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It 1s difficult to make rigorous statements about the potential in string theory
without going to a particular model.

Why is this so much harder than in EFT where we work with the
radiative potential for any theory which is just a function of the mass
spectrum (Coleman-Weinberg)?

® In EFT we subtract all the UV mystery with counter terms and use
renormalization, but string theory 1s UV-complete and UV/IR mixed. If we
are really doing string theory we are not allowed to 1ignore anything.

@ In string theory there are both physical (level matched / on-shell) and non-
physical states contributing. It 1s not obvious what “mass spectrum” means.



Is it possible to deal with the potential in string theory in the
same model-agnostic way that we understand radiative
potentials in field theory, but in a UV-complete way?
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Vacuum energy in field
theory



Let’s start our story by examining the one-loop CW effective
potential in field theory (and similar amplitudes where we don’t
care about the external momenta):
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where masses can be functions of the Higgs ¢ and we are forced to put in a cut-off and
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Note from this can infer a catastrophic Higgs mass-squared from the double derivative:
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This 1s the origin of the unfortunate naturalness problem associated with the Higgs
mass. It is associated with the quadratic UV divergence in the EFT.



Vacuum energy In string
theory



strings: Everything governed by
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We simply have to integrate over all inequivalent tori, 1.e. over the complex 7, with the

string partition function Z(T ) in place of the particle partition function Z(#)

: 1 M?
Abit of notation: 7T = T1 T 172 (MZ T A2l 47T2>
(D) d*r 271
AT = —%MD/—ZZ(T) qg=e"""

F T2

1 d*T

= M? [ LS anae
D1
2 v 7'22 m,n

Thus in principle Z(T ) holds all the information: it is non-zero in a non-SUSY model

but this is hard to evaluate — looks like we’ll need to know the specific model ??7?



Can this be made to look more like CW?

The integral we need to do in 4D is:
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Let us guess that we can write this in terms of only physical (Ievel-matched) states
whose nett spectral density can be always be found by doing the 77 integral:

prm— ——7’2 —1 E _WTQO[/MSQtate

The tricky part is that if we want the answer to be given by this object, it implies an
integral over the critical strip not the fundamental domain: we need to unfold Fto S



Rankin-Selberg: unfold integral to the “critical strip” by convoluting it with an Eisenstein

e Rankin, Selberg (1939,40)

A4) — 9 ReSS:1 (R* (Z, 8)) e In string theory: McClain, Roth,

O’Brien, Tan; Angelantonj,
Florakis, Pioline, Rabinovici

where R* is the Rankin-Selberg transform:
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The whole integral including the projection to physical states now looks like:
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This way of doing the integral can give us amazing insights ...
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« Zagier (1981)
» Kutasov, Seiberg, 1991

where “states” means physical level-matched states only: this looks superficially like it

should diverge in the 70 —0 limit!



So the incredible fact that this infinite sum is finite can be put down to the fact that the
spectral density functions behave as follows as 72 — O :
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If we define the following natural definition of a regulated stringy supertrace over the
infinite towers of physical states:
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Then we see Str(1) = 0 even when no SUSY! » Dienes, Misaligned SUSY, 1994



So what is left? Roughly speaking we expand the exponential and take the next term:
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» Dienes, Misaligned SUSY, 1994
* Dienes, Moshe, Myers 1995

Looks like the CW potential (if we for the moment ignore the logarithmic part) with
misaligned SUSY explaining the lack of quartic term!



But what is misaligned SUSY?
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Looks like the quadratic piece in the CW potential but this definitely is nor a normal
field theory object — this supertrace is over the infinite string tower of physical
states!! e.g. in non-supersymmetric models ...
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’ \/ \7 \/ \/ \] \/ \/ e Note: modular invariance is so
2 constraining that it has rendered the
-0 contribution from everything in terms of

just level-matched physical states.

e Absolutely no SUSY pairing at all!



Misaligned SUSY: How on earth can a such a non-paired spectrum growing with a
Hagedorn like g(n) ~ eV™ ever cancel? ...

You might (wrongly) think there is secretly just some kind of split SUSY like this ...
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but this would not produce a strong enough cancellation to offset the Hagedorn behaviour
and yield a finite limit ... instead ...



.. string theory solves this conundrum in a remarkably simple way: states in the
spectrum get moved around dramatically to adjust the spectral density such that:
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The supertrace relation Str(/)=0 is just one example of this magic cancellation that runs
across the entire string spectrum, supressing divergences and/or ensuring the finiteness
of string amplitudes relative to naive QFT expectations.

It turns out the Str(/)=0 relation is just the tip of the iceberg!

One already known example that will be relevant for us where there are more

cancellations 1s in higher dimensional theories. Indeed in D dimensions we have
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This requires a whole load of vanishing supertraces! (Note that D=2 is the only case

where no exact cancellation of supertraces is required):
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e Dienes, 1994

* Dienes, Moshe, Myers



Decompactification limits



What does this tell us about what happens when a theory decompactifies?

To be able to reach a higher dimensional theory the partition function looks as follows ...

N
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The i indicates a sum over different sectors ... each with a P.F. contribution Z ,:
multiplying a radius dependent factor @z which turns into a volume at large radius.

When § dimensions become large some the ©; factors contribute to a modular
invariant combination © yielding what we call the T-volume with the remaining

contributions going exponentially fast to zero:
e SAA, Dienes, Nutricati to appear
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Thus we have the following for ANY modular invariant theory ...

AW ~ VoAWH)  for MOVe> 1

Hence the supertrace constraints of all the theories at the endpoints of a
decompactification must also be satisfied!

Str' M?* = 0 forall 0<k<
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Meanwhile as we saw the 4D vacuum energy is governed by the next supertrace in
the series ...

AW~ Vp M2Str M2



So the picture looks like this ...
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So the picture looks like this ...

...~‘.‘%A(4) ~ Ve M2Str"" Mo +2
AW~ Vp M2Str” M2

A ~ Vp M2Str! MO 12 A(4‘)“~<\J VTM2Str///M5”’+2

Some of these endpoint theories related by T-duality transformations - in general
some endpoints are supersymmetric while others are not



Comments on the distance
conjecture

e SAA, Dienes, Nutricati - imminent!!



According to the de-Sitter distance conjecture:
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where Mk represents the inverse distance scale.
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Various arguments for this: lower bound is the “Casimir energy” behaviour and the

“Dark dimension” scenario. Upper bound is the Higuchi bound
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Note that we never appealed to any model or background to get this formula. Thus the
distance conjecture in any modular invariant theory is more appropriately expressed as

supertrace behaviour:
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But we know that generically A% ~ AM2Str’ MO+2 ~ M**° | so that using ...

A® ~ Ve AW for MOVye>1
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Note that the SO(16)xSO(16) string has a positive C.C. so (if we ignore the stability
1ssue) compactifications of it seem to violate the distance conjecture



Two other options:
Option A: AE+I) —

Note this does not require SUSY - could just be accidentally vanishing supertrace:
then what generically dominates at large distance is the “Casimir energy” contribution

AW o @r)2T(2+6/2) (nf —nj)

where (n% —n%) is the nett exactly-massless non-degeneracy, which is the dark

dimension assumption ...




Option B: AW+ =0, n% =ny

Non-SUSY models that satisty this latter condition can be constructed using the Scherk-

Schwarz mechanism and have been of some interest ...

e SAA, Dienes, Mavroudi 2015
e Kounnas, Partouche
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Summary:

e SAA, Dienes, Nutricati

Option A: A — ¢ : n% =~ TLOB Mxx Vs Mp;
Pl
3+6
. 4+6) _ . o _ .0 4 4 ( Mk '\ * _onmy/Mxx
Option B: Al )—O, Np = Ng AW ~ M (/\/l) /
245
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: : (449) M ~ |27y
Option C: A # 0 KK MZ Pl

Only one of these obviously satisfies the conjecture. Interesting that Option C violates

the Higuchi bound so may be excluded for physical reasons. Option B doesn’t look

much like the distance conjecture. Two-loops to the rescue? Debatable.




Emergence of the effective
theory



So ... whatever happened to the logarithm of Coleman-Weinberg? * SAA, Dienes, 2021

What we found for the vacuum energy looks like just the quadratically sensitive part of
the CW potential with vanishing quartic term.

This 1s correct because from a field theory perspective it is the deep-IR effective action.
Coleman-Weinberg in their analysis could not calculate this: they need renormalisation
conditions which requires an energy scale. (Note the UV-IR mixing going on here: it is

the UV finiteness of string theory that allowed us to write down the deep IR object).



If we want to see how an EFT emerges from string theory we must insert an energy
scale as well which 1s defined with a modular invariant “Wilsonian’ cut-off instead:
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Required properties of Wilsonian regulator, g .

e a) Is itself a modular function G
e b) Should look like this .... Gt 4
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* ¢) Remember, our goal is to write everything as a supertrace
which ultimately means an integral over the critical strip ... all

the cusps are quenched equally. In other words: all the
are equivalent IR cusps, implying...
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The result is a smooth modular invariant stringy Coleman-Weinberg potential

Complicated infinite sum of Bessel functions, which by magic gives ...
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Fully UV complete one-loop effective potential for any modular invariant theory
Below the mass of a state it no longer contributes to running

Parameter ¢ depends on the choice of regulator ~ the RG scheme

At some intermediate energy scale the result is a sum over all states as if they had all
logarithmically run up from their mass.

It is by construction symmetric around the string scale: K( n) = K( ]\482 /)

Note that Str = Str so the supertrace of the EFT drops out of the string one!
0<M<u EFT



We can perform the same procedure for all the couplings. e.g. the gauge couplings...

e.g. in a model with 2 toroidal dimensions the threshold is the famous result of Dixon,
Kaplunovsky and Louis. But note we get the entire energy dependence in Bessels.

SAA, Dienes, Nutricati
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Analyse using asymptotics of infinite sums of Bessels:
A =~ 4 M
Ag ‘R’ —log(cTUaln(T)n(U)|*) - 21og ()

= —2(y+1)
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ogarithmic
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>> (the most UV possible) <€

Note only log running but from a generically large value



Conclusions

* We have developed a general supertrace formulism for understanding how we see an
EFT emerge from any modular invariant theory.

* Completely model agnostic understanding of this process
e Gives us a different outlook on the distance conjecture
» A great deal hinges on the C.C. in the decompactification limits

* A modular invariant regulator provides a natural Wilsonian cut-off and definition of
RG scale. Allows us to understand how an EFT Coleman-Weinberg potential emerges.

e The same techniques can be applied to all the couplings.

* Yields the symmetry 1 — M 32 /. for the theory.



