\frac{I}{T_lT}$,
- Early Universe $L_{\mathbb{T}^3} > L_H$
- If fractional instantons have a cutoff scale L_H , there might have played a role.

$$
L_0 \sim 12 \text{ Gpc}
$$

$$
\frac{L_{\mathbb{T}^3}}{L_H} \sim \frac{T}{T_l}
$$

Aslanyan, Manohar, Yadav, 2013

 $\langle L_H \rangle$

2**-form symmetry in axion-YM theory**

• UV: $\mathscr{L} = \text{YM} + \text{Dirac fermion} + |d\Phi|^2 + \lambda (|\Phi|^2 - v^2)^2 + y\Phi\tilde{\psi}\psi$ • $\Phi = \rho e^{ia}$, $a \sim a + 2\pi$, and take $v \gg \Lambda$ (strong scale) • UV symmetries: • • $\mathbb{Z}_n^{(1)}$ 1-form symmetry • $U(1)$ in rep. $R \rightarrow \mathbb{Z}_n^{(1)}$ $U(1)^{(0)\chi} \rightarrow$ $\overline{}$ ABJ anomaly $\mathbb{Z}_{2T_\text{r}}^{(0)\chi}$ $2T_R$ $\binom{1}{n}$ 1 (0) *B* Mixed 't Hooft anomaly

- strings)
- $da = \star j^{(3)}$, $(U_g = e^{i\alpha \int_{M^1} da})$

2**-form symmetry in axion-YM theory** • At $\Lambda \ll E \ll \nu$: $\mathscr{L} \supset YM +$ v^2 \int_2 | da | $^{2}+$ T_R a 8*π*² *F* ∧ *F*

ABJ anomaly

• Bianchi identity: $d^2a = 0 \leftrightarrow d \star j^{(3)} = 0$ \longrightarrow $U(1)^{(2)}$ symmetry (couples to

Gauging the 2**-form symmetry**

- This is useful at $E \ll \Lambda$:
- Gauge $U(1)^{(2)}$: introduce $\mathscr L$ \supset • *TR* 2*π* $=$ $\int [dC^{(3)}] [da] e^{-S_{IR}}$, $S_{IR} =$ v^2 \int_2 | da |
- It is inevitable to IR match a mixed 1-form/0-form 't Hooft anomaly
- $dC^{(3)}$ is the long tail incarnation of $F \wedge F$ below the confinement scale Λ

$$
\star j^{(3)} \wedge C^{(3)} = \frac{T_R}{2\pi} da \wedge C^{(3)}
$$

$$
\frac{d}{dt} |da|^2 + \frac{T_R}{2\pi} da \wedge C^{(3)} + \frac{|dC^{(3)}|^2}{\Lambda^4} + \text{higher orders}
$$

 MA, Chan, 2024

Luscher, 1978 Veneziano, 1979

Gauging the 2**-form symmetry**

• Quantization condition

•

• Performing the sum over $m \in \mathbb{Z}$:

 $\int_{\mathbb{M}^4}$

• $V(a) \sim \Lambda^4 \min_k (T_R a + 2\pi k)$ • vacua $=$ $\frac{1}{T_{\text{R}}}$, cusps mixed anomaly: $a \rightarrow a + 2\pi/T_R$ 2 2*πℓ TR* = $\pi(2\ell + 1)$ *TR*

 $dC^{(3)} \in 2\pi m$, $m \in \mathbb{Z}$

$$
\mathcal{Z}[a] \sim \sum_{k \in \mathbb{Z}} \exp \left[-i \frac{Nk}{4\pi} \int_{\mathbb{M}^4} B^{(2)} \wedge B^{(2)} \right] \exp \left[-\int_{\mathbb{M}^4} \frac{v^2}{2} |da|^2 + \frac{\Lambda^4}{8\pi^2} \left(T_R a + 2\pi k \right)^2 \right]
$$

Gauging the 2**-form symmetry**

• axion+hadronic walls: $\delta_{DW} \sim$ *v* $\frac{V}{\Lambda^2} \gg \Lambda^{-1} \quad \delta_H \sim \Lambda^{-1}$

$$
V(a) \sim \Lambda^4 \min_k \left(T_R a + 2\pi k \right)^2
$$

$$
T_R = 3
$$

Summary

- Gauging higher-form symmetries leads to new nonperturbative effects.
- SM gauge group is still an open question:
- $G_n =$ $SU(3) \times SU(2) \times U(1)$ ℤ*n* $n = 1, 2, 3, 6$
- New fractional instantons on \mathbb{M}^4 : $\Delta B = \Delta L \neq 0$
- Axion+YM encompasses 2-form symmetry, and gauging it yields a fully consistent picture
-
-