Non-Supersymmetric Heterotic Branes

Justin Kaidi
Strings Breaking SUSY
November 22, 2023

[2303.17623] JK, Ohmori, Tachikawa, Yonekura
[2010.10521] JK

Non-Supersymmetric Heterotic Strings

- We all are familiar with the $\left(E_{8} \times E_{8}\right) \rtimes \mathbb{Z}_{2}$ and $\operatorname{Spin}(32) / \mathbb{Z}_{2}$ heterotic string theories.
- But there are known to be 7 other heterotic strings:

$$
\begin{aligned}
& \mathfrak{e}_{8}, \quad \mathfrak{u}(16), \quad\left(\mathfrak{e}_{7} \times \mathfrak{s u}(2)\right)^{2}, \quad \mathfrak{o}(8) \times \mathfrak{o}(24), \\
& \mathfrak{o}(16) \times \mathfrak{e}_{8}, \quad \mathfrak{o}(32), \quad \mathfrak{o}(16) \times \mathfrak{o}(16)
\end{aligned}
$$

- These were originally found in [Kawai, Lewellen, Tye '86; Dixon, Harvey '86].
- Until very recently, it was unknown if these were all of the possibilities, or if there could be others. The completeness of this list was proven in [Boyle Smith, Lin, Tachikawa, Zheng '23] (see also [Rayhaun '23; Höhn, Möller '23]), where the set of all $c=16 \mathrm{spin}-C F T \mathrm{~s}$ was classified.
- All of these theories are non-supersymmetric. All but the last one has a closed string tachyon.

Non-Supersymmetric Heterotic Strings

- The closed string tachyon is worrying, but not fatal. It simply indicates that we are expanding around the wrong vacuum.
- We will see that we can condense the tachyon to obtain theories in $d=9,8,6,2$, which have no tachyon, but have a linear dilaton [JK '20].
- Stable, but the linear dilaton is a bit weird.
- What do these stable vacua describe? Why do they exist??
- One place where we are familiar with a linear dilaton is in the near-horizon region of an NS5-brane.
- So maybe these non-supersymmetric strings exist in order to describe the near-horizon regions of some branes?
- The $d=9,8,6,2$ vacua would describe near-horizons of $7-, 6-, 4-, 0$-branes.
- The branes would be in the supersymmetric $\left(E_{8} \times E_{8}\right) \rtimes \mathbb{Z}_{2}$ or $\operatorname{Spin}(32) / \mathbb{Z}_{2}$ heterotic strings, and would break all supersymmetries.

Non-Supersymmetric Heterotic Branes

- No such branes are known in heterotic string theory. . .
- A related question: the old quantum gravity lore states that (see [McNamara, Vafa '19] for a modern version):

Any consistent theory of quantum gravity must contain objects carrying all possible charges.

- Basically any topological invariant should count as a charge. Note that:

$$
\begin{array}{ll}
\pi_{0}\left(\left(E_{8} \times E_{8}\right) \rtimes \mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2} & \pi_{1}\left(\operatorname{Spin}(32) / \mathbb{Z}_{2}\right) \simeq \mathbb{Z}_{2} \\
\pi_{3}\left(\left(E_{8} \times E_{8}\right) \rtimes \mathbb{Z}_{2}\right) \simeq \mathbb{Z} \times \mathbb{Z} & \pi_{7}\left(\operatorname{Spin}(32) / \mathbb{Z}_{2}\right) \simeq \mathbb{Z}
\end{array}
$$

- What carries the charges?
- They would capture non-trivial configurations on $S^{1}, S^{2}, S^{4}, S^{8}$, which is just what is needed to surround a $7-, 6-, 4-, 0$-brane!

Outline

- In the rest of this talk we will try to:

Part I: Review the tachyonic heterotic strings, and show how to condense the tachyons to get stable, lower-dimensional vacua. [JK '20]

Part II: Explicitly construct the non-supersymmetric branes whose existence we hinted at earlier. [JK, Ohmori, Tachikawa, Yonekura '23]

- If time permits, we will also discuss one of the branes in M-theory.

Part I

Part I: Stable vacua for heterotic strings

Tachyonic Heterotic Strings

- The standard heterotic strings have the following worldsheet content:

```
- Bosons: }\mp@subsup{X}{L,R}{i}\mathrm{ with i=1,_.,8
- Right-moving fermions: }\mp@subsup{\psi}{R}{i}\mathrm{ with i=1,_.,8
- Left-moving fermions: }\mp@subsup{\lambda}{L}{a}\mathrm{ with }a=1,\ldots,3
```

- When we perform the GSO projection, we have the freedom of assigning different spin structures for the left- and right-movers. Standard options:

$$
\begin{aligned}
& Z_{T^{2}}^{5(32)}=\frac{1}{4|\eta|^{16}} \sum_{g h=h g}\left(\square_{\square}^{\dagger}\right)^{8} \times \sum_{g h=h g}\left(\square_{\square}^{\dagger}\right)^{32}
\end{aligned}
$$

- This gives the two SUSY heterotic strings.

Tachyonic Heterotic Strings

- If we identify the left- and right-moving spin structures, we get a non-SUSY string [Kawai, Lewellen, Tye '86; Dixon, Harvey '86]

$$
Z_{T^{2}}^{?}=\frac{1}{2|\eta|^{16}} \sum_{g h=h g}(=\square=)^{8} \times(\bar{\square}=)^{\square}
$$

- To understand the properties of this string, we consider the level-matched partition function:

$$
\int_{0}^{1} d \tau_{1} Z_{T^{2}}^{?}=32(q \bar{q})^{-\frac{1}{2}}+4032+188928(q \bar{q})^{\frac{1}{2}}+O(q \bar{q})
$$

- The result is non-zero, so no spacetime SUSY. The spectrum contains:
- 32 tachyons
- 4032 massless bosons: can split into graviton (35), B-field (28), dilaton (1), and 496 gauge bosons of $\mathfrak{s o (3 2)}$.
- So this is a non-SUSY, tachyonic $\mathfrak{s o (3 2)}$ string.

Tachyonic Heterotic Strings

- Can construct other heterotic strings by further splitting the spin structures. Alternatively, note that the worldsheet has a $\left(\mathbb{Z}_{2}\right)^{5}$ global symmetry generated by:

$$
\begin{array}{ll}
g_{1}=\sigma_{3} \otimes \mathbb{1}_{2} \otimes \mathbb{1}_{2} \otimes \mathbb{1}_{2} \otimes \mathbb{1}_{2}, & g_{2}=\mathbb{1}_{2} \otimes \sigma_{3} \otimes \mathbb{1}_{2} \otimes \mathbb{1}_{2} \otimes \mathbb{1}_{2}, \\
g_{3}=\mathbb{1}_{2} \otimes \mathbb{1}_{2} \otimes \sigma_{3} \otimes \mathbb{1}_{2} \otimes \mathbb{1}_{2}, & g_{4}=\mathbb{1}_{2} \otimes \mathbb{1}_{2} \otimes \mathbb{1}_{2} \otimes \sigma_{3} \otimes \mathbb{1}_{2}, \\
g_{5}=\mathbb{1}_{2} \otimes \mathbb{1}_{2} \otimes \mathbb{1}_{2} \otimes \mathbb{1}_{2} \otimes \sigma_{3} . &
\end{array}
$$

- We can now gauge $\left(\mathbb{Z}_{2}\right)^{n}$, which breaks $\mathfrak{s o}(32) \nrightarrow \mathfrak{s o}\left(2^{5-n}\right) \times \mathfrak{s o}\left(32-2^{5-n}\right)$

n	tachyons	massless fermions	gauge bosons	gauge algebra
0	32	0	496	$\mathfrak{s o}(32)$
1	16	256	368	$\mathfrak{o}(16) \times \mathfrak{e}_{8}$
2	8	384	304	$\mathfrak{o}(8) \times \mathfrak{o}(24)$
3	4	448	272	$\left(\mathfrak{e}_{7} \times \mathfrak{s u}(2)\right)^{2}$
4	2	480	256	$\mathfrak{u}(16)$
5	1	496	248	\mathfrak{e}_{8}

Tachyon Condensation

- All of the heterotic strings above have tachyons. We now try to condense them [Hellerman, Swanson '06; '07]
- Say $\tilde{\lambda}^{a}$ are the subset of λ_{L}^{a} covariant under $\mathfrak{s o}\left(2^{5-n}\right)$. Condensation produces a superpotential

$$
W=\sum_{a=1}^{2^{5-n}} \tilde{\lambda^{a}} \mathcal{T}^{a}(X)
$$

- Equation of motion for $\mathcal{T}^{a}(X)$ is

$$
\partial^{\mu} \partial_{\mu} \mathcal{T}^{a}-2 \partial^{\mu} \phi \partial_{\mu} \mathcal{T}^{a}+\frac{2}{\alpha^{\prime}} \mathcal{T}^{a}=0
$$

which admits the following solution:

$$
\phi=-\frac{2^{\frac{3-n}{2}}}{\sqrt{\alpha^{\prime}}} X^{-}, \quad \mathcal{T}^{a}=m \sqrt{\frac{2}{\alpha^{\prime}}} e^{\beta X^{+}} X^{a+1}
$$

Condensation to $d>2$

- Plugging back in and computing the scalar potential gives

$$
V=A e^{2 \beta X^{+}} \sum_{a=1}^{2^{5-n}}\left(X^{a+1}\right)^{2}-B e^{\beta X^{+}} \sum_{a=1}^{2^{5-n}} \tilde{\lambda^{a}} \psi^{a+1}+\ldots
$$

- As $X^{+} \rightarrow \infty$, fluctuations along $X^{2}, \ldots, X^{2^{5-n}+1}$ are suppressed, and we get a theory in $d=10-2^{5-n}$ localized at $X^{2}=\cdots=X^{2^{5-n}+1}=0$.

n	d	massless fermions	gauge bosons	gauge algebra
3	6	112	266	$\mathfrak{e}_{7} \times \mathfrak{e}_{7}$
4	8	240	255	$\mathfrak{s u}(16)$
5	9	248	248	\mathfrak{e}_{8}

- Low-energy gravity+gauge theories can be checked to be anomaly-free!

Condensation to $d=2$

- For $n<2$, then $d=10-2^{5-n}<0$ so it's a bit different.
- In these cases we simply condense to $d=2$, where dilaton background lifts remaining tachyons. This gives 2d strings found in [Davis, Larsen, Seiberg '05].
- To summarize, we have found that all non-SUSY heterotic strings admit lower-dimensional stable vacua, given by:

d	gauge algebra
9	\mathfrak{e}_{8}
8	$\mathfrak{s u}(16)$
6	$\mathfrak{e}_{7} \times \mathfrak{e}_{7}$
2	$\mathfrak{s o}(24)$,
$(8) \times \mathfrak{e}_{8}, \times \mathfrak{s o}(24)$	

- All of these vacua are anomaly-free and perturbatively stable. They all have a linear dilaton though.

Part II

Part II: Non-supersymmetric heterotic branes

The NS5-brane

- Recall another context in which a linear dilaton arises: the NS5-brane.
- In supergravity, we have the following extremal solution:

$$
\begin{aligned}
d s_{\mathrm{NS} 5}^{2} & =d x_{\|}^{2}+e^{2 \phi} d x_{\perp}^{2} & H_{m n p} & =-\epsilon_{m n p}{ }^{q} \partial_{q} \phi \\
e^{2 \phi} & =e^{2 \phi(\infty)}+\frac{r_{0}^{2}}{r^{2}} & A_{m} & =-2 \rho^{2} \overline{\Sigma_{n m}} \frac{x^{n}}{r^{2}\left(r^{2}+\rho^{2}\right)}
\end{aligned}
$$

where r is the transverse radial direction. [Callan, Harvey, Strominger '91]

- In the near-horizon limit $r \rightarrow 0$:

$$
d s_{\mathrm{NS} 5}^{2}=d x_{\|}^{2}+\frac{r_{0}^{2}}{r^{2}} d r^{2}+r_{0}^{2} d \Omega_{3}^{2} \quad e^{2 \phi}=\frac{r_{0}^{2}}{r^{2}}
$$

- Or defining $y:=\log \frac{r}{r_{0}}$,

$$
d s_{\mathrm{NS} 5}^{2}=d x_{\|}^{2}+d y^{2}+r_{0}^{2} d \Omega_{3}^{2} \quad \phi=-y
$$

The NS5-brane

- So the extremal, near-horizon solution is:

$$
d s_{\mathrm{NS5}}^{2}=d x_{\|}^{2}+d y^{2}+r_{0}^{2} d \Omega_{3}^{2} \quad \phi=-y
$$

with one unit of H flux through S^{3} (in general r_{0} is small though!)

- There is an exact worldsheet description for this near-horizon solution [Callan, Harvey, Strominger '91]

$$
\mathbb{R}^{1,5} \times \mathbb{R}_{\text {linear dilaton }} \times \mathfrak{s u}(2) \bullet \times \mathfrak{g}
$$

- Intuitively: think of this as a 7d vacuum with a linear dilaton and $\mathfrak{s u}(2) \times \mathfrak{g}$ gauge group.
- This is expected to be the holographic dual to the 6d LST living on the NS5 brane. [Aharony, Berkooz, Kutasov, Seiberg '98]

The 6-brane

- We now try an analogous thing for the 6 -brane. Our considerations before suggest that the near-horizon limit is described by

$$
\mathbb{R}^{1,6} \times \mathbb{R}_{\text {linear dilaton }} \times \mathfrak{s u}(16)
$$

- To reproduce this, we note that there exists a black 6-brane solution for the $\mathfrak{s o (3 2)}$ heterotic string [Horowitz, Strominger '91]

$$
\begin{aligned}
d s^{2} & =-\frac{\left(1-\frac{r_{+}}{r}\right)}{\left(1-\frac{r_{-}}{r}\right)} d t^{2}+d \vec{x}^{2}+\frac{d r^{2}}{\left(1-\frac{r_{+}}{r}\right)\left(1-\frac{r_{-}}{r}\right)}+r^{2} d \Omega_{2}^{2} \\
e^{-2 \phi} & =e^{-2 \phi(\infty)}\left(1-\frac{r_{-}}{r}\right) \quad 8 r_{+} r_{-}=\alpha^{\prime} \sum_{i=1}^{16} q_{i}^{2} \\
\frac{F_{\mathfrak{s o}(32)}}{2 \pi} & =\bigoplus_{i=1}^{16}\left(\begin{array}{cc}
0 & q_{i} \\
-q_{i} & 0
\end{array}\right) \frac{\operatorname{vol}\left(S^{2}\right)}{4 \pi}
\end{aligned}
$$

The 6-brane

- Taking the extremal, near-horizon limit gives:

$$
\begin{gathered}
d s^{2}=d x_{\|}^{2}+d y^{2}+r_{0}^{2} d \Omega_{2}^{2} \quad \phi=-y \\
\frac{F_{\mathfrak{s o}(32)}}{2 \pi}=\bigoplus_{i=1}^{16}\left(\begin{array}{cc}
0 & q_{i} \\
-q_{i} & 0
\end{array}\right) \frac{\operatorname{vol}\left(S^{2}\right)}{4 \pi}
\end{gathered}
$$

so we have an infinite throat with S^{2} of constant size $r_{0}:=\sqrt{\frac{\alpha^{\prime}}{8} \sum_{i=1}^{16} q_{i}^{2}}$.

- An important fact about the $\mathfrak{s o (3 2)}$ heterotic string is that the global form of the gauge group is $\operatorname{Spin}(32) / \mathbb{Z}_{2}$. This makes it possible to choose $q_{i}=1 / 2$.
- If we choose $q_{i}=1 / 2$ for all i, then we preserve $\mathfrak{u}(16) \subset \mathfrak{s o}(32)$.
- We expect this to give the six-brane, but note that $r_{0}=\left(\alpha^{\prime} / 2\right)^{1 / 2}$, so that supergravity is not reliable.

The 6-brane

- At this point we transition to a worldsheet analysis. Worldsheet version of near-horizon limit would be (ignoring flux):

$$
\mathbb{R}^{1,6} \times \mathbb{R}_{\text {linear dilaton }} \times\left(\mathcal{N}=(1,0) S^{2}\right) \times \mathfrak{s o}(32)_{1}
$$

- It turns out that

$$
\mathfrak{s o}(32)_{1}=\left[\mathfrak{s u}(16)_{1} \times \mathfrak{s o}(2)_{1}\right] /(-1)^{\mathrm{F} \mathrm{~L}}
$$

- With the flux, we can reorganize the worldsheet theory as

$$
\mathbb{R}^{1,6} \times \mathbb{R}_{\text {linear dilaton }} \times\left[\left(\mathcal{N}=(1,1) S^{2}\right) \times \mathfrak{s u}(16)_{1}\right] /(-1)^{\mathrm{F}_{\mathrm{L}}}
$$

(because vector bundle of $\mathfrak{s o}(2)_{1}=$ tangent bundle of S^{2})

- This is not a solution to the string equations of motion since it is not conformal. But it flows in the IR to the following theory:

$$
\mathbb{R}^{1,6} \times \mathbb{R}_{\text {linear dilaton }} \times \mathfrak{s u}(16)_{1}
$$

The 6-brane

- The interpretation of this RG flow is that the S^{2} dynamically shrinks away, leaving an 8d spacetime with linear dilaton and $\mathfrak{s u}(16)$ gauge group. This is precisely the 8 d vacuum from before!
- So indeed, the near-horizon limit of the 6-brane is described by this vacuum.
- What charge does the 6-brane carry?
- Recall that it sources the following flux: $\int_{S^{2}} \frac{F_{\mathfrak{s o}(32)}}{2 \pi}=\frac{1}{2} \bigoplus_{i=1}^{16}\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
- This is incompatible with the vector representation, but is compatible with the adjoint and one of the spinor representations.
- Given a $\operatorname{Spin}(32) / \mathbb{Z}_{2}$ bundle, the obstruction to it being a $S O(32)$ bundle is captured by a class \widetilde{w}_{2} (c.f. $\left.\pi_{1}\left(\operatorname{Spin}(32) / \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\right)$.
- This is the charge carried by the brane.

Other branes

- The key tool in the above analysis was the identity

$$
\mathfrak{s o}(32)_{1}=\left[\mathfrak{s u}(16)_{1} \times \mathfrak{s o}(2)_{1}\right] /(-1)^{F_{\mathrm{L}}}
$$

- There are three (actually 5) similar identities:

$$
\begin{aligned}
\mathfrak{s o}(32)_{1} & =\left[\mathfrak{s o}(24)_{1} \times \mathfrak{s o}(8)_{1}\right] /(-1)^{\mathrm{F}_{\mathrm{L}}} \\
\left(\mathfrak{e}_{8} \times \mathfrak{e}_{8}\right)_{1} & =\left[\left(\mathfrak{e}_{7} \times \mathfrak{e}_{7}\right)_{1} \times \mathfrak{s o}(4)_{1}\right] /(-1)^{\mathrm{F}_{\mathrm{L}}} \\
\left(\mathfrak{e}_{8} \times \mathfrak{e}_{8}\right)_{1} & =\left[\left(\mathfrak{e}_{8}\right)_{2} \times \mathfrak{s o}(1)_{1}\right] /(-1)^{\mathrm{F}_{\mathrm{L}}}
\end{aligned}
$$

- These can be used to give exact worldsheet descriptions for 0 -, 4-, and 7-branes, respectively:
- The 0-brane is an endpoint for the $\mathfrak{s o}(32)$ heterotic string [Polchinski '05].
- The 4-brane can be interpreted as an M5 stretched between two M9s [Bergshoeff, Gibbons, Townsend '06] .
- Going around the 7 -brane flips the two \mathfrak{e}_{8} factors.

Summary

- We have found 0 - and 6 -branes in the $\operatorname{Spin}(32) / \mathbb{Z}_{2}$ heterotic string, as well as 4 - and 7 -branes in the $\left(E_{8} \times E_{8}\right) \rtimes \mathbb{Z}_{2}$ heterotic string.
- The near-horizon limits of these branes were shown to be described by the stable, lower-dimensional vacua of the non-SUSY heterotic strings.
- By the holographic dictionary, the latter should provide holographic descriptions of the worldvolume theories of the branes.
- Phrased provocatively: the reason that the non-SUSY heterotic strings exist is to describe the worldvolume theories of the non-SUSY branes!
- There exist even more non-SUSY branes, which we are in the process of uncovering! [Dierigl, Heckman, Montero, Torres '22; ...]

The End (for now)

Thank you!

