Misaligned SUSY in String Vacua

Giorgio Leone Unito & INFN

> C. Angelantonj, I. Florakis, G. L., arXiv:2302.13702 G.L., arXiv: 2308.09757

> > Strings Breaking SUSY, November 2023

SUSY breaking at the string scale induces instabilities

• Best case scenario • Contributions to dilaton potential from tadpoles or perturbative corrections

• Worst case scenario \longrightarrow tachyons in the tree level spectrum

can we distinguish the two?

Misaligned SUSY for Closed Strings

Interplay between IR and UV properties

[Dienes, 1994]

Sector averaged sum \longrightarrow counts dof in the large mass regime

Rademacher expansion

The degeneracies $d_i(n)$ from Cauchy integral

$$d_i(n) = \oint \frac{dq}{2\pi i} \frac{\chi_i(q)}{q^{n+H_i+1}}$$

Integral hard to evaluate \longrightarrow *Circle Method* sum over essential singularities at $\tau = \frac{p}{l}$ contour Circles

contour from arcs of Ford Circles of each irreducible fraction

[Hardy Ramanujan, 1917]

[Rademacher, 1938]

Rademacher exact formula

$$\begin{array}{c}
 Generalised \\
 Kloosterman sum \\
 \downarrow \\
 \downarrow \\
 d_i(n) = \sum_{l=1}^{\infty} \sum_{H_j < 0} Q_{ij}^{(l,n)} \left(\frac{|H_j|}{n+H_i}\right)^{d/2} I_{\frac{d}{2}} \left(\frac{4\pi}{l} \sqrt{|H_j|(n+H_i)}\right) \\
 \downarrow \\
 \downarrow \\
 \int_{gcd(l,p)=1}^{l-1} \left(\gamma_{l,p}^{-1}\right)_{ij} e^{-\frac{2\pi i}{l}(p(n+H_i)-p'H_j)} f_j(l,n) \\
 gcd(l,p)=1 \\
 modular transformation mapping$$
Moebius
$$\hat{Q}^{(l,n)} = (-1)^n Q^{(l,n)} \\
 f_j(l,n) \\
 sum over tachyonic characters$$

modular transformation mapping rational points on the unit circle |q| = 1to q = 0

[Sussman, 2017] [Manschot et al., 2010] [Dijkgraaf et al., 2007]

But left and right sectors imply the periodicity be

 $\operatorname{lcm}(l, \overline{l})$

Modular invariance, level rearrangement and Rademacher expansion imply

$$\left\langle d(n)\right\rangle(\mathcal{T}) = \sum_{\substack{i,\bar{\iota}\\H_i = \bar{H}_{\bar{\iota}} < 0}} N_{i\bar{\iota}} d_i(0) \,\bar{d}_{\bar{\iota}}(0) \,\sum_{\ell=1}^{\infty} \,\varphi(\ell) \, e^{\frac{8\pi}{\ell}\sqrt{|H_i|n|}}$$

contributions only from level matched tachyons

Orientifold vacua?

Elephant in the room:

absence of modular invariance

connects $\langle d(n) \rangle$ with tachyons

how is it translated in orientifolds?

Orientifold vacua

Modular action is trivialised

$$\mathcal{Z} = \mathcal{K}, \mathcal{A}, \mathcal{M}$$

$$\mathcal{Z} = \sum_{i} \zeta_i \ \chi_i(\tau) \quad \longrightarrow \quad \langle d(n) \rangle \left(\mathcal{Z} \right) = \sum_{i} \zeta_i \ d_i(n)$$

→ Modular group acts covariantly

S and P map different descriptions of the same amplitudes

$$\tilde{\mathcal{Z}} = \sum_{i} \tilde{\zeta}_{i} \ \chi_{i}(\tau) \quad \longrightarrow \quad \langle d(n) \rangle (\tilde{\mathcal{Z}}) = \sum_{i} \tilde{\zeta}_{i} \ d_{i}(n)$$

For orientifolds only holomorphic sector

Refined degeneracies

$$d_i(n) \longrightarrow \sum_{l \ge 1} \sum_{w=0}^{l-1} \sum_{H_j < 0} Q_{ij}^{(l,w)} f_j(n,l)$$

But

$$\sum_{w=0}^{l-1} Q^{(l,w)} = 0, \qquad l > 1 \qquad \longrightarrow \qquad \text{only} \quad S \quad \text{survives}$$
$$\lim_{w=0}^{lcm(l,2)-1} \hat{Q}^{(l,w)} = 0, \qquad l \neq 2 \qquad \longrightarrow \quad \text{only} \quad P \quad \text{survives}$$

Direct channel

$$\langle d(n) \rangle(\mathcal{Z}) = \sqrt{\frac{\ell_{\mathcal{Z}}}{2}} \sum_{i \mid H_i < 0} \tilde{\zeta}_i \, d_i(0) \ e^{\frac{4\pi}{\ell_{\mathcal{Z}}}\sqrt{|H_i|n}}$$

vanishes only if tachyons are absent in the transverse channel

Transverse channel

$$\langle d(n) \rangle(\tilde{\mathcal{Z}}) = \sqrt{\frac{\ell_{\mathcal{Z}}}{2}} \sum_{i \mid H_i < 0} \zeta_i \, d_i(0) \ e^{\frac{4\pi}{\ell_{\mathcal{Z}}}\sqrt{|H_i|n}}$$

vanishes only if tachyons are absent in the direct channel

Misaligned SUSY in Orientifolds

Necessary and sufficient condition?

Tachyon can be removed by orientifold projection

non vanishing sector averaged sums even without tachyons

mutual cancellation required

impossible to achieve

Examples in 10d

Type OB superstring

$$\mathcal{T} = |O_8|^2 + |V_8|^2 + |S_8|^2 + |C_8|^2$$

tachyon level matched

Sector averaged sum

$$\langle d(n) \rangle \left(\mathcal{T} \right) = \sum_{\ell=1}^{\infty} \varphi(\ell) \frac{e^{\frac{8\pi}{\ell}\sqrt{n/2}}}{(2n)^{11/2}}$$

Type OB3

[Sagnotti,1995]

tachyon projected away Closed sector $\overset{- \circ}{\frown} \quad \mathcal{K} = -O_8 + V_8 + S_8 - C_8 \qquad \qquad \tilde{\mathcal{K}} = -C_8 \qquad \qquad \tilde{$ $\langle d(n) \rangle (\mathcal{K}) = 0$ tachyon in bifundamental of $U(32+n) \times U(n)$ Open sector tachyon not projected Unable to cancel

Conclusions

Oriented Closed Strings

Connection with Rankin-Selberg-Zagier?

[Kutasov, Seiberg, 1990] [Angelantonj et al., 2011]

New technology for orientifolds?

THANK YOU FOR THE ATTENTION

Examples in 9d

M-theory breaking compactification

$$\langle d(n) \rangle (\mathcal{T}) = \begin{cases} 0 & R \le 1/8 \\ e^{2\pi \sqrt{(8-1/R^2)n}} & R > 1/8 \end{cases}$$

 $R \to \infty \longrightarrow OB$ (purely bosonic)

 $R \rightarrow 0 \implies IIB in 10d (SUSY)$

M-theory breaking orientifolds

[Antoniadis,1998]

World-sheet parity allows

$$\mathcal{K} = (V_8 - S_8) P_m + (O_8 - C_8) P_{m+1/2}$$

Tachyon survives

$$\langle d(n) \rangle \left(\tilde{\mathcal{K}} \right) \sim e^{\pi \sqrt{(8 - \alpha'/R^2) n}} \qquad \langle d(n) \rangle \left(\tilde{\mathcal{M}} \right) = 0$$

Open sector

tachyon in bifundamental of $SO(16) \times SO(16)$

$$\langle d(n) \rangle \left(\tilde{\mathcal{A}} \right) \sim 2 \ 16 \ 16 \ e^{\pi \sqrt{(8 - \alpha'/R^2) n}}$$

No tachyonic tadpoles

$$\searrow \quad \langle d(n) \rangle(\mathcal{Z}) = 0$$

A variation on M-theory breaking orientifolds

Oreintifold projection dressed with extra symmetries

[Dudas, 2002]

$$\mathcal{K} = (V_8 - S_8) P_m - (O_8 - C_8) P_{m+1/2}$$

No open tachyons and no tachyonic tadpoles

$$\langle d(n) \rangle (\tilde{\mathcal{A}}) = 0 \quad \langle d(n) \rangle (\tilde{\mathcal{M}}) = 0 \qquad \checkmark \quad \langle d(n) \rangle (\mathcal{Z}) = 0$$

Tachyon projected away

$$\langle d(n) \rangle \left(\tilde{\mathcal{K}} \right) \sim -e^{\pi \sqrt{(8-\alpha'/R^2) n}}$$

but unable to cancel $\langle d(n) \rangle (\mathcal{T}) = \sum_{\ell=1}^{\infty} \varphi(\ell) e^{\frac{2\pi}{\ell} \sqrt{(8-\alpha'/R^2) n}}$