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Outline
• Review of Higher-form symmetries  

• -form global symmetry in SM: gauging and new B&L violation processes 

• 2-form global symmetry in axion-YM: gauging, anomalies,  and hadronic structure
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Symmetries: the new perspective
• -form global symmetries act on local fields:  

• E.g.  or  

•  continuous             Conserved Noether's current  

• Modern way: associate the action of  to a 3-manifold (4D theory) 

•
,    

• Fusion rule: 

0 ϕ(P) → R(G)ϕ(P)

G = U(1), SU(Nf) ℤN

G d ⋆ j(1) = 0 ↔ ∂μ jμ = 0

G

Q(𝕄3) = ∮𝕄3

⋆ j(1)

topological

= ∮𝕄3

ds nμ jμ Ug(𝕄3) = eiαQ(𝕄3)

symmetry defect

Ug1
(𝕄3)Ug2

(𝕄3) = Ug1g2
(𝕄3) g1, g2 ∈ G
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Symmetries: the new perspective

•  is a topological surface:                      =  

•  

•

𝕄3

V(P) ≡ eiϕ(P)

Ug(𝕄3)V(P) = R(g)V(P)Ug(𝕄3)

V(P)

Ug(𝕊3)

=R(g)
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-form global symmetry1

• -form global symmetry: charged objects are -dimensional Wilson lines 

• E.g. , probe  for  EM 

• We have -form symmetry 

• Free Maxwell’s eq.                     

• We define : measures the electric flux 

•  

1 1

W(𝕊1) = ei∮𝕊1 A(1) n = 1 U(1)

U(1)(1)

d ⋆ F(2) = ∂μFμν = 0 d ⋆ j(2) = d ⋆ F(2) = 0

Ug=eiα(𝕄2) = eiα∮𝕄2 ⋆j(2) = eiα∮𝕄2 ⋆F(2)

Ug1
(𝕄2)Ug2

(𝕄2) = Ug1g2
(𝕄2) , Ug(𝕄2)W(𝕊1) = eiαLink(𝕊1,𝕄2)W(𝕊1)Ug(𝕄2)
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-form global symmetry1

• Assume  dynamical charges are present 

• If only  charges are present, fundamental Wilson lines are topological

n = 1

n > 1

n=1

n=2
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-form global symmetry in YM1

• SU(N) pure Yang-Mills has a  form global symmetry: 

•  

•   

• Or  

• No topological Wilson lines with dynamical matter in :

ℤ(1)
N 1−

W(𝕊1) = Tr□ei∮𝕊1 A(1)

Ug=ℤN
(𝕄2)W(𝕊1) = ei 2πk

N Link(𝕊1,𝕄2)U(𝕄2)W(𝕊1)Ug=ℤN

ℤ(1)
N : W → ei 2π

N W

□
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-form global symmetry in SM1
• Matter contents: matter fields are standard, except that the hypercharge is multiplied by 6:

field SU(3) SU(2) U(1) U(1)B U(1)L
qL ⇤ ⇤ 1 1

3 0

lL 1 ⇤ �3 0 1

ẽR 1 1 6 0 �1

ũR ⇤ 1 �4 �
1
3 0

d̃R ⇤ 1 2 �
1
3 0

h 1 ⇤ 3 0 0

. (2.1)

All fields above (but the Higgs h) are left-handed Weyl spinors and we have not included

a right-handed neutrino as its possible existence will play no role in our discussion. For

use below, in the two r.h. columns we also give the standard baryon and lepton number

assignments. In (2.1), we only show a single generation of fermions.

When formulated on a manifold of nontrivial topology, a gauge theory is defined on

coordinate patches covering the manifold, and the gauge fields on di↵erent patches are related

by transition functions, which are gauge group elements. The matter fields on di↵erent patches

are also related by the transition functions taken in the relevant representation of the gauge

group. Here, following [12–15], we consider the case of a torus, which can be described by only

one patch, but with nontrivial boundary conditions on the fields. If we were only interested

in a Hamiltonian formulation of the theory, we would consider a spatial three-torus T3. In a

path integral formulation, we study the finite temperature partition function of the theory on

a four-torus T4
' T3

⇥S
1, where S1 is interpreted as a thermal circle; if we wish to approach

the zero-temperature limit, we take the size of the circle to infinity.

2.1 The T4 boundary conditions: transition functions and gauge transformations

We shall now discuss how the Z
(1)
6 symmetry arises on T4. The T4 is covered by a single

closed coordinate patch 0  x
µ
 a

µ, µ = 1, 2, 3, 4. This single-patch construction can be

seen as a limit of a multiple patch covering of the T4, as is explicitly discussed in [14]. The

gauge fields on the di↵erent sides of the T4, e.g. at x
µ = 0 and x

µ = a
µ are related by

transition functions, gauge group elements ⌦µ, which can be thought of as defined on the

x
µ = a

µ sides of the T4; gauge transformations are also group elements defined on the entire

coordinate patch.

To state the boundary conditions, begin by considering an arbitrary µ⌫ 2-plane of the

torus of sides aµ and a
⌫ . The coordinates are identified as xµ ⌘ x

µ + a
µ. Thus, the 2-plane

is a square 0  x
µ
 a

µ, 0  x
⌫
 a

⌫ (for fixed values of the other coordinates). The fields

on opposite sides of the square are related by transition functions, as we now describe. To

set our notation, let the gauge fields of the SM be A(j) = A(j) µdx
µ, with j = 1, 2, 3 denoting

the U(1), SU(2), and SU(3) gauge fields, respectively. Here A(j) µ = A
a

(j) µT
a

(j), where T
a

(j)

are the corresponding group generators in the fundamental representation, trT a

(j)T
b

(j) =
1
2�

ab,

j = 2, 3. For U(1), T a

(1) are replaced by the identity. The gauge field action for the j-th gauge

– 3 –
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-form global symmetry in SM1
• SM accommodates a   -form global symmetry  

• Three distinct Wilson lines:  

• ,  

• ,  

• ,  

•  is not screened by SM particle 

• E.g.   

ℤ(1)
6 1

W3 = Tr□ei∮𝕊1 A(1)
3 ℤ(1)

3 : W3 → ei 2π
3 W3

W2 = Tr□ei∮𝕊1 A(1)
2 ℤ(1)

2 : W2 → ei 2π
2 W2

W1 = ei∮𝕊1 A(1)
1 U(1)(1)

g=ei(α= 2π
6 )

: W1 → ei 2π
6 W1

𝒲

qL : ei 2π
3⏟

□ in SU(3)

ei 2π
2⏟

□ in SU(2)

ei 2π
6⏟

q=1 under U(1)

= 1

 𝒲 = W1W2W3

ℤ(1)
6 : 𝒲 → ei 2π

6 𝒲
LCM(2,3) = 6

𝒲
qL
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Tong, 2017 
MA, Poppitz, 2021



Gauging a global symmetry
• Gauging -form symmetry, 2 steps:

 

•  

• BPST instantons have , e.g.,  instantons in the weak sector 

• Well understood explicit solutions on  

• ’t Hooft vertex:  , applications to baryogengesis  

0
d ⋆ j(1) = 0 ↔ ∮𝕄4

A(1) ⋆ j(1) , G(0) : A(1) → A(1) + dΛ(0)

𝒵 = ∫ [DA(1)]e
−SYM−θ

1
8π2 ∫

𝕄4 F(2) ∧ F(2)

Q , F(2) = dA(1) + [A(1), A(1)] , Q ∈ ℤ

Q ∈ ℤ G = SU(2)

𝕄4 = ℝ4

e
− 8π2

g2
2 qLqLqLlL → |ΔB | = 1
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Gauging the  symmetryℤ(1)
6

• Gauging  -form symmetry: 

•  

•  

• We may gauge  

• Four distinct SM(s): 

ℤ(1)
n 1

d ⋆ j(2) = 0 ↔ ∮𝕄4

B(2) ⋆ j(2) , G(1) : B(2) → B(2) + dΛ(1) , dB(2) = 0

𝒵 = ∫ [DB(2)]e
−SYM−

n
8π2 ∫

𝕄4 B(2) ∧ B(2)

Q , Q ∈
ℤ
n

ℤ(1)
n ⊆ ℤ(1)

6 , n = 1,2,3,6

Gn =
SU(3) × SU(2) × U(1)

ℤn
, n = 1,2,3,6
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Gauging the  symmetry ℤ(1)
6

• E.g. gauging the full , i.e.,   

• Recalling , three backgrounds are needed 

• ,   

•
 (SM particles are blind to the combined fluxes)

ℤ(1)
6 G6 =

SU(3) × SU(2) × U(1)
ℤ6

𝒲 = W1⏟
ei 2π

6

W2⏟
ei 2π

2

W3⏟
ei 2π

3

∮𝕄2

B(2)
1 ∈

2π
6

ℤ , ∮𝕄2

B(2)
2 ∈

2π
2

ℤ , ∮𝕄2

B(2)
3 ∈

2π
3

ℤ

∮𝕄2

B(2)
1 = ∮𝕄2

B(2)
2 + B(2)

3

constraint
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2-cycles are needed
e.g. 𝕄2 = 𝕋2 ⊂ 𝕄4 = 𝕋4



Gauging the  symmetryℤ(1)
6

• Sum over backgrounds of  (omitting the details) 

•  

•
 

• Are these objects physical? 

B(2)
1 , B(2)

2 , B(3)
2

𝒵G6
= ∫ [DB(2)

1 DB(2)
2 DB(2)

3 ]e−SSM = ∑
Q1,Q2,Q3

e−SSM . . . .
⏟

extra stuff

Q2 ∈
1
2

+ ℤ , Q3 ∈
1
3

+ ℤ , Q1 = (n1 −
1
2

−
1
3 ) (n2 −

1
2

−
1
3 )

∮𝕄2 B(2)
1 =∮𝕄2 B(2)

2 +B(2)
3
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Fractional instantons
• Exact (Anti)self-dual instnaton solutions on  

• E.g.  bundle:       

• (Anti)self-dual solutions:               

• Explicit solution: symmetric  with  Higgs vev 

•
 

𝕋4

SU(2)/ℤ2 S2 =
1

4g2
2 ∫𝕋4

FμνFμν = ± 8π2

g2
2

Q2 + ∫𝕋4
(Fμν ∓ F̃μν)

2

Fμν = ± F̃μν S2 =
8π2

g2
2

|Q2 | , |Q2 | =
1
2

𝕋4 0

A1 =
2πx2

L2

τ3

2
, A3 =

2πx4

L2

τ3

2
, A2 = A4 = 0

constant abelian field strength
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’t Hooft, 1981 
Van Paal, 1984 

MA, Poppitz, 2021 



Fractional instantons

• Similar  and  solutions exists:  

• Self-duality             stability of  and  solutions 

• We can relax the symmetric :  

• Exact self-dual solutions exist if  

• Approximate self-dual solutions for    (expansion in ) 

• All known classical solutions are not localized!  

SU(3) U(1) Q3 =
2
3

, Q1 = (n1 −
1
2

−
1
3 ) (n2 −

1
2

−
1
3 )

SU(2) SU(3)

𝕋4

L1L2 = L3L4

L1L2 ≠ L3L4 Δ =
L1L2 − L3L4

L1L2L3L4

15

’t Hooft 1981, Van Ball, 1984 

Antonio González-Arroyo, 2020, M.A., Poppitz 2023

https://inspirehep.net/authors/1018056


Baryon number violation

•  

•  is a good symmetry,  is not 

•  from fractional instantons:   

• New ’t Hooft vertex   

• BPST ’t Hooft vertex 

𝒵G6
= ∑

fractional or integer Q

e−SSM

U(1)B − U(1)L U(1)B + U(1)L

ΔB

∼ e−(S1+S2+S3)(qL)I1(lL)I2(ẽR)I3(ũR)I4(d̃R)I5

∼ e
− 8π2

g2
2 qLqLqLlL
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MA, Poppitz, 2021



Baryon number violation
• What are we comparing? 

• Processes at  T = 0

17

𝕋4
⏟
T≠0

𝕋3 × ℝ
T=0

Deforming the solutions



Baryon number violation

•  is symmetric:  = IR cutoff  TeV (  Higgs vev) 

• Find :  

•
 

• RG running: 

•  

𝕋3 L(−1) ≳ 0

Lcritical
2
3

8π2

g2
3(L)

S3

+
1
2

8π2

g2
2(L)

S2

+
2π2

g2
1(L) [(n1 +

1
2

+
1
3

)2 + (n2 +
1
2

+
1
3

)2]
S1

<
8π2

g2
2(L)

BPST

8π2

g2
i (L)

=
8π2

g2
i (MZ)

− bi log(LMZ) , b1 = − (80nf + 6nH) , b2 =
22
3

−
4nf

3
−

nH

6
, b3 = 11 −

4
3

nf
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Baryon number violation

• Results: 

19

Gauged 1-form center n1 n2 Smallest U(1) action �B L
�1
critical (GeV)

Z(1)
6 �1 �1 ⇡

2

9g21
0 -

Z(1)
6 �1 0 13⇡2

9g21
3nf 6⇥ 1034

Z(1)
6 0 �1 13⇡2

9g21
3nf 6⇥ 1034

Z(1)
3 0 0 4⇡2

9g21
�2nf 2.7⇥ 1033

Z(1)
2 0 0 ⇡

2

g
2
1

�4nf 1.5⇥ 1024

. (3.15)

Our next task is to compare the vacuum to vacuum amplitude of �B mediated by the

fractional-charge instantons with the amplitude of the same quantity due to the weak self-dual

BPST instantons. Ideally, one would want to conduct this study at zero temperature on a

background manifold M3
⇥R that admits both types of instantons. Unfortunately, there is no

known background that accommodates analytical solutions of both types. To make matter

worse, even on T3
⇥ R, as we discussed above, analytical solutions of fractional instantons

are still lacking. With these obstacles, our best option is to conduct our study on the simple

manifold T4. Here, we argue that our treatment gives the correct order of magnitude estimate,

which should not be greatly altered by the fine details of the solutions. First, the action of

the self-dual fractional instanton, in the Bogomolny’ bound, depends only on the topological

charge and one can proclaim that deforming T4 into T3
⇥R (by making one of the cycles very

large) cannot change the action.13 Second, although it is true that there is no solution of

self-dual BPST instanton on T4 with zero twists [35], adding a twist removes the obstruction

to the existence of the solution.14 In our case the twists come about naturally, since we need

them anyway to obtain the fractional solutions. This is a win-win situation for both the

BPST and fractional solutions. Again, one can imagine a process where we take one of the

cycles of T4 large enough to obtain BPST solutions on T3
⇥ R. A third important point is

that baryon number violation is governed mainly by anomalies. The latter depend only on

the cohomology classes and not on the specific background manifold, and thus, we expect the

computations on T4 or T3
⇥ R yield the same estimates.

Given all the above caveats and their suggested resolutions, we proceed to our compu-

tations. We begin with T4 of a size much smaller than the inverse TeV scale and, therefore,

we consistently set the Higgs vev to zero and use the solutions (3.3) and the corresponding

action for the fractional instantons. As we discussed above, finding BPST instanton (approx-

imate) solutions on T4 should also be possible, with a scale modulus cuto↵ by the torus size.

13
In the following, we use the SU(3) solutions with topological charge

2
3 instead of the solutions with the

minimum charge
1
3 described by ’t Hooft [20], see Footnote 10. We also assume that the U(1) topological

charge and action of the constant-field solution (3.10) does not change dramatically during this process, i.e.,

when we make one of the T4
cycles very large.

14
See [16] for a discussion. Simply, if one starts with a self-dual BPST instanton on R4

, then deforming it

to T4
will be obstructed since the latter manifold enjoys a continuous degeneracy in the moduli space. This

degeneracy, however, will be lifted when we apply the twist. Yet, from a practical point of view, one can get

very close to self-duality even in the absence of twists.

– 14 –

• Adding extra charged matter (under ) can bring  below U(1) L−1
critical MP



Cosmology

• Fractional-instanton solution is constant over  (not localized). Is this 
interesting? Do we live on ? 

• Maybe: CMB analysis ,  

• Tracing back:   

• Early Universe  

• If  fractional instantons have a cutoff scale , there might have played a role. 

𝕋3

𝕋3

L𝕋3 > 𝒪(few)L0 L0 ∼ 12 Gpc

LH ∼
MP

T2
, L𝕋3 ∼

MP

TlT
,

L𝕋3

LH
∼

T
Tl

L𝕋3 > LH

< LH

20

Aslanyan, Manohar, Yadav, 2013



-form symmetry in axion-YM theory2

• UV:               

• , and take  

• UV symmetries:  

•  

•      -form symmetry    

•

ℒ = YM+Dirac fermion

in rep. R→ℤ(1)
n

+ |dΦ |2 + λ( |Φ |2 − v2)2 + yΦψ̃ψ

Φ = ρeia , a ∼ a + 2π v ≫ Λ(strong scale)

U(1)(0)χ →⏟
ABJ anomaly

ℤ(0)χ
2TR

ℤ(1)
n 1

U(1)(0)
B

21

Mixed ’t Hooft anomaly



-form symmetry in axion-YM theory2

•
At :                  

• Bianchi identity:                        symmetry (couples to 
strings)  

• , 

Λ ≪ E ≪ v ℒ ⊃ YM +
v2

2
|da |2 +

TR a
8π2

F ∧ F

ABJ anomaly

d2a = 0 ↔ d ⋆ j(3) = 0 U(1)(2)

da = ⋆ j(3) Ug = eiα ∫𝕄1 da
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Gauging the -form symmetry2
• This is useful at : 

• Gauge : introduce  

•  

• It is inevitable to IR match a mixed -form/ -form ’t Hooft anomaly 

•  is the long tail incarnation of  below the confinement scale 

E ≪ Λ

U(1)(2) ℒ ⊃
TR

2π
⋆ j(3) ∧ C(3) =

TR

2π
da ∧ C(3)

𝒵 = ∫ [dC(3)][da]e−SIR , SIR =
v2

2
|da |2 +

TR

2π
da ∧ C(3) +

|dC(3) |2

Λ4
+higher orders

1 0

dC(3) F ∧ F Λ

23

MA, Chan, 2024

Luscher, 1978 
Veneziano, 1979



Gauging the -form symmetry2

• Quantization condition  

• Performing the sum over :   

•
 

•  

• vacua ,      cusps

∫𝕄4

dC(3) ∈ 2πm , m ∈ ℤ

m ∈ ℤ

𝒵[a] ∼ ∑
k∈ℤ

exp [−i
Nk
4π ∫𝕄4

B(2) ∧ B(2)]
mixed anomaly:a→a+2π/TR

exp [−∫𝕄4

v2

2
|da |2 +

Λ4

8π2 (TR a + 2πk)2]
V(a) ∼ Λ4mink (TR a + 2πk)2

=
2πℓ
TR

=
π(2ℓ + 1)

TR
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Gauging the -form symmetry2

• axion+hadronic walls:  δDW ∼
v

Λ2
≫ Λ−1 δH ∼ Λ−1

25

The same behavior at large N,  
Witten, 1980 

TR = 3

1 2 3 4 5 6

50

100
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V(a) ∼ Λ4mink (TR a + 2πk)2



Summary 
• Gauging higher-form symmetries leads to new nonperturbative effects. 

• SM gauge group is still an open question:  

•  

• New fractional instantons on :  

• Axion+YM encompasses -form symmetry, and gauging it yields a fully consistent 
picture

Gn =
SU(3) × SU(2) × U(1)

ℤn
, n = 1,2,3,6

𝕄4 ΔB = ΔL ≠ 0

2
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