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Introduction

Context: understand gravitational backreaction of SUSY in string models.

In QFT, it would be vacuum energy: cosmological constant.

Approach of this talk: non-susy strings.

Vacuum energy→ “tadpole” potentials.

3/17



Non-susy tachyon-free string theories in 10D

¬ Heterotic: SO(16)× SO(16) [Alvarez-Gaume, Ginsparg, Moore, Vafa 1986;
Dixon, Harvey 1986].

 Type IIB with O9+ and 32 D9: USp(32) [Sugimoto 1999].

® Orientifold of bosonic 0B: 0’B [Sagnotti 1995].
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Tadpole potentials

String theory counterpart of quantum vacuum energy: tadpole potential

δS = −
∫ √

−g T eγφ .

• From worldsheet: IR divergences→ background shift.

[Fischler, Susskind 1986; Callan, Lovelace, Nappi, Yost 1986-7-8].

• From spacetime: residual NS-NS tension, from sources or vacuum energy.
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For instance, the USp(32) model has Te−φ:

Tension Charge

Type I, O9− and 32 D9 -32+32=0 -32+32=0

USp(32), O9+ and 32 D9 32+32=64 32-32=0

+ DBI action

Tadpole potentials are runaways: flat 10D Minkowski is not a vacuum.
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Codimension-one vacua

Here we reach a crossroads:

1. Use δS in compactifications.

2. Look for the vacuum solution for empty spacetime

We choose 2.

Most symmetrical solution: abandon an isometry −→ codimension-one vacua

[Dudas, Mourad 2000].
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Static case

Focus on orientifold cases. Bulk solution [Dudas, Mourad 2000]:

ds2 =
(√

T/2 y
) 1

9
e− T

16 y2
η(9)

µνdxµdxν +
(√

T/2 y
)−1

e− 3
2 φ0e− 9

16 T y2
dy2 ,

eφ = eφ0
(√

T/2 y
) 2

3
e

3
8 T y2

.

- Timelike singularities at y = 0 and y →∞.
- eφ → 0 at y = 0 and→∞ at y →∞.

- Finite proper y length = Γ(1
4)e− 3

4 φ0

√
2

3T
. Spontaneous compactification.
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Some comments:

• The solution is perturbatively stable [Basile, Mourad, Sagnotti 2018].

• The 9D EFT is Einstein-Yang-Mills: forms do not survive and the dilaton is
not a modulus [Basile, SR, Thomée 2022; Mourad, Sagnotti 2023].

• If y ∈ (0,∞), decompactification eφ0 → 0 leads to the singular
codimension-one solution

ds2 = (9y) 2
9 η(9)

µνdxµdxν + dy2 , eφ = (9y) 4
3 ,

and not flat space.

Dynamical cobordism [Mourad, Sagnotti 2020-3; Angius, Buratti,

Calderón-Infante, Delgado, Huertas, Mininno, Uranga 2020-1-2].
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• Adding an integration constant (equiv. restricting the y range) , e.g.

φ = φ0 + 2
3 log

(
y0 +

√
T/2 y

)
+ 3

4

(
y0 +

√
T/2 y

)2
,

y ∈ (0,∞), would decompactify to flat space.

What I mean is:

ds2 = (h8z) 1
8 η(9)

µνdxµdxν + (h8z) 9
8 dz2

is not a D8 in IIA at z = 0. It is the D8 bulk.
Instead,

ds2 = (1 + h8z) 1
8 η(9)

µνdxµdxν + (1 + h8z) 9
8 dz2

is a D8 at z = 0.
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The issue is the absence of an asymptotic infinity: domain walls.

However, a non-stringy 8-brane is generically needed [SR 2022;
Blumenhagen, Cribiori, Kneissl, Makridou, Wang 2022-3].

- D8-like coupling if y0 = 4
3 and φ0 = counting parameter.

This would realize [Antonelli, Basile 2019].

• No known generalization with curvature, e.g. AdS9.

Singular domain walls may not be the best replacement for vacuum solutions.
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Cosmological case

An alternative option is time-dependent backgrounds.

In [Dudas, Mourad 2000],

ds2 = −e2B(t) dt2 + e2A(t) δ(9)
ij dxidxj , φ = φ(t) .

- Spacelike singularities at t = 0 and t→∞, separated by infinite time.
Vacuum solution?

- eφ is bounded, and vanishes at t = 0 and t→∞.
- As to t→ 0 and∞, singular cosmological codimension-one solution.
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The most general solution with curved space is not known. However, a

particular solution where tadpole balances curvature [SR 2022]

ds2 = −dt2 +
(

3
8
√

T t

)2

g(9)
ij dxidxj ,

eφ =
(

3
8
√

T t

)− 4
3

,

with Rij = −Tgij .

- Spacelike singularity at t = 0.
- eφ → 0 at late times.
- Stability?

Time-dependent backgrounds can be vacuum solutions.
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T-duals with branes

T-dual of Sugimoto: codimension-one settings.

Gravity description of

O8+ + N D8←→ O8+ + (16−N) D8 ?

– In [Blumenhagen, Font 2000] static codim-2 metric, as in Dudas-Mourad.

Finite-distance singularities.

– In [Dudas, Mourad, Timirgaziu 2002], time-dependent backgrounds.

However, no solutions for T-dual of Sugimoto, ∀N !
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Take N = 8.

O8+ + 8 D8←→ O8+ + 8 D8

There is still a metric ansatz yet to be explored

ds2 = −e2B(t,y) dt2 + e2A(t,y) δ(8)
ij dxidxj + e2C(t,y) dy2 ,

φ = φ(t, y) .

My expectation: the two localized tensions will attract, leading to collapse

→ instability
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Hint: deep in the bulk, one can expect only sensible t dependence.

Borrowing from [Mourad, Sagnotti 2021], there are Kasner-like solutions

ds2 = −dt2 + t
2
9 (1+cos θ) δ(8)

ij dxidxj + t
2
9 (1−8 cos θ) dy2 ,

eφ = eφ0 t
4
3 sin θ ,

in which the y direction is contracting.

This would be similar to [Fabinger, Horava 2000], although for them the driving

force is bulk vacuum energy.
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Conclusions and outlook

Codimension-one solutions are puzzling:

- Spontaneous compactifications.

- Sources (domain walls).

- Vacuum solutions.

Open problems

- Classify all solutions with curved space(time)s.

- Euclidean solutions (e.g. bubbles).

- Understand when the singularities are stringy.

- T-dual of Sugimoto, codimension-one in time-dependent vacuum.
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