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• hep-th/2212.02930                                                                                  
Revisiting the literature, and clarifying the assumptions that lies 
in the proofs that have been considered, with simplified examples 

• hep-th/2404.02967                                                                                            
Presenting our new proof in full generality but without examples 

• hep-th/2404.02971                                                                               
Exemplifying all the arguments and proofs in the companion 
papers, with many detailed examples

Apologies for missing important references during the 
talk, please find the references in our papers.

Complementary purposes of our papers:



Infrared phases of QCD
• QCD: (3+1) d  Yang-Mills theory coupled to  massless 

quarks in the fundamental representation  

• It is well known that the infrared phases depend on the values 
of  and  :                                                                                               
1) Infrared free quarks and gluons for                         
2) Interacting CFT for                                         
3) Chiral symmetry breaking for                                   
4) Gapped with unique vacuum for                                                    
5) The  parameter becomes physical for :                      
gapped with unique vacuum for generic ; two degenerate 
vacua at 
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• The picture of infrared phases is mainly based on empirical 
evidences, lattice results and educated guessworks 

• Very little has been rigorously/coherently derived 

• Other exotic phases of QCD may be possible

Infrared phases of QCD



• Characterized by the following RG flow

The chiral symmetry breaking phase

Quarks and 
gluons 


in UV theory
Hadrons in IR theory

• Featured by color-singlet hadrons and the chiral symmetry 
breaking pattern 

 

• The fact that all the hadrons must be color singlet is 
conventionally denoted as “confinement”. More precisely, it is 
“color screening” for dynamical quarks in the fundamental 
representation, where the Wilson line obeys perimeter law. 

SU(Nf )L × SU(Nf )R × U(1)B → SU(Nf )V × U(1)B
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In this talk
• We are going to derive chiral symmetry breaking as a 

consequence of confinement in QCD, following the seminal 
work of ’t Hooft in 1979

• The above statement will soon be turned into a precise 
algebraic problem, and we will solve it. 



• Consider a QCD-like theory with 



• ’t Hooft: weakly gauging  and 
adding spectator fermions 
(leptons), which are charged only 
under  but not under color, to 
cancel the anomalies of quarks 

• Anomalies match in the UV and IR 

G[Nf] = SU(Nf )L × SU(Nf )R × U(1)B

G[Nf]

G[Nf]

’t Hooft anomaly matching conditions

Quarks 
and gluons  

q, g

in UV theory

Bμ+ leptons

𝒜(q) + 𝒜(l) = 0

𝒜(q) = 𝒜(Φ)
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’t Hooft anomalies in QCD

• It is possible to have ’t Hooft anomalies involving one-form 
symmetries by identifying the discrete quotient correctly. This offers 
finer probes to the strong dynamics, but we will not consider them. 

• For our purpose, let us consider the perturbative  and 
 ’t Hooft anomalies

[SU(Nf )L,R]3

[SU(Nf )L,R]2U(1)B



• Anomalies can be matched at infrared by                                             
1) Pions from chiral symmetry breaking                                                                        
2) Massless composite spin-1/2 fermions 

• Weinberg-Witten theorem states that no massless particles with 
spin > 1/2 can exist which are charged under  

• The assumption of confinement (i.e. color screening) implies that 
the numbers of constituent quarks and antiquarks have to satisfy 
the constraint 

• For example, for  and  one can consider the 
following spectrum of baryons (e.g. ) and  

• The formation of bound states is not under control (2404.02971)

G[Nf]

Nc = 3 2 < Nf < N⋆
f

nq̄ = 0 b = 1
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• The assumption of confinement (i.e. color screening) implies that 
the numbers of constituent quarks and antiquarks have to satisfy 
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following spectrum of baryons (e.g. ) with  

• More examples, see 2404.02971
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• If chiral symmetry is not broken, then the spectrum of massless 
fermions must satisfy anomaly matching conditions (AMC):

anomaly coefficient 
(hadrons)

anomaly coefficient 
(quarks)



Index ℓ(r) ≡
# times r appears in 
the spectrum with 

helicity +1/2
−

# times r appears in 
the spectrum with 

helicity −1/2

Clearly 1) all indices must be integers for a physical spectrum 

              2) the index vanishes for vectorlike matter.  

              3) Nontrivial indices (i.e. ) imply enhanced symmetry in the infrared.ℓ(r) > 1

• If chiral symmetry is not broken, then the spectrum of massless 
fermions must satisfy anomaly matching conditions (AMC):



• Failure of matching ’t Hooft anomalies with integral indices 
necessarily suggests chiral symmetry breaking 

• The challenge is to prove the AMC equations do not have 
integer solutions for any spectrum of color-singlet hadrons and 
for any  and  in the confining phase 

• The statement can be proven when                                                                               
—  is even such that the infrared spectrum is bosonic                     
—  is proportional to a nontrivial prime factor of                        
(We proved the second case in full generality, see 2404.02967)

Nc Nf

Nc
Nf Nc
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To have some intuition, see the following example…



• Consider  and , and the following spectrum of 
massless composite fermions (also with their parity-conjugated 
partners) with the corresponding indices:

Nc = 3 Nf > 2

(Nf + 3)(Nf + 6)
2

ℓa +
(Nf − 3)(Nf − 6)

2
ℓb + (N2

f − 9)ℓc +
Nf (Nf + 7)

2
ℓd +

Nf (Nf − 7)
2

ℓe = 3[SU(Nf )L]3

U(1)B [SU(Nf )L]2 (Nf + 2)(Nf + 3)
2

ℓa +
(Nf − 2)(Nf − 3)

2
ℓb + (N2

f − 3)ℓc +
Nf (Nf + 3)

2
ℓd +

Nf (Nf − 3)
2

ℓe = 1

No integral solution exists when  mod Nf = 0 3



• We proved this statement in full generality, see 2404.02967



• For general  and  , AMC alone is not restrictive enough 

• Question: can we find additional constraints that can be used 
together with AMC? 

• Answer: Yes, the so-called Persistent Mass Condition

Nc Nf

Additional constraints needed

— The intuition is to deform the massless theory with small quark 
masses and keep track of the symmetries.  This is another probe 
which is allowed only in vectorlike theories. 
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• PMC states that “Bound states with massive constituents (and 
with nonzero  charges) are massive” 

• Originally formulated by ’t Hooft as decoupling condition, later 
on further reformulated and strengthened by Preskill and 
Weinberg as PMC 

• Proven by Vafa and Witten with mild assumptions 

• PMC implies that the vectorlike part of  cannot be 
spontaneously broken (i.e. the so-called Vafa-Witten theorem)

U(1)Hi

G[Nf]

Persistent Mass Conditions
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• 1) For vectorlike gauge theories, the measure is positive-definite 
when all quark masses are real and positive 

• 2) The bound on the quark propagator in the background of 
gauge fields (with some technicalities on smearing): 

Vafa and Witten’s proof on PMC

|SA(x, y) | < e−m|x−y|

There are two key ingredients: 
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• 1) For vectorlike gauge theories, the measure is positive-definite 
when all quark masses are real and positive 

• 2) The bound on the quark propagator in the background of 
gauge fields (with some technicalities on smearing): 

Vafa and Witten’s proof on PMC

|SA(x, y) | ≤ e−m|x−y|

• Let  be an operator with nonzero charge under flavor 
symmetry group. If all quarks have bare mass , it follows that 

B(x)
m

|⟨B†(x)B(y)⟩ | ≤ e−m⋅n|x−y|

 = number of quark propagatorsn

There are two key ingredients: 



• Now, let  be the bare mass of one flavor, and  that of the 
others, with . Let  be an operator, it follows that 

m ϵ
ϵ → 0 B(x)

|⟨B(x)†B(y)⟩ | ≤ e−(nH⋅m+nL⋅ϵ)|x−y|

 = number of heavy (light) quark propagatorsnH (nL)

• Bound on mass of the states interpolated by B(x)
M(ϵ) > nHm + nLϵ

• If  is a continuous function of , then M(ϵ) ϵ
M(ϵ = 0) = lim

ϵ−>0
M(ϵ) > nHm

• To summarize, the global symmetry  reduces to 
 in the 

limit . The massless particles charged under  must 
be massive. 

G[Nf]
G[Nf ,1] = SU(Nf − 1)L × SU(Nf − 1)R × U(1)B × U(1)H1

ϵ → 0 U(1)H1
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The PMC equations connected by the diagonal lines can be identified,             
since each irrep of  can be identified with 

that of  with zero  
charge. 

G[Nf ] = SU(Nf )L × SU(Nf )R × U(1)B

G[Nf ,1] = SU(Nf )L × SU(Nf )R × U(1)B × U(1)H1
U(1)H1
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The PMC equations connected by the diagonal lines can be identified,             
since each irrep of  can be identified with 

that of  with zero  
charge. 

G[Nf ] = SU(Nf )L × SU(Nf )R × U(1)B

G[Nf + 1,1] = SU(Nf )L × SU(Nf )R × U(1)B × U(1)H1
U(1)H1

An important observation on PMC equations



• Therefore, we obtain the coherent structure of PMC for theories with 
different  by analyzing the symmetries and their correspondences:Nf

• In particular, we have the identifications PMC   
PMC[ ] given the identifications of irreps.

[Nf , i] ∼
Nf − 1, i − 1

The bird’s-eye view on PMC



Our proof



QCD with Nc = 3

Nf0 1 2 NCFT
f3

No solution of AMC[ ], 

hence chiral symmetry breaking

Nf = 3
Prime factor

Nf



• Assuming chiral symmetry is not broken for  , there must be 
integral solutions to AMC[ ] & PMC[ ]. 

• From these solutions, one constructs integral solutions of AMC[3] 
& PMC[3]. (Suppose this step is done, as I will discuss how next.) 

• But there are not any integral solution of AMC[3]. Contradiction!

Nf

Nf Nf
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The final pillar



• Assuming chiral symmetry is unbroken for QCD[ ] , the 
integral solution of AMC[ ] & PMC[ ] is given by a set of 
indices .  

• Giving mass to one flavor, decomposing the irreps  of 
 to  of 

. The indices 
of  is calculable from that of  :

Nc, Nf

Nf Nf

{ℓ(r)}

r
G[Nf] = SU(Nf )L × SU(Nf )R × U(1)B r′ 

G[Nf ,1] = SU(Nf )L × SU(Nf )R × U(1)B × U(1)H1

r′ r

• We are interested in  with zero  charge in particular, 
their indices solve PMC[ ] with  by further 
decomposition step by step. 

r′ U(1)H1

Nf , i 2 ≤ i ≤ Nf − 2
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• Since each  can be identified with an irrep of 
, this is the 

chiral symmetry group of QCD[ ].  

• According to the important observation we made on the 
identification of PMC, the indices  automatically solve 
PMC[ ]  PMC  where . All 
these equations of PMC[ ] are just PMC[ ].

r′ 

G[Nf − 1] = SU(Nf − 1)L × SU(Nf − 1)R × U(1)B

Nc, Nf − 1

ℓ(r′ )
Nf − 1, i − 1 ∼ [Nf , i] 2 ≤ i ≤ Nf − 2

Nf − 1, i − 1 Nf − 1

• So far, we have shown the ansatz successfully solve PMC[ ]. 
Next, we show the same ansatz also solve AMC[ ]. 

Nf
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• One can evaluate anomaly coefficients of  on the 
 Lie subalgebra. Following the rule of decomposition, 

we have 

SU(Nf )L,R

SU(Nf − 1)L,R

• Plugging this equation into AMC[ ] and switching the order of 
sums, we have

Nf

• PMC[ ] imply the sum in the parenthesis in the second line 
vanishes unless for  with zero  charge; therefore 

Nf ,1
r′ U(1)H1

• This equation can be viewed as AMC , whose solution is 
happily the ansatz!

[Nf − 1]
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Conclusion



• We have analyzed the coherent structure of PMC and AMC for QCD 
theories of different  while  is fixed .                                                                           

• We have proven that if  is proportional to a nontrivial prime factor of , 
then AMC do not have integer solutions, hence chiral symmetry breaking 
follows (from the color neutrality condition).  

• For other general  we have proven chiral symmetry breaking, by 
downlifting solutions, for any  larger than the smallest prime factor of  
in the confining phase.  

• When apply to QCD with , chiral symmetry breaking is proven for 
. 

• Many groundbreaking works are needed to coherently derive the phase 
structure of QCD. 
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Please feel free to send me emails if anything 
is unclear 

phy.lingxiao.xu@gmail.com

Danke Schoen

mailto:phy.lingxiao.xu@gmail.com


Backup slides



• ’t Hooft anomaly does not imply that the theory is inconsistent. 

• Rather, ’t Hooft anomaly is a powerful probe of non-perturbative 
physics of strongly-coupled QFTs. 

• ’t Hooft anomaly implies that theory cannot be trivially gapped:                                                                                                                         
— If there are ’t Hooft anomalies identified in the UV, it implies that 
the symmetries have to act in the IR, such that the same ’t Hooft 
anomalies are reproduced.                                                                             
— Even though symmetries in the UV and IR may not be the same.                                                                

Some general comments on ’t Hooft anomaly



• In the seminal Cargese lectures, ’t Hooft worked out the cases  and  
with no integral solution found for . Only massless baryons are considered.  

• Frishman et al extended the analysis of only baryons to . They assumed that 
all mixed representations have vanishing indices, and found no solutions for .  

• A more detailed analysis was performed by Cohen and Frishman, they notice that 
the analysis must be different for the cases  and  for baryons. 
(Hence it implies that ‘  independence’ is not in general valid.) 

• Farrar considered exotics (bound states with antiquark constituents) and was above 
to prove chiral symmetry breaking through ‘  independence’. 

• Schwimmer provided another proof using superalgebra , which contains 
the chiral symmetry as a subalgebra.  

• Coleman and Witten proved chiral symmetry breaking in the large  limit.

Nc = 3 Nc = 5
Nf > 2

Nc > 5
Nf > 2

Nf > Nc Nf ≤ Nc

Nf

Nf

SU(Nf |Nf )

Nc

Brief account of past works



•  independence is false in general, it is only valid for special 
cases where the putative bound states satisfy the condition 
Nf

What we found instead…
See hep-th/2212.02930, 2404.02971 for many details

• Even though one can show that each irrep of superalgebra 
 gives a solution to PMC, it is unclear whether all the 

PMC can be captured by a collection of superalgebra irreps. It 
would be interesting to prove this. 

SU(Nf |Nf )



• Useful for the case  and  in QCD; in general for  smaller than the 
smallest nontrivial prime factor  of  

• Let’s consider a theory with  massless flavors and  massive flavors. Suppose 
that the chiral symmetry  is unbroken by the vacuum for any value 
of the massive quark masses near the origin.  

• This implies that the effective potential  has a global minimum at , where  
is the VEV of any color-singlet operator which is charged under . 

Nc = 3 Nf = 2 Nf

p Nc

Nf (p − Nf )
SU(Nf )L × SU(Nf )R

V(ϕ) ϕ = 0 ϕ
SU(Nf )L × SU(Nf )R

Comments on continuity



• Continuity of  with respect to the quark masses implies that an 
 preserving vacuum exists in the limit where all the masses 

vanish.  

• This is because the vectorlike  symmetry cannot be spontaneously 
broken, so the unbroken chiral symmetry has to be enhanced to  in 
order to accommodate both  and  symmetries.  

• If the theory with  flavors confines, it contracts the fact that AMC[ ] do not 
have integral solutions! Hence the inital assumption is false and 

 is broken.  

• As a last step, one can send the quark masses to infinity for the massive ( ) 
flavors. With the assumption that there is no phase transition, chiral symmetry 
breaking persists.  

• Notice that, however, this is not a rigorous proof for . 

V(ϕ)
SU(p)L × SU(p)R

SU(p)V
SU(p)L × SU(p)R

SU(Nf )L × SU(Nf )R SU(p)V

p p

SU(Nf )L × SU(Nf )R

p − Nf

Nf < p

Comments on continuity


