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Motivation

Walter Tangarife (Loyola Chicago)

We learned to compute the classical Coulomb potential with Peskin

 is computed by taking the Fourier transform of the amplitude. The 
range of the force is given by the location of the branch cut in the matrix 
element in the 𝑡-plane.

V(r)
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THE COULOMB POTENTIAL

c.f. (Page 125 of Peskin)

In the non-relativistic limit:
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For a massive mediator:

FOR MASSIVE PROPAGATORS

4

• Higher masses imply higher “virtuality” .

• Exponentially decaying potentials: The probability of exchanging a virtual 
mass over larger distance falls exponentially with distance. Falls faster 
when virtuality is high.

• More mathematically: the range of the force is given by the location of the branch 
cut in the matrix element in the 𝑡-plane.

Inverse range of 
the force

Mitrajyoti Ghosh, LEPP, Cornell University
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FIG. 1: The four-Fermi effective diagram for two-neutrino exchange forces between two

fermions, labeled  1 and  2.

diagram gives rise to a force of the form

V (r) =
G

2
F

4⇡3r5
, (1)

where GF is the Fermi constant. The force is very weak. At distances larger than about

a nanometer its magnitude is smaller that the gravitational force between two protons. At

this scale, the electromagnetic Van der Waals force overpowers both. Thus, it has not been

observed yet and furthermore, there is no realistic proposal to build an experiment that

could see it. It is, therefore, an interesting question to ask if there is any way to probe this

force that has not been explored yet.

In many cases in the past, to observe a very small effect, one looked for symmetries

that are broken by it. For example, the weak interaction was observed, even though it

is much weaker than the strong and electromagnetic interactions, because it violates the

flavor symmetries of these stronger forces. Thus, one way to try to achieve sensitivity to the

two-neutrino force is to look for symmetries that it violates.

In this paper, we point out that the two-neutrino force is the largest long-range parity-
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A pair of massless neutrinos mediate a long-range 
force via one-loop diagrams

At leading order
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At distances larger than 1 nm, this force is weaker than the gravitational 
force between two protons

3 Walter Tangarife (Loyola Chicago)



Motivation

Feinberg & Sucher (1968)
Feinberg, Sucher & Au (1989)
Hsu & Sikivie (1994) 
…

FIG. 1: The four-Fermi effective diagram for two-neutrino exchange forces between two

fermions, labeled  1 and  2.

diagram gives rise to a force of the form

V (r) =
G

2
F

4⇡3r5
, (1)

where GF is the Fermi constant. The force is very weak. At distances larger than about

a nanometer its magnitude is smaller that the gravitational force between two protons. At

this scale, the electromagnetic Van der Waals force overpowers both. Thus, it has not been

observed yet and furthermore, there is no realistic proposal to build an experiment that

could see it. It is, therefore, an interesting question to ask if there is any way to probe this

force that has not been explored yet.

In many cases in the past, to observe a very small effect, one looked for symmetries

that are broken by it. For example, the weak interaction was observed, even though it

is much weaker than the strong and electromagnetic interactions, because it violates the

flavor symmetries of these stronger forces. Thus, one way to try to achieve sensitivity to the

two-neutrino force is to look for symmetries that it violates.

In this paper, we point out that the two-neutrino force is the largest long-range parity-

3

A pair of massless neutrinos mediate a long-range 
force via one-loop diagrams

At leading order

FIG. 1: The four-Fermi effective diagram for two-neutrino exchange forces between two

fermions, labeled  1 and  2.

diagram gives rise to a force of the form

V (r) =
G

2
F

4⇡3r5
, (1)

where GF is the Fermi constant. The force is very weak. At distances larger than about

a nanometer its magnitude is smaller that the gravitational force between two protons. At

this scale, the electromagnetic Van der Waals force overpowers both. Thus, it has not been

observed yet and furthermore, there is no realistic proposal to build an experiment that

could see it. It is, therefore, an interesting question to ask if there is any way to probe this

force that has not been explored yet.

In many cases in the past, to observe a very small effect, one looked for symmetries

that are broken by it. For example, the weak interaction was observed, even though it

is much weaker than the strong and electromagnetic interactions, because it violates the

flavor symmetries of these stronger forces. Thus, one way to try to achieve sensitivity to the

two-neutrino force is to look for symmetries that it violates.

In this paper, we point out that the two-neutrino force is the largest long-range parity-

3

At distances larger than 1 nm, this force is weaker than the gravitational 
force between two protons

Is there any way to probe this force that has not been explored yet?
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Possible answers

To observe a small effect, look for symmetries that this  force 
violates: 

The two-neutrino force is the largest long-range parity-violating 
interaction in the Standard Model
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Look for effects in systems with many neutrinos (finite density 
backgrounds)
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Look for effects in systems with many neutrinos (finite density 
backgrounds)
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We find that the effect is tiny
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Observing atomic parity violation in atoms
Consider stimulated emission in an atom:

- Electric dipole transitions     : between states of opposite parityE1

5

- Magnetic dipole transitions     : between states of same parityM1

A PICTURE IS BETTER THAN A 1000 DENSE 
SLIDES

Parity Conserved
Parity Violated

Selection Rules Hold! No selection rules anymore!

Note: Parity = −1 ℓ
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Parity is conserved
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Parity is violated

If the Hamiltonian contains a perturbation that violates parity, its 
eigenstates will contain a small mixture of opposite-parity corrections 



Observing atomic parity violation in atoms
Consider stimulated emission in an atom:

If the Hamiltonian contains a perturbation that violates parity, its 
eigenstates will contain a small mixture of opposite-parity corrections 

Reviews: Khriplovich (1991), Bouchiat & Bouchiat 
(1997),…

Optical rotation: Left-polarized and right-
polarized light will refract with different index 
of refraction in a sample of atomic vapors

Φ =
πL
λ

Re (nR(λ) + nL(λ)) ≈
2πL

λ
Re (nR(λ) + nL(λ) − 2) R

R ≡ Im ( E1PV

M1 )near resonance 

- Electric dipole transitions     : between states of opposite parity

- Magnetic dipole transitions     : between states of same parityM1

E1
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Parity violating forces in the hydrogen atom

Assuming a) a static nucleus and b) that the electron velocity is a small parameter, 
the most general PV-potential is 

has a rotated plane of polarization relative to the incident light. Experimentally, therefore,

a measurement of this rotation is a measure of APV. From our theoretical perspective, the

important quantity that encodes the effects of APV is R, defined in Eq. (6).

IV. PARITY VIOLATING FORCES IN ATOMIC SYSTEMS

A. Generic effects

The general expression for a non-relativistic potential between two fermions contains

only a handful of terms – the only difference between the potentials mediated by different

mechanisms is in the numerical coefficients coming with each term and the form of the radial

function [27].

Consider a generic atom with a nucleon of mass mN . We are looking for the parity

violating potential due to some Feynman diagram. To that end, we make two simplifying

assumptions:

1. We consider a static nucleus, that is, we neglect effects that scale like me/mN .

2. We treat the electron velocity, ve, as a small parameter and keep only terms linear in

ve.

Under these assumptions, the most general form of the parity-violating potential from [27]

reduces to the following:

VPNC(r) = H1F (r)~�e · ~ve +H2F (r)~�N · ~ve + C(~�e ⇥ ~�N) · ~r [F (r)] , (7)

where ~�e/2 is the spin of the electron, ~�N/2 is the net nuclear spin, H1, H2 (for “helicity”,

since the corresponding terms look like helicity) and C (for cross-product) are real constants,

and F (r) is a radial real function.

The values of the H1, H2, C, and F (r) depend on the specific diagram. In case there are

several diagrams, each diagram contributes linearly to the total potential, so we can write

VPNC(r) =
X

i

V
i
PNC(r) (8)

and we add a sub-index i to H1, H2, C, and F (r).

11
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Parity violating forces in the hydrogen atom

Tree-level

FIG. 5: Tree-level interaction between the electron and a nucleus.

In the following sections, we shall consider the special case of the hydrogen atom. While

experiments are not done with it, it simplifies the theoretical investigation. When we con-

sider hydrogen, we replace the sub-index N with p.

B. The tree-level process

We begin by briefly revisiting the effective parity-violating potential due to the interaction

between an electron and a nucleus at tree level via Z exchange in the SM as depicted in

Fig. 5. In the SM, the coupling of the Z boson to a pair of identical fermions is given by

LZ ̄ =
1

2

g

cos ✓W
 ̄

h
(g V � g

 
A�

5)/Z 
i
, (9)

where ✓W is the Weak angle. g V and g
 
A are the vectorial and axial couplings of the fermion

 to the Z boson. As an example, the coupling constants for the electron and the proton

(which can be treated as an elementary particle at energy scales relevant to atomic physics)

are given by:

g
e
V =

✓
�
1

2
+ 2 sin2

✓W

◆
, g

e
A = �

1

2
, g

p
V =

✓
1

2
� 2 sin2

✓W

◆
, g

p
A =

GA

2
, (10)

where GA ⇡ 1.25 [28] is the axial form factor of the proton.

The resulting parity-violating potential is given by Eq. (7) with the constants and the

radial function given by:

12

H1 = H
tree
1 =

g
2

2 cos2 ✓W
g
e
Ag

p
V , (11)

H2 = H
tree
2 =

g
2

2 cos2 ✓W
g
e
V g

p
A, (12)

C = C
tree =

g
2

2 cos2 ✓W

g
e
V g

p
A

2me
, (13)

F (r) = F
tree(r) =

e
�mZr

4⇡r
. (14)

In the APV literature, most notably in [29], the terms that depend on nuclear spin (that

is, terms that come with H2 and C) are ignored. This is because, in most heavy atoms used

in APV experiments, the nuclei have paired nucleons with opposite spins, and a net nuclear

spin of zero. Thus, terms in the potential containing the nuclear spin vanish. This is not

true for the case of hydrogen, where the nucleus consists of just one spin-half proton.

C. Loop level processes: The effective four-Fermi operator with neutrinos

Now that we have discussed the tree level diagram that violates parity, we move on to

loop level effects. The diagrams that contribute to atomic parity violation at one loop are

given in Fig. 6. At atomic energy scales, the use of the four-Fermi approximation is well

justified and so in this section, we will derive expressions for the four-Fermi vertices with

two fermions of the same type  and two neutrinos.

In the SM, the four-Fermi interactions between two neutrinos and two fermions are ob-

tained by integrating out the Z and W bosons in the diagrams shown in Fig. 7. However,

since we consider massive neutrinos, we need to incorporate flavor mixing. The Z-boson

case is simple because the interactions of neutrinos with the Z boson is universal and thus

diagonal in any basis:

LZ = �
g

2cW
�ij ⌫̄i /Z⌫j, (15)

with cW ⌘ cos ✓W . The corresponding four-Fermi operator for a vertex involving two

fermions  , and two neutrino mass eigenstates, ⌫i and ⌫j, due to Z exchange is therefore

(OZ)ij = �
g
2

8m2
Zc

2
W

[ ̄�µ(g V � g
 
A�

5) ]�ij[⌫̄j�µ(1� �
5)⌫i], (16)

where g
 
A and g

 
V are defined above Eq. (10).

13

Parity and Time-Reversal Violation in Atomic Systems 4

Z
0

N

e
�

N

e
�

� Z
0

N

e
�

N

e
�

Z
0; W±

�

N

e
�

N

e
�

Figure 2: Example diagrams representing the interaction with QW (2) and (3), QW

perturbed by the hyperfine interaction (4), and the nuclear AM (5), respectively.

where N and Z are the number of neutrons and protons, respectively, QW =

2ZC1p + 2NC1n ⇡ �N , and ⇢̃ = (⇢n + ⇢p)/2 and �⇢ = (⇢n � ⇢p) with ⇢n,p the

normalized nucleon density. In the calculations, it is assumed that ⇢n = ⇢p = ⇢,

and the second term in (2) drops out. In reality, there is a small di↵erence between

average radii of protons and neutrons, the so-called neutron skin. Though small,

this gives an important correction that will be discussed in the coming sections.

The spatial components of the vector electron part of (1) lead to the nuclear-

spin-dependent (NSD) Hamiltonian

ĥ
Z
NSD =

�GFp
2

Z
K � 1/2

I(I + 1)
↵ · I⇢(r), (3)

where ↵ = �0�, Z = �C2n,p, and K = (I + 1/2)(�1)I+1/2�l with l the orbital

momentum of the unpaired nucleon. This contribution is suppressed due to a

number of factors; the coe�cient |C2N | ⌧ |QW |, and also (unlike in the NSI case)

the nucleons do not contribute coherently. In the shell model only the valence

(unpaired) nucleons contribute. There is also a NSD contribution that comes

from the interaction with QW perturbed by the hyperfine interaction [18, 19],

ĥ
Q
NSD =

GFp
2
Q

↵ · I
I

⇢(r), (4)

which is suppressed by the ratio of hyperfine to fine-structure coe�cients: Q =

�1
3QW

↵µN
mpRN

' 2.5⇥ 10�4
A

2/3
µN (A = N + Z, mp is the nucleon mass, ↵ is the

fine-structure constant, RN is the nuclear radius, and µN is the nuclear magnetic

moment).

For heavy atoms, however, it is the contribution from the AM of the nucleus

that dominates the NSD e↵ects. The Hamiltonian describing the interaction of

atomic electrons with the nuclear AM is

ĥ
a
NSD =

GFp
2
a

K

I(I + 1)
↵ · I⇢(r), (5)

where a ⇠ ↵A
2/3 for heavy atoms. The investigation of AMs will be discussed

further in Sec. 3.3.

dominates over the neutrino mediated diagrams that we are interested in. We ultimately

deal with eigenstates of F̂ 2, which do not have definite `, so we need to make sure that the

eigenstate of F̂ 2 is a superposition of eigenstates of L̂2 with ` � 2.

A. Matrix elements of the tree-level potential

In order to extract some features of the tree-level parity violating potential, we write out

the potential here as given in Eqs. (11)-(14), but we suppress most of the dimensionless

constants for the sake of clarity:

V
tree
PNC ⇠

g
2

me


e
�mZr

r
~�e · ~p+

e
�mZr

r
~�p · ~p+ (~�e ⇥ ~�p) · ~r

✓
e
�mZr

r

◆�
. (40)

We are interested in computing the matrix elements of this potential in the space of hydrogen

eigenfunctions. In this section, we simply consider the radial integrals in the matrix elements

since the angular integrals simply give some O(1) number upon evaluation. We define

⌘ ⌘ r/a0, where r is the radial coordinate. The radial part of the wavefunction, close to the

origin, behaves as u(⌘) ⇠ ⌘
`. Given this, we can write the matrix element as an integral:

hn`m|V
tree
PNC |n

0
`
0
m

0
i ⇠

Z 1

0

d⌘ ⌘
2
⌘
`0
V

tree
PNC(⌘)⌘

`
, (41)

Note that, although the above dependence of the wavefunction is only correct near the origin,

we integrate all the way to ⌘ ! 1 because the potential drops very rapidly in magnitude

and so the contribution far away from zero from the wavefunction is negligible anyway.

Terms in the potential of Eq. (40) that have angular dependence make the integral vanish

unless `0 = `±1 (from the properties of the spherical harmonics). Without loss of generality,

we take the smaller of the two to be `, and the larger to be `+ 1. Then the matrix element

goes as (notice that the momentum operator introduces a factor of 1/⌘, as does a gradient)

hn`m|V
tree
PNC |n

0
, `± 1, m0

i ⇠
↵

mea
2
0

Z 1

0

d⌘ ⌘
`+1 exp (�mZa0⌘) ⌘

`
,

⇠
↵
2`+5

m
2`+3
e

m
2`+2
Z

= me↵
2`+5

✓
me

mZ

◆2`+2

. (42)

B. Matrix elements of the neutrino loop potential

There are two terms in the loop potential (33): the “helicity” term and the spin-cross

term. Once again, we consider only the radial integrals since the angular integrals give some

22

Assuming a) a static nucleus and b) that the electron velocity is a small parameter, 
the most general PV-potential is 

has a rotated plane of polarization relative to the incident light. Experimentally, therefore,

a measurement of this rotation is a measure of APV. From our theoretical perspective, the

important quantity that encodes the effects of APV is R, defined in Eq. (6).

IV. PARITY VIOLATING FORCES IN ATOMIC SYSTEMS

A. Generic effects

The general expression for a non-relativistic potential between two fermions contains

only a handful of terms – the only difference between the potentials mediated by different

mechanisms is in the numerical coefficients coming with each term and the form of the radial

function [27].

Consider a generic atom with a nucleon of mass mN . We are looking for the parity

violating potential due to some Feynman diagram. To that end, we make two simplifying

assumptions:

1. We consider a static nucleus, that is, we neglect effects that scale like me/mN .

2. We treat the electron velocity, ve, as a small parameter and keep only terms linear in

ve.

Under these assumptions, the most general form of the parity-violating potential from [27]

reduces to the following:

VPNC(r) = H1F (r)~�e · ~ve +H2F (r)~�N · ~ve + C(~�e ⇥ ~�N) · ~r [F (r)] , (7)

where ~�e/2 is the spin of the electron, ~�N/2 is the net nuclear spin, H1, H2 (for “helicity”,

since the corresponding terms look like helicity) and C (for cross-product) are real constants,

and F (r) is a radial real function.

The values of the H1, H2, C, and F (r) depend on the specific diagram. In case there are

several diagrams, each diagram contributes linearly to the total potential, so we can write

VPNC(r) =
X

i

V
i
PNC(r) (8)

and we add a sub-index i to H1, H2, C, and F (r).

11
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Loop-level: Enter the neutrino force

H1 = H
tree
1 =

g
2

2 cos2 ✓W
g
e
Ag

p
V , (11)

H2 = H
tree
2 =

g
2

2 cos2 ✓W
g
e
V g

p
A, (12)

C = C
tree =

g
2

2 cos2 ✓W

g
e
V g

p
A

2me
, (13)

F (r) = F
tree(r) =

e
�mZr

4⇡r
. (14)

In the APV literature, most notably in [29], the terms that depend on nuclear spin (that

is, terms that come with H2 and C) are ignored. This is because, in most heavy atoms used

in APV experiments, the nuclei have paired nucleons with opposite spins, and a net nuclear

spin of zero. Thus, terms in the potential containing the nuclear spin vanish. This is not

true for the case of hydrogen, where the nucleus consists of just one spin-half proton.

C. Loop level processes: The effective four-Fermi operator with neutrinos

Now that we have discussed the tree level diagram that violates parity, we move on to

loop level effects. The diagrams that contribute to atomic parity violation at one loop are

given in Fig. 6. At atomic energy scales, the use of the four-Fermi approximation is well

justified and so in this section, we will derive expressions for the four-Fermi vertices with

two fermions of the same type  and two neutrinos.

In the SM, the four-Fermi interactions between two neutrinos and two fermions are ob-

tained by integrating out the Z and W bosons in the diagrams shown in Fig. 7. However,

since we consider massive neutrinos, we need to incorporate flavor mixing. The Z-boson

case is simple because the interactions of neutrinos with the Z boson is universal and thus

diagonal in any basis:

LZ = �
g

2cW
�ij ⌫̄i /Z⌫j, (15)

with cW ⌘ cos ✓W . The corresponding four-Fermi operator for a vertex involving two

fermions  , and two neutrino mass eigenstates, ⌫i and ⌫j, due to Z exchange is therefore

(OZ)ij = �
g
2

8m2
Zc

2
W

[ ̄�µ(g V � g
 
A�

5) ]�ij[⌫̄j�µ(1� �
5)⌫i], (16)

where g
 
A and g

 
V are defined above Eq. (10).
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for the neutrinos is given by:

LW = �
g
p
2
U↵i

¯̀
L↵ /W⌫i, (17)

where the fields ` represent leptons and i (↵) represents mass (flavor) indices, and U↵i are

the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The operator for

the case of two external  leptons of flavor ↵ and two neutrino mass eigenstates i and j is

then given by

(OW )ij = �
g
2

8m2
W

U↵jU
⇤
↵i[⌫̄j�

µ(1� �
5) ][ ̄�µ(1� �

5)⌫i],

= �
g
2

8m2
W

U↵jU
⇤
↵i[ ̄�

µ(1� �
5) ][⌫̄j�µ(1� �
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where we used the Fierz transformations to obtain the second line.

The sum of the operators in Eqs. (16) and (18) yields the four-fermion vertex between

two neutrino mass eigenstates and two  leptons. Using GF = g
2
/4
p
2m2

W , we obtain

Oij = (OZ)ij + (OW )ij (19)
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We emphasize that there is no sum over i, j or ↵ here. In Eq. (20), we introduced the

effective vectorial and axial couplings, aij and bij respectively, in terms of the couplings to

the Z. If  is a lepton and therefore has a flavor index ↵, we have:

a
 
ij = �ijg

 
V + U↵jU

⇤
↵i, b

 
ij = �ijg

 
A + U↵jU

⇤
↵i. (20)

If  were not a lepton, it would not couple to neutrinos through the W , and therefore the

PMNS matrix would not be involved. Then we would have:

a
 
ij = �ijg

 
V , b

 
ij = �ijg

 
A, (21)

In order to compute the neutrino force between two fermionic species  1 and  2, we need

to insert the operator Oij twice in order to obtain the diagram in Fig. 1. If both  1 and  2

are leptons, we have nine diagrams from assigning three neutrino mass eigenstates into the

two propagators. Each diagram is labeled by two indices i and j, and we sum over them. If

 1 or  2 is a non-lepton, then the only possible four-Fermi vertices are the ones with both

neutrinos in the same mass eigenstate. Thus, there are three diagrams over which to sum
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++

(a) (b)

FIG. 6: The loop level diagrams that contribute to the binding of the electron to the

nucleus in an atomic system.

(a) (b)

FIG. 7: The two diagrams that contribute to the effective four-Fermi vertex for two

neutrinos and two fermions  . The Z-diagram in Fig. 7a corresponds to the effective

operator OZ . The W diagram in Fig. 7b corresponds to the effective operator OW .

The case of the W exchange is more complicated as we need to take into account the

non-diagonal nature of the flavor mixing. The W interaction Lagrangian in the mass basis
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Assuming a) a static nucleus and b) that the electron velocity is a small parameter, 
the most general PV-potential is 

Parity violating forces in the hydrogen atom

has a rotated plane of polarization relative to the incident light. Experimentally, therefore,

a measurement of this rotation is a measure of APV. From our theoretical perspective, the

important quantity that encodes the effects of APV is R, defined in Eq. (6).

IV. PARITY VIOLATING FORCES IN ATOMIC SYSTEMS

A. Generic effects

The general expression for a non-relativistic potential between two fermions contains

only a handful of terms – the only difference between the potentials mediated by different

mechanisms is in the numerical coefficients coming with each term and the form of the radial

function [27].

Consider a generic atom with a nucleon of mass mN . We are looking for the parity

violating potential due to some Feynman diagram. To that end, we make two simplifying

assumptions:

1. We consider a static nucleus, that is, we neglect effects that scale like me/mN .

2. We treat the electron velocity, ve, as a small parameter and keep only terms linear in

ve.

Under these assumptions, the most general form of the parity-violating potential from [27]

reduces to the following:

VPNC(r) = H1F (r)~�e · ~ve +H2F (r)~�N · ~ve + C(~�e ⇥ ~�N) · ~r [F (r)] , (7)

where ~�e/2 is the spin of the electron, ~�N/2 is the net nuclear spin, H1, H2 (for “helicity”,

since the corresponding terms look like helicity) and C (for cross-product) are real constants,

and F (r) is a radial real function.

The values of the H1, H2, C, and F (r) depend on the specific diagram. In case there are

several diagrams, each diagram contributes linearly to the total potential, so we can write

VPNC(r) =
X

i

V
i
PNC(r) (8)

and we add a sub-index i to H1, H2, C, and F (r).
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Loop-level: Enter the neutrino force
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g
2

2 cos2 ✓W
g
e
Ag

p
V , (11)

H2 = H
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g
2

2 cos2 ✓W
g
e
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p
A, (12)

C = C
tree =

g
2

2 cos2 ✓W

g
e
V g

p
A

2me
, (13)

F (r) = F
tree(r) =

e
�mZr

4⇡r
. (14)

In the APV literature, most notably in [29], the terms that depend on nuclear spin (that

is, terms that come with H2 and C) are ignored. This is because, in most heavy atoms used

in APV experiments, the nuclei have paired nucleons with opposite spins, and a net nuclear

spin of zero. Thus, terms in the potential containing the nuclear spin vanish. This is not

true for the case of hydrogen, where the nucleus consists of just one spin-half proton.

C. Loop level processes: The effective four-Fermi operator with neutrinos

Now that we have discussed the tree level diagram that violates parity, we move on to

loop level effects. The diagrams that contribute to atomic parity violation at one loop are

given in Fig. 6. At atomic energy scales, the use of the four-Fermi approximation is well

justified and so in this section, we will derive expressions for the four-Fermi vertices with

two fermions of the same type  and two neutrinos.

In the SM, the four-Fermi interactions between two neutrinos and two fermions are ob-

tained by integrating out the Z and W bosons in the diagrams shown in Fig. 7. However,

since we consider massive neutrinos, we need to incorporate flavor mixing. The Z-boson

case is simple because the interactions of neutrinos with the Z boson is universal and thus

diagonal in any basis:

LZ = �
g

2cW
�ij ⌫̄i /Z⌫j, (15)

with cW ⌘ cos ✓W . The corresponding four-Fermi operator for a vertex involving two

fermions  , and two neutrino mass eigenstates, ⌫i and ⌫j, due to Z exchange is therefore

(OZ)ij = �
g
2

8m2
Zc

2
W

[ ̄�µ(g V � g
 
A�

5) ]�ij[⌫̄j�µ(1� �
5)⌫i], (16)

where g
 
A and g

 
V are defined above Eq. (10).
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for the neutrinos is given by:
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p
2
U↵i

¯̀
L↵ /W⌫i, (17)

where the fields ` represent leptons and i (↵) represents mass (flavor) indices, and U↵i are

the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The operator for

the case of two external  leptons of flavor ↵ and two neutrino mass eigenstates i and j is

then given by

(OW )ij = �
g
2

8m2
W

U↵jU
⇤
↵i[⌫̄j�

µ(1� �
5) ][ ̄�µ(1� �
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8m2
W

U↵jU
⇤
↵i[ ̄�

µ(1� �
5) ][⌫̄j�µ(1� �

5)⌫i], (18)

where we used the Fierz transformations to obtain the second line.

The sum of the operators in Eqs. (16) and (18) yields the four-fermion vertex between

two neutrino mass eigenstates and two  leptons. Using GF = g
2
/4
p
2m2

W , we obtain

Oij = (OZ)ij + (OW )ij (19)

= �
GF
p
2

h
 ̄�

µ
{�ij(g
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i ⇥
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ij�
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i ⇥
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⇤
.

We emphasize that there is no sum over i, j or ↵ here. In Eq. (20), we introduced the

effective vectorial and axial couplings, aij and bij respectively, in terms of the couplings to

the Z. If  is a lepton and therefore has a flavor index ↵, we have:

a
 
ij = �ijg

 
V + U↵jU

⇤
↵i, b

 
ij = �ijg

 
A + U↵jU

⇤
↵i. (20)

If  were not a lepton, it would not couple to neutrinos through the W , and therefore the

PMNS matrix would not be involved. Then we would have:

a
 
ij = �ijg

 
V , b

 
ij = �ijg

 
A, (21)

In order to compute the neutrino force between two fermionic species  1 and  2, we need

to insert the operator Oij twice in order to obtain the diagram in Fig. 1. If both  1 and  2

are leptons, we have nine diagrams from assigning three neutrino mass eigenstates into the

two propagators. Each diagram is labeled by two indices i and j, and we sum over them. If

 1 or  2 is a non-lepton, then the only possible four-Fermi vertices are the ones with both

neutrinos in the same mass eigenstate. Thus, there are three diagrams over which to sum

15

for the neutrinos is given by:

LW = �
g
p
2
U↵i

¯̀
L↵ /W⌫i, (17)

where the fields ` represent leptons and i (↵) represents mass (flavor) indices, and U↵i are

the elements of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. The operator for

the case of two external  leptons of flavor ↵ and two neutrino mass eigenstates i and j is

then given by

(OW )ij = �
g
2

8m2
W

U↵jU
⇤
↵i[⌫̄j�

µ(1� �
5) ][ ̄�µ(1� �

5)⌫i],

= �
g
2

8m2
W

U↵jU
⇤
↵i[ ̄�

µ(1� �
5) ][⌫̄j�µ(1� �

5)⌫i], (18)

where we used the Fierz transformations to obtain the second line.

The sum of the operators in Eqs. (16) and (18) yields the four-fermion vertex between

two neutrino mass eigenstates and two  leptons. Using GF = g
2
/4
p
2m2

W , we obtain

Oij = (OZ)ij + (OW )ij (19)

= �
GF
p
2

h
 ̄�

µ
{�ij(g

 
V � g

 
A�

5) + U↵jU
⇤
↵i(1� �

5)} 
i ⇥
⌫̄j�µ(1� �

5)⌫i
⇤
,

= �
GF
p
2

h
 ̄�

µ(a ij � b
 
ij�

5) 
i ⇥
⌫̄j�µ(1� �

5)⌫i
⇤
.

We emphasize that there is no sum over i, j or ↵ here. In Eq. (20), we introduced the

effective vectorial and axial couplings, aij and bij respectively, in terms of the couplings to

the Z. If  is a lepton and therefore has a flavor index ↵, we have:

a
 
ij = �ijg

 
V + U↵jU

⇤
↵i, b

 
ij = �ijg

 
A + U↵jU

⇤
↵i. (20)

If  were not a lepton, it would not couple to neutrinos through the W , and therefore the

PMNS matrix would not be involved. Then we would have:

a
 
ij = �ijg

 
V , b

 
ij = �ijg

 
A, (21)

In order to compute the neutrino force between two fermionic species  1 and  2, we need

to insert the operator Oij twice in order to obtain the diagram in Fig. 1. If both  1 and  2

are leptons, we have nine diagrams from assigning three neutrino mass eigenstates into the

two propagators. Each diagram is labeled by two indices i and j, and we sum over them. If

 1 or  2 is a non-lepton, then the only possible four-Fermi vertices are the ones with both

neutrinos in the same mass eigenstate. Thus, there are three diagrams over which to sum

15

++

(a) (b)

FIG. 6: The loop level diagrams that contribute to the binding of the electron to the

nucleus in an atomic system.

(a) (b)

FIG. 7: The two diagrams that contribute to the effective four-Fermi vertex for two

neutrinos and two fermions  . The Z-diagram in Fig. 7a corresponds to the effective

operator OZ . The W diagram in Fig. 7b corresponds to the effective operator OW .

The case of the W exchange is more complicated as we need to take into account the
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Appendix A: Calculation of the parity violating force between the electron and the

proton

Our approach here closely follows the methodology of [2]. For the sake of simplicity,

we start by assuming just one flavor for the neutrino. In that case we find the following

four-Fermi operator for two fermions of type  and two neutrinos by summing over the Z

and W diagrams:

O4 = �
GF
p
2
[ ̄�µ(a � b

 
�
5) ][⌫̄�µ(1� �

5)⌫], (A1)

where a
 and b

 are the effective couplings to the Z as defined in Eqs. (20) and (21).

They depend on the particular fermion in question, depending on whether the W exchange

contributes, the Z exchange contributes, or both.

The two-neutrino potential can be calculated by a double insertion of this operator,

and the evaluation of the resulting amplitude, and by taking the Fourier transform of the

amplitude. The Feynman diagram that is relevant is given in Fig. 1. The corresponding

matrix element is given by

iM = �
(�iGF )2

2
ēN̄

⇥
�e
µ�

N
⌫

⇤ Z d4
kd4

k
0

(2⇡)4
�
4(q � k � k

0)Tr

i�µ i(�/k

0 +m)

k02 �m2
i�⌫

i(/k +m)

k2 �m2

�
eN.

(A2)

Here, �f
µ = �µ(af � bf�

5), with af and bf depending on the type of fermion in question. N

stands for nucleus, which in our case is just the proton. We can write the matrix element

as iM = ēN̄ iFeN , where:

F = �i
G

2
F

2

⇥
�e
µ�

N
⌫

⇤ Z d4
kd4

k
0

(2⇡)4
�
4(q � k � k

0)Tr

�µ (�/k

0 +m)

k02 �m2
�⌫

(/k +m)

k2 �m2

�
. (A3)

We then evaluate the trace, and consider only the symmetric part, since the antisymmetric

28

FIG. 1: The four-Fermi effective diagram for two-neutrino exchange forces between two

fermions, labeled  1 and  2.

diagram gives rise to a force of the form

V (r) =
G

2
F

4⇡3r5
, (1)

where GF is the Fermi constant. The force is very weak. At distances larger than about

a nanometer its magnitude is smaller that the gravitational force between two protons. At

this scale, the electromagnetic Van der Waals force overpowers both. Thus, it has not been

observed yet and furthermore, there is no realistic proposal to build an experiment that

could see it. It is, therefore, an interesting question to ask if there is any way to probe this

force that has not been explored yet.

In many cases in the past, to observe a very small effect, one looked for symmetries

that are broken by it. For example, the weak interaction was observed, even though it

is much weaker than the strong and electromagnetic interactions, because it violates the

flavor symmetries of these stronger forces. Thus, one way to try to achieve sensitivity to the

two-neutrino force is to look for symmetries that it violates.

In this paper, we point out that the two-neutrino force is the largest long-range parity-

3
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has a rotated plane of polarization relative to the incident light. Experimentally, therefore,

a measurement of this rotation is a measure of APV. From our theoretical perspective, the

important quantity that encodes the effects of APV is R, defined in Eq. (6).

IV. PARITY VIOLATING FORCES IN ATOMIC SYSTEMS

A. Generic effects

The general expression for a non-relativistic potential between two fermions contains

only a handful of terms – the only difference between the potentials mediated by different

mechanisms is in the numerical coefficients coming with each term and the form of the radial

function [27].

Consider a generic atom with a nucleon of mass mN . We are looking for the parity

violating potential due to some Feynman diagram. To that end, we make two simplifying

assumptions:

1. We consider a static nucleus, that is, we neglect effects that scale like me/mN .

2. We treat the electron velocity, ve, as a small parameter and keep only terms linear in

ve.

Under these assumptions, the most general form of the parity-violating potential from [27]

reduces to the following:

VPNC(r) = H1F (r)~�e · ~ve +H2F (r)~�N · ~ve + C(~�e ⇥ ~�N) · ~r [F (r)] , (7)

where ~�e/2 is the spin of the electron, ~�N/2 is the net nuclear spin, H1, H2 (for “helicity”,

since the corresponding terms look like helicity) and C (for cross-product) are real constants,

and F (r) is a radial real function.

The values of the H1, H2, C, and F (r) depend on the specific diagram. In case there are

several diagrams, each diagram contributes linearly to the total potential, so we can write

VPNC(r) =
X

i

V
i
PNC(r) (8)

and we add a sub-index i to H1, H2, C, and F (r).
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�
eN.
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Here, �f
µ = �µ(af � bf�

5), with af and bf depending on the type of fermion in question. N

stands for nucleus, which in our case is just the proton. We can write the matrix element

as iM = ēN̄ iFeN , where:

F = �i
G

2
F

2

⇥
�e
µ�

N
⌫

⇤ Z d4
kd4

k
0
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�
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0)Tr

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�
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We then evaluate the trace, and consider only the symmetric part, since the antisymmetric

28
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has a rotated plane of polarization relative to the incident light. Experimentally, therefore,

a measurement of this rotation is a measure of APV. From our theoretical perspective, the

important quantity that encodes the effects of APV is R, defined in Eq. (6).

IV. PARITY VIOLATING FORCES IN ATOMIC SYSTEMS

A. Generic effects

The general expression for a non-relativistic potential between two fermions contains

only a handful of terms – the only difference between the potentials mediated by different

mechanisms is in the numerical coefficients coming with each term and the form of the radial

function [27].

Consider a generic atom with a nucleon of mass mN . We are looking for the parity

violating potential due to some Feynman diagram. To that end, we make two simplifying

assumptions:

1. We consider a static nucleus, that is, we neglect effects that scale like me/mN .

2. We treat the electron velocity, ve, as a small parameter and keep only terms linear in

ve.

Under these assumptions, the most general form of the parity-violating potential from [27]

reduces to the following:

VPNC(r) = H1F (r)~�e · ~ve +H2F (r)~�N · ~ve + C(~�e ⇥ ~�N) · ~r [F (r)] , (7)

where ~�e/2 is the spin of the electron, ~�N/2 is the net nuclear spin, H1, H2 (for “helicity”,

since the corresponding terms look like helicity) and C (for cross-product) are real constants,

and F (r) is a radial real function.

The values of the H1, H2, C, and F (r) depend on the specific diagram. In case there are

several diagrams, each diagram contributes linearly to the total potential, so we can write

VPNC(r) =
X

i

V
i
PNC(r) (8)

and we add a sub-index i to H1, H2, C, and F (r).
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Loop-level

FIG. 1: The four-Fermi effective diagram for two-neutrino exchange forces between two

fermions, labeled  1 and  2.

diagram gives rise to a force of the form

V (r) =
G

2
F

4⇡3r5
, (1)

where GF is the Fermi constant. The force is very weak. At distances larger than about

a nanometer its magnitude is smaller that the gravitational force between two protons. At

this scale, the electromagnetic Van der Waals force overpowers both. Thus, it has not been

observed yet and furthermore, there is no realistic proposal to build an experiment that

could see it. It is, therefore, an interesting question to ask if there is any way to probe this

force that has not been explored yet.

In many cases in the past, to observe a very small effect, one looked for symmetries

that are broken by it. For example, the weak interaction was observed, even though it

is much weaker than the strong and electromagnetic interactions, because it violates the
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In this paper, we point out that the two-neutrino force is the largest long-range parity-
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Appendix A: Calculation of the parity violating force between the electron and the

proton

Our approach here closely follows the methodology of [2]. For the sake of simplicity,

we start by assuming just one flavor for the neutrino. In that case we find the following

four-Fermi operator for two fermions of type  and two neutrinos by summing over the Z

and W diagrams:
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 are the effective couplings to the Z as defined in Eqs. (20) and (21).

They depend on the particular fermion in question, depending on whether the W exchange

contributes, the Z exchange contributes, or both.

The two-neutrino potential can be calculated by a double insertion of this operator,

and the evaluation of the resulting amplitude, and by taking the Fourier transform of the

amplitude. The Feynman diagram that is relevant is given in Fig. 1. The corresponding

matrix element is given by
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We then evaluate the trace, and consider only the symmetric part, since the antisymmetric
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that contribute are the three diagrams with the same neutrino mass eigenstate on both

propagators in the loop. Using Eqs. (20) and (21), we find that in this case, the corresponding

couplings are diagonal and are given by (superscripts refer to the electron and the proton

respectively)

a
e
ii =

✓
�
1

2
+ 2s2W + |Uei|

2

◆
, a

p
ii =

✓
1

2
� 2s2W

◆

b
e
ii =

✓
�
1

2
+ |Uei|

2

◆
, b

p
ii =

GA

2
⇡ 0.625, (28)

where GA is the axial form factor, as defined below Eq. (10), and sW = sin ✓W . Since both

propagators have the same mass eigenstate, the non-diagonal entries in aij and bij are zero.

For the same reason, we only keep one index i from now on.

Using the couplings from Eq. (28), we calculate the parity-violating potential from the

neutrino loop, which results in a form given by Eq. (8) (see appendix A for details of the

calculation). with the constants and the radial function given by (no sum over i in any of

the expressions):

H1i = H
loop
1i = �2

a
p
i b

e
i

me
, (29)

H2i = H
loop
2i = 2

a
e
i b

p
i

me
, (30)

Ci = C
loop
i =

✓
a
e
i b

p
i

me
+

a
p
i b

e
i

mp

◆
, (31)

Fi = F
loop
i (r) = V⌫i⌫i(r), (32)

where V⌫i⌫i(r) can be found in Eq. (2).

Using the fact that s2W ⇡ 0.23, so that api is very small and that me ⌧ mp, we note that

H1i is negligible. The parity-violating potential then simplifies to:

V
loop
PNC ⇡

X

i

GA

me

✓
�
1

4
+ s

2
W +

1

2
|Uei|

2

◆h
(2~�p · ~pe)V⌫i⌫i(r) + (~�e ⇥ ~�p) · ~rV⌫i⌫i(r)

i
. (33)

Eqs. (29)-(33) are the key results in our work. The parity-violating terms obtained here have

the same spin structure as in the case of the tree-level potential, but the radial behavior

is different. Investigation of these terms in the neutrino potential has not been carried out

before.

18

parity-conserving form of the two-neutrino potential to leading order in v for the case of a

single flavor of neutrinos with mass m⌫ is given by

V
Dirac
⌫⌫ (r) =

G
2
Fm

3
⌫

4⇡3

K3(2m⌫r)

r2
, V

Majorana
⌫⌫ (r) =

G
2
Fm

2
⌫

2⇡3

K2(2m⌫r)

r3
, (2)

where Kn(x) is the nth order modified Bessel functions of the second kind.

An additional effect in neutrino physics, due to the non-zero masses, is flavor mixing

(for a review, see, for example, Ref. [15]). This phenomenon was incorporated into the

computation of the two-neutrino force in Ref. [16], although a closed form for the neutrino

force was not attained. One can also look in [17] for a treatment of the spin-independent

part of the neutrino force with flavor mixing. Lastly, thermal corrections to the neutrino

force, in both the Dirac and Majorana cases, were computed in [18].

All the calculations mentioned above compute terms in the potential that are parity

conserving, i.e. parity-violating terms have been ignored. In this work, we go beyond the

leading-order results in v and compute terms in the potential that are spin and momentum

dependent and also parity violating. Our key results are described in section IV, and their

implications are described in Sec. VI. We keep terms to first order in v in our non-relativistic

calculation.

III. OBSERVING ATOMIC PARITY VIOLATION – A REVIEW

In this section, we review the concepts of Atomic Parity Violation (APV) that are relevant

to the present work. We look at atomic parity violation from the perspective of transitions

in atoms, more specifically, stimulated emission processes, wherein an emission is caused by

shining light on a sample of atoms. For a more detailed review of APV from both theoretical

and experimental perspectives, see Refs. [19–22].

The key idea behind looking for APV is to exploit the fact that in the presence of a parity

violating term in the atomic Hamiltonian, the energy eigenstates have no definite parity. As

per the well-known selection rules, electric dipole (E1) transitions happen between states

of opposite parity while magnetic dipole (M1) transitions take place only between states of

same parity. If the energy eigenstates, however, have no definite parity, then both E1 and

M1 transitions are allowed between them. Since the parity violating interactions are usually

very weak compared to the parity conserving ones, we treat them as perturbations to a parity

6

Vνν     is computed by taking the Fourier transform of the parity-
conserving part of the amplitude (using the Cutkosky cutting rules) 
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Unperturbed eigenstates

VI. EFFECTS OF THE NEUTRINO FORCE ON HYDROGEN EIGENSTATES

AND TRANSITIONS

In this section, we treat the neutrino potential in Eq. (33) as a perturbation to the

hydrogen atom Hamiltonian. We work in the limit mp ! 1, so that the proton is essentially

static. We assume that the neutrino is of Dirac nature subsequently in this paper, but one

could also treat them as Majorana fermions and perform an analogous computation.

The neutrino force is much smaller than the fine or hyperfine interactions and therefore,

we need to include the fine-structure and the hyperfine splittings as well in our calculations.

As always, we should look for an operator that commutes with the neutrino potential, and

use the eigenbasis of this operator as the basis of choice in first-order degenerate perturbation

theory. Since the neutrino potential is a scalar, we know that an operator that commutes

with it is F̂
2, where

~F ⌘ ~Le + ~Se + ~Sp

is the total angular momentum of the entire system. We also define ~J ⌘ ~Le+ ~Se as the total

angular momenta of the electron alone.

The unperturbed eigenstates |n, f,mf , j, `, sp, sei with which we work are simultaneous

eigenstates of Ĥ0, F̂
2
, F̂z, Ĵ

2
, L̂

2
e, Ŝ

2
p and Ŝ

2
e , where Ĥ0 = ~p

2
/2me � e

2
/r is the unperturbed

hydrogen atom with only the Coulombic interaction. The eigenvalues of F̂ 2
, F̂z, Ĵ

2
, L̂

2
e, Ŝ

2
p

and Ŝ
2
e are f(f +1),mf , j(j +1), `(`+1), sp(sp +1) and se(se +1) respectively. Every state

is thus described by 7 quantum numbers. But se = sp = 1/2 are fixed numbers, and so

we really need just 5 numbers to label a state. This is indeed what we expect since the

hydrogen atom has a total of 8 degrees of freedom (dof): there are 3 position dof and 1 spin

dof each for the electron and the proton. However, we do not care about the three dof of

the center of mass, leaving us with 5 dof to describe the internal dynamics of our system.

The angular momentum states can be constructed using the standard procedure of angu-

lar momentum addition using Clebsch-Gordon coefficients, as done in Ref. [30], for instance.

The orbital angular momentum of the electron ` takes values 0, 1, 2, . . . Depending on `,

the result of the angular-momentum addition of one orbital angular momentum and two

spin-1/2 systems (the electron and the proton are both spin-1/2) can be summarized in the
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Ĥ0
⃗F ≡ ⃗L e + ⃗Se + ⃗Sp ⃗J ≡ ⃗L e + ⃗Se

following notation:

`⌦
1

2
⌦

1

2
= (`+ 1)� `| {z }

j=(2`+1)/2

� `� (`� 1)| {z }
j=(2`�1)/2

. (34)

These vector spaces contain eigenstates of the hydrogen atom written in the basis of F̂ 2 for

a given principal quantum number n. The first two vector spaces in the direct sum consist

of states with a well-defined value of j = (2`+ 1)/2, while the latter two vector spaces have

well-defined j = (2`� 1)/2.

In the unperturbed hydrogen atom, all these states would be degenerate. But with the

perturbations, such as the fine structure corrections and the hyperfine splitting interactions

included, the degeneracy is lifted, and only the degeneracy in mf is left. The energy of an

eigenstate with quantum numbers f, j, `, se = sp = 1
2 , for the case where ` > 0, is given by

(see Ref. [31])

Enfj` = (E0)n + (Efine)nj + (Ehyperfine)nfj` (35)

where:

(E0)n = �
↵
2
me

2n2
, (36)

(Efine)nj = �
↵
4
me

2n4

✓
n

j + 1
2

�
3

4

◆
, (37)

(Ehyperfine)nfj` =
↵
4
gp

mp
a
3
0

`(`+ 1)m2
e

�
f(f + 1)� j(j + 1)� 3

4

�

4j(j + 1)

⌧
1

r3

�

n`

(38)

are the energies contributed by the Coulombic potential, fine structure and hyperfine in-

teractions respectively, r is the radial coordinate of the electron, a0 = (me↵)
�1 is the Bohr

radius, and gp ⇡ 5.56 is the g-factor of the proton [32].

As a reminder, in first-order perturbation theory, in the presence of a perturbation V ,

the corrected states are given by

| 
1
qi = | 

0
qi+

X

p 6=q

h 
0
p|V | 

0
qi

E0
q � E0

p

| 
0
pi (39)

Here, | 0
pi are the states in our chosen eigenbasis. Note that in this basis our perturbation

is diagonal in each degenerate subspace. Under the perturbation, we say that the states in

this basis “mix” among themselves to give the true eigenstates of the system.

The energy difference between states of different n is much larger than that for those

states with the same principal quantum number. Since the corrections to the eigenstates in
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In the unperturbed hydrogen atom, all these states would be degenerate. But with the

perturbations, such as the fine structure corrections and the hyperfine splitting interactions

included, the degeneracy is lifted, and only the degeneracy in mf is left. The energy of an

eigenstate with quantum numbers f, j, `, se = sp = 1
2 , for the case where ` > 0, is given by

(see Ref. [31])

Enfj` = (E0)n + (Efine)nj + (Ehyperfine)nfj` (35)

where:
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are the energies contributed by the Coulombic potential, fine structure and hyperfine in-

teractions respectively, r is the radial coordinate of the electron, a0 = (me↵)
�1 is the Bohr

radius, and gp ⇡ 5.56 is the g-factor of the proton [32].

As a reminder, in first-order perturbation theory, in the presence of a perturbation V ,

the corrected states are given by

| 
1
qi = | 

0
qi+

X

p 6=q

h 
0
p|V | 

0
qi

E0
q � E0

p

| 
0
pi (39)

Here, | 0
pi are the states in our chosen eigenbasis. Note that in this basis our perturbation

is diagonal in each degenerate subspace. Under the perturbation, we say that the states in

this basis “mix” among themselves to give the true eigenstates of the system.

The energy difference between states of different n is much larger than that for those

states with the same principal quantum number. Since the corrections to the eigenstates in
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are the energies contributed by the Coulombic potential, fine structure and hyperfine in-

teractions respectively, r is the radial coordinate of the electron, a0 = (me↵)
�1 is the Bohr

radius, and gp ⇡ 5.56 is the g-factor of the proton [32].

As a reminder, in first-order perturbation theory, in the presence of a perturbation V ,

the corrected states are given by
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Here, | 0
pi are the states in our chosen eigenbasis. Note that in this basis our perturbation

is diagonal in each degenerate subspace. Under the perturbation, we say that the states in

this basis “mix” among themselves to give the true eigenstates of the system.

The energy difference between states of different n is much larger than that for those

states with the same principal quantum number. Since the corrections to the eigenstates in
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are the energies contributed by the Coulombic potential, fine structure and hyperfine in-

teractions respectively, r is the radial coordinate of the electron, a0 = (me↵)
�1 is the Bohr

radius, and gp ⇡ 5.56 is the g-factor of the proton [32].

As a reminder, in first-order perturbation theory, in the presence of a perturbation V ,
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Here, | 0
pi are the states in our chosen eigenbasis. Note that in this basis our perturbation

is diagonal in each degenerate subspace. Under the perturbation, we say that the states in

this basis “mix” among themselves to give the true eigenstates of the system.

The energy difference between states of different n is much larger than that for those

states with the same principal quantum number. Since the corrections to the eigenstates in
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dominates over the neutrino mediated diagrams that we are interested in. We ultimately

deal with eigenstates of F̂ 2, which do not have definite `, so we need to make sure that the

eigenstate of F̂ 2 is a superposition of eigenstates of L̂2 with ` � 2.

A. Matrix elements of the tree-level potential

In order to extract some features of the tree-level parity violating potential, we write out

the potential here as given in Eqs. (11)-(14), but we suppress most of the dimensionless

constants for the sake of clarity:

V
tree
PNC ⇠

g
2

me


e
�mZr

r
~�e · ~p+

e
�mZr

r
~�p · ~p+ (~�e ⇥ ~�p) · ~r

✓
e
�mZr

r

◆�
. (40)

We are interested in computing the matrix elements of this potential in the space of hydrogen

eigenfunctions. In this section, we simply consider the radial integrals in the matrix elements

since the angular integrals simply give some O(1) number upon evaluation. We define

⌘ ⌘ r/a0, where r is the radial coordinate. The radial part of the wavefunction, close to the

origin, behaves as u(⌘) ⇠ ⌘
`. Given this, we can write the matrix element as an integral:

hn`m|V
tree
PNC |n

0
`
0
m

0
i ⇠

Z 1

0

d⌘ ⌘
2
⌘
`0
V

tree
PNC(⌘)⌘

`
, (41)

Note that, although the above dependence of the wavefunction is only correct near the origin,

we integrate all the way to ⌘ ! 1 because the potential drops very rapidly in magnitude

and so the contribution far away from zero from the wavefunction is negligible anyway.

Terms in the potential of Eq. (40) that have angular dependence make the integral vanish

unless `0 = `±1 (from the properties of the spherical harmonics). Without loss of generality,

we take the smaller of the two to be `, and the larger to be `+ 1. Then the matrix element

goes as (notice that the momentum operator introduces a factor of 1/⌘, as does a gradient)
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0
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i ⇠
↵

mea
2
0

Z 1

0

d⌘ ⌘
`+1 exp (�mZa0⌘) ⌘

`
,

⇠
↵
2`+5

m
2`+3
e

m
2`+2
Z

= me↵
2`+5

✓
me

mZ

◆2`+2

. (42)

B. Matrix elements of the neutrino loop potential

There are two terms in the loop potential (33): the “helicity” term and the spin-cross

term. Once again, we consider only the radial integrals since the angular integrals give some
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B. Matrix elements of the neutrino loop potential

There are two terms in the loop potential (33): the “helicity” term and the spin-cross

term. Once again, we consider only the radial integrals since the angular integrals give some
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These vector spaces contain eigenstates of the hydrogen atom written in the basis of F̂ 2 for

a given principal quantum number n. The first two vector spaces in the direct sum consist

of states with a well-defined value of j = (2`+ 1)/2, while the latter two vector spaces have

well-defined j = (2`� 1)/2.

In the unperturbed hydrogen atom, all these states would be degenerate. But with the

perturbations, such as the fine structure corrections and the hyperfine splitting interactions

included, the degeneracy is lifted, and only the degeneracy in mf is left. The energy of an

eigenstate with quantum numbers f, j, `, se = sp = 1
2 , for the case where ` > 0, is given by

(see Ref. [31])
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are the energies contributed by the Coulombic potential, fine structure and hyperfine in-

teractions respectively, r is the radial coordinate of the electron, a0 = (me↵)
�1 is the Bohr

radius, and gp ⇡ 5.56 is the g-factor of the proton [32].

As a reminder, in first-order perturbation theory, in the presence of a perturbation V ,

the corrected states are given by
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Here, | 0
pi are the states in our chosen eigenbasis. Note that in this basis our perturbation

is diagonal in each degenerate subspace. Under the perturbation, we say that the states in

this basis “mix” among themselves to give the true eigenstates of the system.

The energy difference between states of different n is much larger than that for those

states with the same principal quantum number. Since the corrections to the eigenstates in
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dominates over the neutrino mediated diagrams that we are interested in. We ultimately

deal with eigenstates of F̂ 2, which do not have definite `, so we need to make sure that the

eigenstate of F̂ 2 is a superposition of eigenstates of L̂2 with ` � 2.

A. Matrix elements of the tree-level potential

In order to extract some features of the tree-level parity violating potential, we write out

the potential here as given in Eqs. (11)-(14), but we suppress most of the dimensionless

constants for the sake of clarity:

V
tree
PNC ⇠

g
2

me


e
�mZr

r
~�e · ~p+

e
�mZr

r
~�p · ~p+ (~�e ⇥ ~�p) · ~r

✓
e
�mZr

r

◆�
. (40)

We are interested in computing the matrix elements of this potential in the space of hydrogen

eigenfunctions. In this section, we simply consider the radial integrals in the matrix elements

since the angular integrals simply give some O(1) number upon evaluation. We define

⌘ ⌘ r/a0, where r is the radial coordinate. The radial part of the wavefunction, close to the

origin, behaves as u(⌘) ⇠ ⌘
`. Given this, we can write the matrix element as an integral:
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Note that, although the above dependence of the wavefunction is only correct near the origin,

we integrate all the way to ⌘ ! 1 because the potential drops very rapidly in magnitude

and so the contribution far away from zero from the wavefunction is negligible anyway.

Terms in the potential of Eq. (40) that have angular dependence make the integral vanish

unless `0 = `±1 (from the properties of the spherical harmonics). Without loss of generality,

we take the smaller of the two to be `, and the larger to be `+ 1. Then the matrix element

goes as (notice that the momentum operator introduces a factor of 1/⌘, as does a gradient)
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B. Matrix elements of the neutrino loop potential

There are two terms in the loop potential (33): the “helicity” term and the spin-cross

term. Once again, we consider only the radial integrals since the angular integrals give some
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Note that, although the above dependence of the wavefunction is only correct near the origin,

we integrate all the way to ⌘ ! 1 because the potential drops very rapidly in magnitude

and so the contribution far away from zero from the wavefunction is negligible anyway.

Terms in the potential of Eq. (40) that have angular dependence make the integral vanish

unless `0 = `±1 (from the properties of the spherical harmonics). Without loss of generality,

we take the smaller of the two to be `, and the larger to be `+ 1. Then the matrix element

goes as (notice that the momentum operator introduces a factor of 1/⌘, as does a gradient)
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B. Matrix elements of the neutrino loop potential

There are two terms in the loop potential (33): the “helicity” term and the spin-cross

term. Once again, we consider only the radial integrals since the angular integrals give some

22

η ≡ r/a0

11 Walter Tangarife (Loyola Chicago)

O(1) number. The radial dependence of the integrands in the matrix elements is roughly

the same, since the momentum operator and the gradient operator have the same radial

structure.

The leading-order dependence of the parity non-conserving loop terms goes like G2
F/mer

6.

Matrix elements for this operator go as

hn`m|V
loop
PNC |n

0
`
0
m

0
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⌘
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�⌘

�
1
n + 1

n0

�⇤
. (43)

In the expression above,
�
1
n + 1

n0

�
⇠ O(1) number, which yields some exponential suppres-

sion. Let us denote this number by nsup. The angular integrals vanish unless `0 = `± 1 and,

like before, we can estimate a naive dependence of the wave function on ↵, me, etc. We

write

hn
0(`+ 1)m0

|V
loop
PNC |n`mi ⇠

↵2

mem4
Za60

R
d⌘ ⌘

2
⌘
`+1

�
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�
⌘
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R
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2`�3 exp(�nsup⌘). (44)

Now, we have the following sub-cases:

1. For ` = 0 and ` = 1: The radial integral does not converge, indicating the failure of

four-Fermi theory as we discussed previously.

2. ` � 2: In this case, the integral in Eq. (44) does converge and four-Fermi theory is

suitable for such states. The result is
↵
2

mem
4
Za

6
0

Z 1

0

d⌘ ⌘
2`�3 exp(�nsup⌘) ⇠ me↵

8

✓
me

mZ
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, (45)

where we have ignored some O(1) constants that depend on `.

In Table I,we compare the tree-level and loop-level matrix elements for different values of

`. For ` = 2, the tree-level matrix element behaves as ↵
9 (me/mZ)

6, while the loop matrix

element goes as ↵
8 (me/mZ)

4. Thus, naively, for ` = 2,

Mtree

Mloop
⇠ ↵

✓
me

mZ

◆2

⇡ 10�13
. (46)

In other words, the effect of the tree-level potential is much smaller than the effect of the loop-

level potential for ` � 2. If we only care about powers of ↵ and me/mZ , then our calculations

suggest that the effect of the loop remains the same as ` � 2, i.e, ⇠ ↵
8 (me/mZ)

4, but the

powers in ↵ and me/mZ in the tree-level effect increase with `, rendering it much smaller.

Thus, to isolate the effects of the loop, we need to consider states for which ` � 2.
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where we have ignored some O(1) constants that depend on `.
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4. Thus, naively, for ` = 2,
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✓
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⇡ 10�13
. (46)

In other words, the effect of the tree-level potential is much smaller than the effect of the loop-

level potential for ` � 2. If we only care about powers of ↵ and me/mZ , then our calculations

suggest that the effect of the loop remains the same as ` � 2, i.e, ⇠ ↵
8 (me/mZ)

4, but the

powers in ↵ and me/mZ in the tree-level effect increase with `, rendering it much smaller.

Thus, to isolate the effects of the loop, we need to consider states for which ` � 2.

23

for   ℓ ≥ 2

× (f (ℓ) ∼ 𝒪(1))



Effect of the neutrino force on the hydrogen atom
Ghosh, Grossman & Tangarife PRD (2020)

Let’s look now at electric and magnetic transitions: Use states with          since 
they can mix with states with          and      

ℓ = 3
ℓ = 2 ℓ = 4

R ≡ Im ( E1PV

M1 )Our goal: To compute
the notation |n, f,mf , j, `i:

|Ai = |4, 3, 3, 5/2, 3i ⌘ 4F5/2,F=3, (47)

|Bi = |4, 3, 3, 7/2, 3i ⌘ 4F7/2,F=3, (48)

|�i = |4, 3, 3, 5/2, 2i ⌘ 4D5/2,F=3 (49)

|Ai and |Bi are eigenstates of F̂ 2 which, in the presence of the neutrino potential, mix with

all other states with f = 3 and mf = 3 to form a true energy eigenstate of hydrogen. Before

adding the neutrino potential, these states have the same ` and hence there can be an M1

transition between them, but no E1 transition. However, once these states are corrected

by the neutrino potential, the resulting eigenstates can have both E1 and M1 transitions

between them because of the small parity violating correction, from which we can calculate

R, as in Eq. (6).

Consider now the state |�i. This state has different parity than the two base states

|Ai and |Bi while having the same f and mf quantum numbers and, hence, can mix with

them. Before we proceed, we note that other states with the same values of f and mf , such

as |5, 3, 3, 7/2, 4i for instance, mix very weakly with our base states because the quantum

number n puts these states much farther away in energy than |�i. We therefore ignore the

contribution of these states in the perturbation expansion. Lastly, we must keep in mind

that the matrix element of a parity-violating operator between states with the same parity

is zero. Therefore, the base states do not get any corrections from each other since they

have the same ` = 3.

Our aim is to compute

hA
0
|Electric Dipole|B0

i

hA0|Magnetic Dipole|B0i
⇡

hA
0
|Electric Dipole|B0

i

hA|Magnetic Dipole|Bi
(50)

where |A
0
i and |B

0
i are the true eigenstates of hydrogen, obtained from |Ai and |Bi using

the perturbation expansion as in Eq. (39). For details of the calculation, see appendix B.

The approximation in Eq. (50) holds because the selection rules permit magnetic transitions

to occur between states of the same parity, so perturbative corrections, which are much

smaller than the unperturbed transition amplitude, can be ignored.

Using the electric and magnetic dipole moment operators (details in the appendix), we

compute the inner products by performing the integrals involving the hydrogen atom wave-
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Appendix B: Details of the calculation in Sec. VII

In Sec. VII, we computed R, for the E1 and M1 transitions between the “base” states |Ai

and |Bi. Both of these states were corrected by the “correction state” |�i. Other corrections

were ignored because they are much smaller than the correction due to |�i.

Using the machinery of angular-momentum addition, we can write

|Ai = |4, 3, 3, 5/2, 3i ⌘ �
1
p
7
 432|""i+

r
6

7
 433|#"i, (B1)

|Bi = |4, 3, 3, 7/2, 3i ⌘ �
1

2

r
3

7
 432|""i+

1

2

r
7

2
 433|"#i �

1

2
p
14
 433|#"i,

|�i = |4, 3, 3, 5/2, 2i ⌘  422|""i,

where  nlm are the unperturbed energy eigenstates of hydrogen, given by

 nlm = hr, ✓,�|nlmi =

s✓
2

na0

◆3 (n� l � 1)!

2n[(n+ l)!]3
e
�r/na0

⇥
L
2l+1
n�l�1(2r/na0)

⇤
Y

m
l (✓,�). (B2)

Using these three states, we can write the corrected states in the spirit of Eq. (39) as:

|A
0
i = |Ai+

h�|VPNC |Ai

EA � E�
|�i+ · · · = |Ai+ CA�|�i+ · · · , (B3)

where CA� is the correction coefficient. Similarly,

|B
0
i = |Bi+

h�|VPNC |Bi

EB � E�
|�i+ · · · = |Bi+ CB�|�i+ . . . (B4)

In the end, we add the contributions from both terms in the potential. Our states therefore

become

|A
0
i = |Bi+ (Csc

A� + C
h
A�)|�i+ · · · , (B5)

|B
0
i = |Bi+ (Csc

B� + C
h
B�)|�i+ · · · . (B6)

Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).
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R, as in Eq. (6).
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|Ai and |Bi while having the same f and mf quantum numbers and, hence, can mix with

them. Before we proceed, we note that other states with the same values of f and mf , such

as |5, 3, 3, 7/2, 4i for instance, mix very weakly with our base states because the quantum

number n puts these states much farther away in energy than |�i. We therefore ignore the

contribution of these states in the perturbation expansion. Lastly, we must keep in mind

that the matrix element of a parity-violating operator between states with the same parity

is zero. Therefore, the base states do not get any corrections from each other since they

have the same ` = 3.

Our aim is to compute
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where |A
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i and |B
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i are the true eigenstates of hydrogen, obtained from |Ai and |Bi using

the perturbation expansion as in Eq. (39). For details of the calculation, see appendix B.

The approximation in Eq. (50) holds because the selection rules permit magnetic transitions

to occur between states of the same parity, so perturbative corrections, which are much

smaller than the unperturbed transition amplitude, can be ignored.

Using the electric and magnetic dipole moment operators (details in the appendix), we

compute the inner products by performing the integrals involving the hydrogen atom wave-

25

the notation |n, f,mf , j, `i:

|Ai = |4, 3, 3, 5/2, 3i ⌘ 4F5/2,F=3, (47)

|Bi = |4, 3, 3, 7/2, 3i ⌘ 4F7/2,F=3, (48)

|�i = |4, 3, 3, 5/2, 2i ⌘ 4D5/2,F=3 (49)

|Ai and |Bi are eigenstates of F̂ 2 which, in the presence of the neutrino potential, mix with

all other states with f = 3 and mf = 3 to form a true energy eigenstate of hydrogen. Before

adding the neutrino potential, these states have the same ` and hence there can be an M1

transition between them, but no E1 transition. However, once these states are corrected

by the neutrino potential, the resulting eigenstates can have both E1 and M1 transitions

between them because of the small parity violating correction, from which we can calculate

R, as in Eq. (6).

Consider now the state |�i. This state has different parity than the two base states

|Ai and |Bi while having the same f and mf quantum numbers and, hence, can mix with

them. Before we proceed, we note that other states with the same values of f and mf , such

as |5, 3, 3, 7/2, 4i for instance, mix very weakly with our base states because the quantum

number n puts these states much farther away in energy than |�i. We therefore ignore the

contribution of these states in the perturbation expansion. Lastly, we must keep in mind

that the matrix element of a parity-violating operator between states with the same parity

is zero. Therefore, the base states do not get any corrections from each other since they

have the same ` = 3.

Our aim is to compute

hA
0
|Electric Dipole|B0

i

hA0|Magnetic Dipole|B0i
⇡

hA
0
|Electric Dipole|B0

i

hA|Magnetic Dipole|Bi
(50)

where |A
0
i and |B

0
i are the true eigenstates of hydrogen, obtained from |Ai and |Bi using

the perturbation expansion as in Eq. (39). For details of the calculation, see appendix B.

The approximation in Eq. (50) holds because the selection rules permit magnetic transitions

to occur between states of the same parity, so perturbative corrections, which are much

smaller than the unperturbed transition amplitude, can be ignored.

Using the electric and magnetic dipole moment operators (details in the appendix), we

compute the inner products by performing the integrals involving the hydrogen atom wave-

25

Appendix B: Details of the calculation in Sec. VII

In Sec. VII, we computed R, for the E1 and M1 transitions between the “base” states |Ai

and |Bi. Both of these states were corrected by the “correction state” |�i. Other corrections

were ignored because they are much smaller than the correction due to |�i.

Using the machinery of angular-momentum addition, we can write

|Ai = |4, 3, 3, 5/2, 3i ⌘ �
1
p
7
 432|""i+

r
6

7
 433|#"i, (B1)

|Bi = |4, 3, 3, 7/2, 3i ⌘ �
1

2

r
3

7
 432|""i+

1

2

r
7

2
 433|"#i �

1

2
p
14
 433|#"i,

|�i = |4, 3, 3, 5/2, 2i ⌘  422|""i,

where  nlm are the unperturbed energy eigenstates of hydrogen, given by

 nlm = hr, ✓,�|nlmi =

s✓
2

na0

◆3 (n� l � 1)!

2n[(n+ l)!]3
e
�r/na0

⇥
L
2l+1
n�l�1(2r/na0)

⇤
Y

m
l (✓,�). (B2)

Using these three states, we can write the corrected states in the spirit of Eq. (39) as:

|A
0
i = |Ai+

h�|VPNC |Ai

EA � E�
|�i+ · · · = |Ai+ CA�|�i+ · · · , (B3)

where CA� is the correction coefficient. Similarly,

|B
0
i = |Bi+

h�|VPNC |Bi

EB � E�
|�i+ · · · = |Bi+ CB�|�i+ . . . (B4)

In the end, we add the contributions from both terms in the potential. Our states therefore

become

|A
0
i = |Bi+ (Csc

A� + C
h
A�)|�i+ · · · , (B5)

|B
0
i = |Bi+ (Csc

B� + C
h
B�)|�i+ · · · . (B6)

Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).

33

Appendix B: Details of the calculation in Sec. VII

In Sec. VII, we computed R, for the E1 and M1 transitions between the “base” states |Ai

and |Bi. Both of these states were corrected by the “correction state” |�i. Other corrections

were ignored because they are much smaller than the correction due to |�i.

Using the machinery of angular-momentum addition, we can write

|Ai = |4, 3, 3, 5/2, 3i ⌘ �
1
p
7
 432|""i+

r
6

7
 433|#"i, (B1)

|Bi = |4, 3, 3, 7/2, 3i ⌘ �
1

2

r
3

7
 432|""i+

1

2

r
7

2
 433|"#i �

1

2
p
14
 433|#"i,

|�i = |4, 3, 3, 5/2, 2i ⌘  422|""i,

where  nlm are the unperturbed energy eigenstates of hydrogen, given by

 nlm = hr, ✓,�|nlmi =

s✓
2

na0

◆3 (n� l � 1)!

2n[(n+ l)!]3
e
�r/na0

⇥
L
2l+1
n�l�1(2r/na0)

⇤
Y

m
l (✓,�). (B2)

Using these three states, we can write the corrected states in the spirit of Eq. (39) as:

|A
0
i = |Ai+

h�|VPNC |Ai

EA � E�
|�i+ · · · = |Ai+ CA�|�i+ · · · , (B3)

where CA� is the correction coefficient. Similarly,

|B
0
i = |Bi+

h�|VPNC |Bi

EB � E�
|�i+ · · · = |Bi+ CB�|�i+ . . . (B4)

In the end, we add the contributions from both terms in the potential. Our states therefore

become

|A
0
i = |Bi+ (Csc

A� + C
h
A�)|�i+ · · · , (B5)

|B
0
i = |Bi+ (Csc

B� + C
h
B�)|�i+ · · · . (B6)

Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).

33

Appendix B: Details of the calculation in Sec. VII

In Sec. VII, we computed R, for the E1 and M1 transitions between the “base” states |Ai

and |Bi. Both of these states were corrected by the “correction state” |�i. Other corrections

were ignored because they are much smaller than the correction due to |�i.

Using the machinery of angular-momentum addition, we can write

|Ai = |4, 3, 3, 5/2, 3i ⌘ �
1
p
7
 432|""i+

r
6

7
 433|#"i, (B1)

|Bi = |4, 3, 3, 7/2, 3i ⌘ �
1

2

r
3

7
 432|""i+

1

2

r
7

2
 433|"#i �

1

2
p
14
 433|#"i,

|�i = |4, 3, 3, 5/2, 2i ⌘  422|""i,

where  nlm are the unperturbed energy eigenstates of hydrogen, given by

 nlm = hr, ✓,�|nlmi =

s✓
2

na0

◆3 (n� l � 1)!

2n[(n+ l)!]3
e
�r/na0

⇥
L
2l+1
n�l�1(2r/na0)

⇤
Y

m
l (✓,�). (B2)

Using these three states, we can write the corrected states in the spirit of Eq. (39) as:

|A
0
i = |Ai+

h�|VPNC |Ai

EA � E�
|�i+ · · · = |Ai+ CA�|�i+ · · · , (B3)

where CA� is the correction coefficient. Similarly,

|B
0
i = |Bi+

h�|VPNC |Bi

EB � E�
|�i+ · · · = |Bi+ CB�|�i+ . . . (B4)

In the end, we add the contributions from both terms in the potential. Our states therefore

become

|A
0
i = |Bi+ (Csc

A� + C
h
A�)|�i+ · · · , (B5)

|B
0
i = |Bi+ (Csc

B� + C
h
B�)|�i+ · · · . (B6)

Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).

33

13 Walter Tangarife (Loyola Chicago)



Effect of the neutrino force on the hydrogen atomthe notation |n, f,mf , j, `i:

|Ai = |4, 3, 3, 5/2, 3i ⌘ 4F5/2,F=3, (47)

|Bi = |4, 3, 3, 7/2, 3i ⌘ 4F7/2,F=3, (48)

|�i = |4, 3, 3, 5/2, 2i ⌘ 4D5/2,F=3 (49)

|Ai and |Bi are eigenstates of F̂ 2 which, in the presence of the neutrino potential, mix with

all other states with f = 3 and mf = 3 to form a true energy eigenstate of hydrogen. Before

adding the neutrino potential, these states have the same ` and hence there can be an M1

transition between them, but no E1 transition. However, once these states are corrected

by the neutrino potential, the resulting eigenstates can have both E1 and M1 transitions

between them because of the small parity violating correction, from which we can calculate

R, as in Eq. (6).

Consider now the state |�i. This state has different parity than the two base states

|Ai and |Bi while having the same f and mf quantum numbers and, hence, can mix with

them. Before we proceed, we note that other states with the same values of f and mf , such

as |5, 3, 3, 7/2, 4i for instance, mix very weakly with our base states because the quantum

number n puts these states much farther away in energy than |�i. We therefore ignore the

contribution of these states in the perturbation expansion. Lastly, we must keep in mind

that the matrix element of a parity-violating operator between states with the same parity

is zero. Therefore, the base states do not get any corrections from each other since they

have the same ` = 3.

Our aim is to compute

hA
0
|Electric Dipole|B0

i

hA0|Magnetic Dipole|B0i
⇡

hA
0
|Electric Dipole|B0

i

hA|Magnetic Dipole|Bi
(50)

where |A
0
i and |B

0
i are the true eigenstates of hydrogen, obtained from |Ai and |Bi using

the perturbation expansion as in Eq. (39). For details of the calculation, see appendix B.

The approximation in Eq. (50) holds because the selection rules permit magnetic transitions

to occur between states of the same parity, so perturbative corrections, which are much

smaller than the unperturbed transition amplitude, can be ignored.

Using the electric and magnetic dipole moment operators (details in the appendix), we

compute the inner products by performing the integrals involving the hydrogen atom wave-
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Using these three states, we can write the corrected states in the spirit of Eq. (39) as:

|A
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where CA� is the correction coefficient. Similarly,
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|�i+ · · · = |Bi+ CB�|�i+ . . . (B4)

In the end, we add the contributions from both terms in the potential. Our states therefore
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h
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Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).
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So we can finally compute

R = Im ( E1PV

M1 ) = Im ( ⟨A′￼| ̂P |B′￼⟩
⟨A′￼|M̂ |B′￼⟩ ) ≈ (−

1
4

+ s2
W +

1
2

|Uei |
2 ) −7.7 × 10−33 + 3.7 × 10−32 (

mνi

α me )
2

The rotation due to the neutrino force would be Φ ∼ 10−32 rads

13 Walter Tangarife (Loyola Chicago)



Effect of the neutrino force on the hydrogen atomthe notation |n, f,mf , j, `i:

|Ai = |4, 3, 3, 5/2, 3i ⌘ 4F5/2,F=3, (47)

|Bi = |4, 3, 3, 7/2, 3i ⌘ 4F7/2,F=3, (48)

|�i = |4, 3, 3, 5/2, 2i ⌘ 4D5/2,F=3 (49)

|Ai and |Bi are eigenstates of F̂ 2 which, in the presence of the neutrino potential, mix with

all other states with f = 3 and mf = 3 to form a true energy eigenstate of hydrogen. Before

adding the neutrino potential, these states have the same ` and hence there can be an M1

transition between them, but no E1 transition. However, once these states are corrected

by the neutrino potential, the resulting eigenstates can have both E1 and M1 transitions

between them because of the small parity violating correction, from which we can calculate

R, as in Eq. (6).

Consider now the state |�i. This state has different parity than the two base states

|Ai and |Bi while having the same f and mf quantum numbers and, hence, can mix with

them. Before we proceed, we note that other states with the same values of f and mf , such

as |5, 3, 3, 7/2, 4i for instance, mix very weakly with our base states because the quantum

number n puts these states much farther away in energy than |�i. We therefore ignore the

contribution of these states in the perturbation expansion. Lastly, we must keep in mind

that the matrix element of a parity-violating operator between states with the same parity

is zero. Therefore, the base states do not get any corrections from each other since they

have the same ` = 3.

Our aim is to compute

hA
0
|Electric Dipole|B0

i

hA0|Magnetic Dipole|B0i
⇡

hA
0
|Electric Dipole|B0

i

hA|Magnetic Dipole|Bi
(50)

where |A
0
i and |B

0
i are the true eigenstates of hydrogen, obtained from |Ai and |Bi using

the perturbation expansion as in Eq. (39). For details of the calculation, see appendix B.

The approximation in Eq. (50) holds because the selection rules permit magnetic transitions

to occur between states of the same parity, so perturbative corrections, which are much

smaller than the unperturbed transition amplitude, can be ignored.

Using the electric and magnetic dipole moment operators (details in the appendix), we

compute the inner products by performing the integrals involving the hydrogen atom wave-
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In Sec. VII, we computed R, for the E1 and M1 transitions between the “base” states |Ai

and |Bi. Both of these states were corrected by the “correction state” |�i. Other corrections

were ignored because they are much smaller than the correction due to |�i.
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Using these three states, we can write the corrected states in the spirit of Eq. (39) as:

|A
0
i = |Ai+

h�|VPNC |Ai

EA � E�
|�i+ · · · = |Ai+ CA�|�i+ · · · , (B3)

where CA� is the correction coefficient. Similarly,

|B
0
i = |Bi+

h�|VPNC |Bi

EB � E�
|�i+ · · · = |Bi+ CB�|�i+ . . . (B4)

In the end, we add the contributions from both terms in the potential. Our states therefore

become

|A
0
i = |Bi+ (Csc

A� + C
h
A�)|�i+ · · · , (B5)

|B
0
i = |Bi+ (Csc

B� + C
h
B�)|�i+ · · · . (B6)

Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).
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Here C
sc is the correction coefficient for the spin-cross term alone, while C

h is the coefficient

for the “helicity” term alone.

Using the two terms in V
loop
PNC(r), we compute the corrections up to second order in the

small parameter ⌫i. To calculate the energy differences between the states, we use Eq. (35).

33

So we can finally compute

R = Im ( E1PV

M1 ) = Im ( ⟨A′￼| ̂P |B′￼⟩
⟨A′￼|M̂ |B′￼⟩ ) ≈ (−

1
4

+ s2
W +

1
2

|Uei |
2 ) −7.7 × 10−33 + 3.7 × 10−32 (

mνi

α me )
2

The rotation due to the neutrino force would be Φ ∼ 10−32 rads

This is about 23 orders of magnitude smaller than what can be 
measured in the lab (with Cs) Lintz, Guéna & Bouchiat (2006)

13 Walter Tangarife (Loyola Chicago)



Not yet! 


The measurement of optical rotation due to the neutrino loop is extremely challenging given 
the resolutions we can achieve today. 
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We move to calculate the neutrino-exchange in the presence of a background of 
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Vacuum Background

background should be modified as follows:

Sf (k) = (k · � + mf ) ·

"
i

k2 � m2
f

� 2⇡�
�
k2

� m2
f

�
⇥
�
±k0

�
nf± (k)

#
, (2)

where ⇥ is the Heaviside theta function, and nf± (k) denote the number densities of background
f and f (anti-fermion) in the phase space. Without the background (i.e., nf± = 0), we recover
the familiar propagator Sf (k) = i/(k · � � mf ) in the vacuum.

Using the modified propagator to compute neutrino forces in the background of a monochro-
matic neutrino flux, we obtain the following potential:17

V ⇡ �
1

⇡
G2

F�0E⌫
1

r

n
cos2

⇣↵

2

⌘
cos [(1 � cos ↵) E⌫r] + sin2

⇣↵

2

⌘
cos [(1 + cos ↵) E⌫r]

o
, (3)

where �0 is the neutrino flux and ↵ denotes the angle between the flux and the vector r. In the
↵ = 0 limit, the potential is simply

V ⇡ �
1

⇡
G2

F�0E⌫
1

r
, (4)

which implies a huge enhancement—the potential is now proportional to 1/r instead of 1/r5.
However, one should note that Eq. (3) is highly oscillatory if ↵ 6= 0 and E⌫r � 1. So in

realistic scenarios where ↵ cannot be perfectly zero and E⌫ is typically much larger than r�1,
the 1/r behavior can be easily smeared out. This was also pointed out in Ref. [18]. Nevertheless,
if future experiments could achieve measurements with very small ↵ satisfying17

↵2 . ⇡

�(E⌫r)
, (5)

then the strong enhancement and the 1/r form could still be probed.

4 Neutrino forces and dark matter

Figure 4 – The Sommerfeld enhancement in DM annihilation modified by neutrino forces. The left panel shows
the entire mass range whereas the right panels show zoom-in views of the two highest peaks. For further details,
see Ref. [20].

Neutrino forces might also have important implications for cosmology and dark matter (DM).
Neutrinos, if interacting with DM, can mediate a long-range force between DM particles. It has
been shown that,19 due to the long-range feature of neutrino forces, the cross section of DM
self-scattering could be enhanced when the scattering is soft. Therefore, neutrino forces could
be responsible for DM self-interactions used to resolve problems in the small-scale structure
formation.
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We consider backgrounds with a specific direction, e.g. solar, supernova, and reactor  
neutrinos
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Figure 2. An illustration of neutrino forces between two objects in a directional neutrino flux back-
ground.

neutrinos can also be assumed to travel in a fixed direction if the sizes of the reactor core

and the detector are much smaller than the distance between them. In addition, we also

consider a galactic (10 kpc) supernova neutrino burst. Although such an event is rare (2 ⇠ 3

times per century), its neutrino flux is orders of magnitude higher than solar neutrinos with

an extremely small angular spread, providing a unique opportunity for future experiments to

search for such forces.

In order to compute the e↵ect of these backgrounds on the neutrino force, we make two

well-motivated assumptions:

1. We assume that the neutrino flux has a directional distribution with all neutrinos moving

in the same direction. For solar and supernova neutrinos, this is a good approximation,

whereas for reactor neutrinos it requires that the size of the reactor core and detector

are much smaller than the distance between them.

2. We assume that the neutrino flux is monochromatic, i.e., all neutrinos in flux have the

same energy. Although this is not exactly true, it is worth mentioning that among the

four well-measured solar neutrino spectra (8B, 7Be, pep, pp), two of them (7Be, pep)

are indeed monochromatic.

With these assumptions of directionality and monochromaticity, we consider the following

distribution:

n± (k) = (2⇡)3 �
3 (k � k0) �0 , (4.1)

where �0 =
R

n± (k) d
3
k/ (2⇡)3 is the flux of neutrinos. Although actual reactor and solar

neutrino spectra are not monochromatic, our result derived below based on Eq. (4.1) can be

applied to a generic spectrum by further integrating over k0, weighted by the corresponding

�0, since any spectrum can be expressed as a superposition of delta functions. For the

treatment of a directional spectrum with a finite energy spread, see Appendix C.

The anisotropic background leads to an anisotropic scattering amplitude, and hence an

anisotropic potential that depends not only on r but also on the angle between k0 and r,

denoted by ↵ (cf. Fig. 2). Without loss of generality, we assume k0 is aligned with the z-axis
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re-derivation of the modified propagator.) We then have:

S⌫(k) = (/k + m⌫)

⇢
i

k2 � m2
⌫ + i✏

� 2⇡�
�
k

2
� m

2
⌫

� ⇥
⇥
�
k

0
�
n+ (k) + ⇥

�
�k

0
�
n� (k)

⇤�
, (2.3)

where ✏ ! 0+, ⇥ is the Heaviside theta function, and n± (k) denote the momentum distribu-

tions of the neutrinos and anti-neutrinos respectively, such that the integrals
R

n± (k) d
3
k/(2⇡)3

correspond to their respective number densities. The first part is the usual fermion propa-

gator in vacuum while the second part accounts for the background e↵ect. The second part

might seem counter-intuitive in the sense that the Dirac delta function requires the neutrino

to be on-shell while, in Fig. 1, this on-shell neutrino is used to connect two spatially sepa-

rated particles. To understand this e↵ect, one should keep in mind that when k in Eq. (2.3)

is fixed, the uncertainty principle dictates that the neutrino cannot be localized and is spread

out over space. So theoretically, the propagator’s second (background) term, just like the

vacuum part, can mediate momentum over a large distance.

According to the Born approximation, the e↵ective potential is the Fourier transform of

the low-energy elastic scattering amplitude of �1 with �2,

V (r) = �

Z
d

3
q

(2⇡)3
e
iq·r

A(q) . (2.4)

Here, A(q) is the scattering amplitude in the NR limit, which should be computed by inte-

grating the neutrino loop in Fig. 1 using the modified neutrino propagator in Eq. (2.3):

iA(q) =
G

2
F g

1
V g

2
V

2

Z
d

4
k

(2⇡)4
Tr

⇥
�

0 (1 � �5) S⌫(k)�0 (1 � �5) S⌫ (k + q)
⇤
. (2.5)

Using the NR approximation we have q ⇡ (0,q), thus the amplitude A only depends on the

three-momentum q. Substituting Eq. (2.3) into Eq. (2.5), one can see that when both neutrino

propagators in Eq. (2.5) take the first term in the curly bracket of Eq. (2.3), it leads to the

vacuum potential V0(r). When both propagators take the second term, the result vanishes, as

we show in Appendix B. The background e↵ect comes from cross terms, being proportional

to n±. We denote the background contribution to A(q) by Abkg(q) and, correspondingly, the

contribution to V (r) by Vbkg(r):

A(q) = A0(q) + Abkg(q) , V (r) = V0(r) + Vbkg(r) . (2.6)

Notice that there is no interference between the vacuum and the background amplitudes in our

calculation because, unlike computing cross sections, here we do not need to square the total

amplitude. The background contribution Abkg(q), after some calculations in Appendix B,
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Figure 3. Evolution of the directional background potential with the distance for ↵ = 0, 30�, 60�

and 90�. Notice that the distance r is in the unit of E
�1
⌫ while the background potential Vbkg(r, ↵) is

in the unit of E⌫ . In addition, an overall dimensionless factor, G
2
F g

1
V g

2
V �0E⌫ , has been omitted for

the background potential.

where H0 is the zeroth-order Struve H function.1 For generic values of ↵, though we cannot

carry out the integration analytically, Eq. (4.8) can be readily used to compute I (`, ↵) nu-

merically. We have numerically verified that
R

I (`, ↵) dc↵ can reproduce the r
�4 dependence

in Eq. (2.8), which is expected when Eq. (2.8) is applied to an isotropic and monochromatic

flux. For illustration, in Fig. 3 we show the evolution of the directional background potential

Vbkg with the distance r for ↵ = 0, ⇡/6, ⇡/3 and ⇡/2.

At long distances (` � 1), the numerical evaluation of the double integral in Eq. (4.8) is

computationally expensive. We find that I(`, ↵) has a simple analytical expression for ` � 1:

I (` � 1, ↵) =
⇡

2

`
cos2

⇣
↵

2

⌘
cos [(1 � cos ↵) `] +

⇡
2

`
sin2

⇣
↵

2

⌘
cos [(1 + cos ↵) `] . (4.11)

The analytical formula in Eq. (4.11) is very e�cient to compute the background potential at

a long distance. In Fig. 4 we compare the numerical results computed from Eq. (4.8) with

1
We note that Mathematica contains some unidentified bug leading to incorrect results of integrals involving

the Struve H function, e.g.
R 1

0
H0(

p
1� z2z) dz should be nonzero while Integrate in Mathematica only

produces a vanishing result. The bug has been confirmed by the developers of Mathematica.
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Figure 4. Comparison between the numerical results of ` ⇥ I(`, ↵) computed from Eq. (4.8) (blue
dotted points) and the analytical results computed from Eq. (4.11) (red solid line) for ↵ = 30�, ↵ = 45�,
↵ = 60� and ↵ = 90�. They match excellently at large distances (i.e., r � E

�1
⌫ ).

the analytical results from Eq. (4.11). It can been seen that they match extremely well for

` � 1. Recalling ` = rE⌫ the background potential at a long distance is given by

Vbkg

�
r � E
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⌫ , ↵
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. (4.12)

We further consider the small ↵ limit (↵ ⌧ 1 while E⌫r↵
2 can be arbitrarily large) and find

Vbkg

�
r � E

�1
⌫ , ↵ ⌧ 1
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✓
↵
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◆
. (4.13)

A few remarks are in order:

• The first term depends on the couplings of the fermions to the neutrinos.
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The resulting background potential at long distance is

Neutrino forces in anisotropic backgrounds

18
Figure 2. An illustration of neutrino forces between two objects in a directional neutrino flux back-
ground.

neutrinos can also be assumed to travel in a fixed direction if the sizes of the reactor core

and the detector are much smaller than the distance between them. In addition, we also

consider a galactic (10 kpc) supernova neutrino burst. Although such an event is rare (2 ⇠ 3

times per century), its neutrino flux is orders of magnitude higher than solar neutrinos with

an extremely small angular spread, providing a unique opportunity for future experiments to

search for such forces.

In order to compute the e↵ect of these backgrounds on the neutrino force, we make two

well-motivated assumptions:

1. We assume that the neutrino flux has a directional distribution with all neutrinos moving

in the same direction. For solar and supernova neutrinos, this is a good approximation,

whereas for reactor neutrinos it requires that the size of the reactor core and detector

are much smaller than the distance between them.

2. We assume that the neutrino flux is monochromatic, i.e., all neutrinos in flux have the

same energy. Although this is not exactly true, it is worth mentioning that among the

four well-measured solar neutrino spectra (8B, 7Be, pep, pp), two of them (7Be, pep)

are indeed monochromatic.

With these assumptions of directionality and monochromaticity, we consider the following

distribution:

n± (k) = (2⇡)3 �
3 (k � k0) �0 , (4.1)

where �0 =
R

n± (k) d
3
k/ (2⇡)3 is the flux of neutrinos. Although actual reactor and solar

neutrino spectra are not monochromatic, our result derived below based on Eq. (4.1) can be

applied to a generic spectrum by further integrating over k0, weighted by the corresponding

�0, since any spectrum can be expressed as a superposition of delta functions. For the

treatment of a directional spectrum with a finite energy spread, see Appendix C.

The anisotropic background leads to an anisotropic scattering amplitude, and hence an

anisotropic potential that depends not only on r but also on the angle between k0 and r,

denoted by ↵ (cf. Fig. 2). Without loss of generality, we assume k0 is aligned with the z-axis
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Figure 3. Evolution of the directional background potential with the distance for ↵ = 0, 30�, 60�

and 90�. Notice that the distance r is in the unit of E
�1
⌫ while the background potential Vbkg(r, ↵) is

in the unit of E⌫ . In addition, an overall dimensionless factor, G
2
F g

1
V g

2
V �0E⌫ , has been omitted for

the background potential.

where H0 is the zeroth-order Struve H function.1 For generic values of ↵, though we cannot

carry out the integration analytically, Eq. (4.8) can be readily used to compute I (`, ↵) nu-

merically. We have numerically verified that
R

I (`, ↵) dc↵ can reproduce the r
�4 dependence

in Eq. (2.8), which is expected when Eq. (2.8) is applied to an isotropic and monochromatic

flux. For illustration, in Fig. 3 we show the evolution of the directional background potential

Vbkg with the distance r for ↵ = 0, ⇡/6, ⇡/3 and ⇡/2.

At long distances (` � 1), the numerical evaluation of the double integral in Eq. (4.8) is

computationally expensive. We find that I(`, ↵) has a simple analytical expression for ` � 1:

I (` � 1, ↵) =
⇡

2

`
cos2

⇣
↵

2

⌘
cos [(1 � cos ↵) `] +

⇡
2

`
sin2

⇣
↵

2

⌘
cos [(1 + cos ↵) `] . (4.11)

The analytical formula in Eq. (4.11) is very e�cient to compute the background potential at

a long distance. In Fig. 4 we compare the numerical results computed from Eq. (4.8) with

1
We note that Mathematica contains some unidentified bug leading to incorrect results of integrals involving

the Struve H function, e.g.
R 1

0
H0(

p
1� z2z) dz should be nonzero while Integrate in Mathematica only

produces a vanishing result. The bug has been confirmed by the developers of Mathematica.
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Figure 4. Comparison between the numerical results of ` ⇥ I(`, ↵) computed from Eq. (4.8) (blue
dotted points) and the analytical results computed from Eq. (4.11) (red solid line) for ↵ = 30�, ↵ = 45�,
↵ = 60� and ↵ = 90�. They match excellently at large distances (i.e., r � E

�1
⌫ ).

the analytical results from Eq. (4.11). It can been seen that they match extremely well for

` � 1. Recalling ` = rE⌫ the background potential at a long distance is given by
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We further consider the small ↵ limit (↵ ⌧ 1 while E⌫r↵
2 can be arbitrarily large) and find
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A few remarks are in order:

• The first term depends on the couplings of the fermions to the neutrinos.

– 17 –

Figure 4. Comparison between the numerical results of ` ⇥ I(`, ↵) computed from Eq. (4.8) (blue
dotted points) and the analytical results computed from Eq. (4.11) (red solid line) for ↵ = 30�, ↵ = 45�,
↵ = 60� and ↵ = 90�. They match excellently at large distances (i.e., r � E

�1
⌫ ).

the analytical results from Eq. (4.11). It can been seen that they match extremely well for

` � 1. Recalling ` = rE⌫ the background potential at a long distance is given by

Vbkg

�
r � E

�1
⌫ , ↵

�
= �

g
1
V g

2
V

⇡
G

2
F �0E⌫

1

r

n
cos2

⇣
↵

2

⌘
cos [(1 � cos ↵) E⌫r]

+ sin2
⇣

↵

2

⌘
cos [(1 + cos ↵) E⌫r]

o
. (4.12)

We further consider the small ↵ limit (↵ ⌧ 1 while E⌫r↵
2 can be arbitrarily large) and find

Vbkg

�
r � E

�1
⌫ , ↵ ⌧ 1

�
= �

g
1
V g

2
V

⇡
G

2
F ⇥ �0E⌫ ⇥

1

r
⇥ cos

✓
↵

2
E⌫r

2

◆
. (4.13)

A few remarks are in order:

• The first term depends on the couplings of the fermions to the neutrinos.

– 17 –

Figure 4. Comparison between the numerical results of ` ⇥ I(`, ↵) computed from Eq. (4.8) (blue
dotted points) and the analytical results computed from Eq. (4.11) (red solid line) for ↵ = 30�, ↵ = 45�,
↵ = 60� and ↵ = 90�. They match excellently at large distances (i.e., r � E

�1
⌫ ).

the analytical results from Eq. (4.11). It can been seen that they match extremely well for

` � 1. Recalling ` = rE⌫ the background potential at a long distance is given by

Vbkg

�
r � E

�1
⌫ , ↵

�
= �

g
1
V g

2
V

⇡
G

2
F �0E⌫

1

r

n
cos2

⇣
↵

2

⌘
cos [(1 � cos ↵) E⌫r]

+ sin2
⇣

↵

2

⌘
cos [(1 + cos ↵) E⌫r]

o
. (4.12)

We further consider the small ↵ limit (↵ ⌧ 1 while E⌫r↵
2 can be arbitrarily large) and find

Vbkg

�
r � E

�1
⌫ , ↵ ⌧ 1

�
= �

g
1
V g

2
V

⇡
G

2
F ⇥ �0E⌫ ⇥

1

r
⇥ cos

✓
↵

2
E⌫r

2

◆
. (4.13)

A few remarks are in order:

• The first term depends on the couplings of the fermions to the neutrinos.

– 17 –

Figure 4. Comparison between the numerical results of ` ⇥ I(`, ↵) computed from Eq. (4.8) (blue
dotted points) and the analytical results computed from Eq. (4.11) (red solid line) for ↵ = 30�, ↵ = 45�,
↵ = 60� and ↵ = 90�. They match excellently at large distances (i.e., r � E

�1
⌫ ).

the analytical results from Eq. (4.11). It can been seen that they match extremely well for

` � 1. Recalling ` = rE⌫ the background potential at a long distance is given by

Vbkg

�
r � E

�1
⌫ , ↵

�
= �

g
1
V g

2
V

⇡
G

2
F �0E⌫

1

r

n
cos2

⇣
↵

2

⌘
cos [(1 � cos ↵) E⌫r]

+ sin2
⇣

↵

2

⌘
cos [(1 + cos ↵) E⌫r]

o
. (4.12)

We further consider the small ↵ limit (↵ ⌧ 1 while E⌫r↵
2 can be arbitrarily large) and find

Vbkg

�
r � E

�1
⌫ , ↵ ⌧ 1

�
= �

g
1
V g

2
V

⇡
G

2
F ⇥ �0E⌫ ⇥

1

r
⇥ cos

✓
↵

2
E⌫r

2

◆
. (4.13)

A few remarks are in order:

• The first term depends on the couplings of the fermions to the neutrinos.

– 17 –

Figure 4. Comparison between the numerical results of ` ⇥ I(`, ↵) computed from Eq. (4.8) (blue
dotted points) and the analytical results computed from Eq. (4.11) (red solid line) for ↵ = 30�, ↵ = 45�,
↵ = 60� and ↵ = 90�. They match excellently at large distances (i.e., r � E

�1
⌫ ).

the analytical results from Eq. (4.11). It can been seen that they match extremely well for

` � 1. Recalling ` = rE⌫ the background potential at a long distance is given by

Vbkg

�
r � E

�1
⌫ , ↵

�
= �

g
1
V g

2
V

⇡
G

2
F �0E⌫

1

r

n
cos2

⇣
↵

2

⌘
cos [(1 � cos ↵) E⌫r]

+ sin2
⇣

↵

2

⌘
cos [(1 + cos ↵) E⌫r]

o
. (4.12)

We further consider the small ↵ limit (↵ ⌧ 1 while E⌫r↵
2 can be arbitrarily large) and find

Vbkg

�
r � E

�1
⌫ , ↵ ⌧ 1

�
= �

g
1
V g

2
V

⇡
G

2
F ⇥ �0E⌫ ⇥

1

r
⇥ cos

✓
↵

2
E⌫r

2

◆
. (4.13)

A few remarks are in order:

• The first term depends on the couplings of the fermions to the neutrinos.

– 17 –

In the limit                  ,

background should be modified as follows:

Sf (k) = (k · � + mf ) ·

"
i

k2 � m2
f

� 2⇡�
�
k2

� m2
f

�
⇥
�
±k0

�
nf± (k)

#
, (2)

where ⇥ is the Heaviside theta function, and nf± (k) denote the number densities of background
f and f (anti-fermion) in the phase space. Without the background (i.e., nf± = 0), we recover
the familiar propagator Sf (k) = i/(k · � � mf ) in the vacuum.

Using the modified propagator to compute neutrino forces in the background of a monochro-
matic neutrino flux, we obtain the following potential:17

V ⇡ �
1

⇡
G2

F�0E⌫
1

r

n
cos2

⇣↵

2

⌘
cos [(1 � cos ↵) E⌫r] + sin2

⇣↵

2

⌘
cos [(1 + cos ↵) E⌫r]

o
, (3)

where �0 is the neutrino flux and ↵ denotes the angle between the flux and the vector r. In the
↵ = 0 limit, the potential is simply

V ⇡ �
1

⇡
G2

F�0E⌫
1

r
, (4)

which implies a huge enhancement—the potential is now proportional to 1/r instead of 1/r5.
However, one should note that Eq. (3) is highly oscillatory if ↵ 6= 0 and E⌫r � 1. So in

realistic scenarios where ↵ cannot be perfectly zero and E⌫ is typically much larger than r�1,
the 1/r behavior can be easily smeared out. This was also pointed out in Ref. [18]. Nevertheless,
if future experiments could achieve measurements with very small ↵ satisfying17

↵2 . ⇡

�(E⌫r)
, (5)

then the strong enhancement and the 1/r form could still be probed.

4 Neutrino forces and dark matter

Figure 4 – The Sommerfeld enhancement in DM annihilation modified by neutrino forces. The left panel shows
the entire mass range whereas the right panels show zoom-in views of the two highest peaks. For further details,
see Ref. [20].

Neutrino forces might also have important implications for cosmology and dark matter (DM).
Neutrinos, if interacting with DM, can mediate a long-range force between DM particles. It has
been shown that,19 due to the long-range feature of neutrino forces, the cross section of DM
self-scattering could be enhanced when the scattering is soft. Therefore, neutrino forces could
be responsible for DM self-interactions used to resolve problems in the small-scale structure
formation.

Taking into account finite size and 
energy spread,

Walter Tangarife (Loyola Chicago)



WEP: possible differences between 
the accelerations of different test 
bodies in the same gravitational 
field.

Can we probe this force with experiments?

19

exp �V/Vgravity hri Refs

Washington2007 3.2 ⇥ 10�16
⇠ 6400 km [48]

Washington1999 3.0 ⇥ 10�9
⇠ 0.3 m [49]

Irvine1985 0.7 ⇥ 10�4 2 � 5 cm [45]
Irvine1985 2.7 ⇥ 10�4 5 � 105 cm [45]
Wuhan2012 10�3

⇠ 2 mm [50]
Wuhan2020 3 ⇥ 10�2

⇠ 0.1 mm [47]
Washington2020 ⇠ 1 52 µm [46]

Future levitated optomechanics ⇠ 104 1 µm [51]

Table 4. Sensitivities of long-range force search experiments.

Experiments testing the WEP look for possible di↵erences between the accelerations of

di↵erent test bodies in the same gravitational field. For example, the gravitational acceleration

on the Earth, a� ⇡ 9.8 m/s2, should be universal for all test bodies at the same location,

independent of the material of the test body. In the presence of a new long-range force whose

couplings to electrons and nucleons are disproportional to their masses, the actual observed

acceleration may violate the universality.

Using Be and Ti as test masses and measuring the di↵erence between their gravitational

accelerations, the Washington experiment group reported the following result in 2007 [48]:

aBe � aTi = (0.6 ± 3.1) ⇥ 10�15 m/s2 (Earth attractor) . (5.1)

Here, the Earth serves as the gravitational attractor. The average distance between particles

in the test body and in the attractor in this case is roughly the radius of the Earth, hri ⇠

6400 km. Dividing the experimental uncertainty in Eq. (5.1) by a� ⇡ 9.8 m/s2, we obtain

�V/Vgravity = 3.2⇥10�16 where Vgravity is the gravitational potential and �V denotes potential

variations due to new forces. This experimental setup is referred to as Washington2007 in

Table 4.

Instead of making use of the Earth’s gravity, one can also employ laboratory attractors.

An earlier experiment conducted by the same group using a 3-ton 238U attractor and test

bodies of Cu and Pb reported [49]:

aCu � aPb = (1.0 ± 2.8) ⇥ 10�15 m/s2 (3-ton 238U attractor) . (5.2)

Note that the uncertainty is close to the one in Eq. (5.1) but the result should be compared

with the gravitational acceleration caused by the 238U attractor, which is 9.2 ⇥ 10�7 m/s2.

The 238U attractor has an annular shape with inner and outer radii of 10.2 cm and 44.6 cm

while the torsion balance is located in its center. Hence the average distance between particles

in the test body and in the attractor in this case is roughly hri ⇠ 0.3 m. This experimental

setup is referred to as Washington1999 in Table 4.

Experiments testing ISL measures the variation of the gravitational attraction between
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 sensitivities

ISL: the variation of the 
gravitational attraction between 

two test bodies when their 
distance varies. 
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Can we probe this force with experiments?
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Solar neutrinos ( )pp
Φ ∼ 6 × 1010 cm−2s−1

Eν ∼ 0.3 MeV
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Figure 5. Neutrino forces in comparison with experimental sensitivities. Here all neutrino sources
are assumed to be ideally point-like and the angular spread is assumed to be su�ciently small to meet
Eq. (4.14). In reality, a sizable angular spread needs to be taken into account thus the above should
be considered as an upper bound of the e↵ect.

r (such as Washington2007) are impossible to have test bodies and attractors all fitted in the

limited space within 1 or 10 meters from the reactor.

For solar neutrinos, this is not a concern. So far, all experiments have r much smaller

than the distance to the Sun. However, one should note that the angle ↵ varies with a period

of 24 hours while a large number of noises are also 24-hour periodic. Hence the ↵ dependence

could be easily submerged in such noises. Nevertheless, we plot the solar neutrino line in

Fig. 5 assuming that it could be resolved among various noises in future experiments.

The solar neutrino line in Fig. 5 is calculated from Eq. (5.3) by considering pp neutrinos

with the flux � = 5.99 ⇥ 1010cm�2s�1 and the highest energy Emax = 0.42 MeV [54]. In the

computation we take E⌫ = 0.3 MeV since the pp neutrino spectrum is not monochromatic.

We have also calculated the background potential of the 7Be solar neutrinos whose flux

is � = 4.84 ⇥ 109 cm�2s�1 with two monochromatic energies being E⌫ = 0.862 MeV and

E⌫ = 0.384 MeV [54]. But the result is the same order of magnitude as that of pp neutrinos.

It might be more feasible to make use of the material dependence feature of neutrino

forces. Since the e↵ective neutrino-proton vector coupling is suppressed by a factor of 1 �

4 sin2
✓W ⇡ 0.05 with respect to the e↵ective neutrino-neutron vector coupling, we can assume

that neutrino forces mainly depend on the neutron number N = A � Z (A: atomic mass

number, Z: proton number) of the material used in test bodies. The contribution of electrons
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Too short 

Reactor neutrinos
Φ ∼ 5 × 1013 cm−2s−1

Eν ∼ 2 MeV
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Not yet! 


The measurement of optical rotation due to the neutrino loop is extremely challenging given 
the resolutions we can achieve today. 


Nonetheless, this calculation, performed for other systems, could lead to somewhat larger 
quantities and the next step would most likely be an application of this idea to many-
electron atoms, beyond the simple hydrogen case. The matrix elements in these atoms are 
amplified by an additional  factor.Z3

Thank you!
21

Can we probe the neutrino force?

On the other hand, a strong neutrino background could significantly enhance neutrino forces. 

In particular, in the small-α limit, the force could be behave as 1/r even in the long-range 
regime.


The neutrino force in the solar or reactor neutrino background is much more experimentally 
accessible than the one in vacuum. Dedicated experimental efforts are called for to check if 
these enhancement factors can be exploit in order to detect the elusive neutrino force. 

Walter Tangarife (Loyola Chicago)
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The propagator

approach than ours. They included the energy spread in the wave packets first and then took

a monochromatic directional flux and fixed ↵ = 0, while we consider the smearing e↵ect by

varying E⌫ and ↵ of the flux. While the details of our analyses are not identical, the results

of the current version of our work are in agreement with the results of Ref. [58]. Yet, our

conclusions have a di↵erent tone. While we emphasize the fact that there is indeed a strong

enhancement when Eq. (4.14) is satisfied, Ref. [58] is worried about the feasibility of designing

experiments that can use it.
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A The background e↵ect on fermion propagators

The neutrino propagator in a background with finite neutrino number density in Eq. (2.3)

can be found in various references including books and reviews on finite temperature field

theory [32–36]. In this appendix, we provide a simple and pedagogical re-derivation of the

formula without using finite temperature field theory, aiming at providing a physical interpre-

tation of the background e↵ect.

Let us start with the propagator of a generic fermion in vacuum, which is defined as

SF (x � y) ⌘ h0|T (x) (y)|0i , (A.1)
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approach than ours. They included the energy spread in the wave packets first and then took

a monochromatic directional flux and fixed ↵ = 0, while we consider the smearing e↵ect by

varying E⌫ and ↵ of the flux. While the details of our analyses are not identical, the results

of the current version of our work are in agreement with the results of Ref. [58]. Yet, our

conclusions have a di↵erent tone. While we emphasize the fact that there is indeed a strong

enhancement when Eq. (4.14) is satisfied, Ref. [58] is worried about the feasibility of designing

experiments that can use it.
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A The background e↵ect on fermion propagators

The neutrino propagator in a background with finite neutrino number density in Eq. (2.3)

can be found in various references including books and reviews on finite temperature field

theory [32–36]. In this appendix, we provide a simple and pedagogical re-derivation of the

formula without using finite temperature field theory, aiming at providing a physical interpre-

tation of the background e↵ect.

Let us start with the propagator of a generic fermion in vacuum, which is defined as

SF (x � y) ⌘ h0|T (x) (y)|0i , (A.1)
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The last step is simply the reverse process of computing the contour integral of p
0, with the

underlying assumption that x
0

> y
0. For x

0
< y

0, the time ordering guarantees the same

result.

Now we shall replace |0i with a background state. Let us first consider a single-particle

state which contains a particle with an almost certain position and an almost certain momen-

tum. The two cannot be simultaneously fixed at exact values due to the uncertainty principle,

but one can nevertheless introduce a wave package function w(p) so that both w(p) and its
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where the last step is defined as the normalization condition of w(p).
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where we have used ap|wi = w(p)|0i. Note that w(p) has been defined in such a way that

the particle’s position and momentum are nearly fixed at certain values (say x0 and p0). One

can perform spatial translation of the wave package w(p) ! w�x(p) ⌘ e
ip·�x

w(p) so that

its position is changed to x0 + �x while the momentum is unchanged. Now, if we randomly

choose �x with a uniform probability distribution in a large volume V (much larger than the

distribution of each wave package), the position of the particle would be evenly smeared in
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Combining Eq. (A.9) with the vacuum part in Eq. (A.4), we obtain
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For an anti-particle background, the above calculation is similar except that some minus signs

are flipped. In the presence of both particles and anti-particles in the background, we obtain
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where SF (p) is the propagator in the momentum space [i.e. the Fourier transform of SF (x�y)],

the prefactor
�
/p + m

�
can be inferred from the vacuum propagator. The result is the same

as the fermion propagator derived in finite temperature field theory.

From the above calculation, one can see that the background e↵ect comes from the second

term in Eq. (A.6), proportional to hw|a
†
kap|wi. Recall that the annihilation operator ap acting

on |wi can be interpreted as reducing one particle in the background. Hence hw|a
†
kap|wi

corresponds to first absorbing a particle of momentum p from the background (ap|wi =

w(p)|0i), and returning a particle of momentum k back to the background. Smearing the

single particle state in Eq. (A.8) leads to �
3(p� k), which guarantees that the particle being

returned has the same momentum as the one being absorbed.

Intuitively, the modified propagator in Eq. (2.3) can be understood as the vacuum ex-

pectation value of two fermion fields with the vacuum state |0i replaced by the modified

background state |wi, which is the vacuum equipped with some on-shell background fermions.

Then the Wick contraction can be carried out not only between the two internal fermion fields

(leading to the vacuum propagator), but also among the internal fields and the background

fermions (leading to the modified term). Therefore, the modified term is naturally propor-

tional to the number density of background fermions, with the factor 2⇡�(p2
� m

2)⇥(p0)
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approach than ours. They included the energy spread in the wave packets first and then took

a monochromatic directional flux and fixed ↵ = 0, while we consider the smearing e↵ect by

varying E⌫ and ↵ of the flux. While the details of our analyses are not identical, the results

of the current version of our work are in agreement with the results of Ref. [58]. Yet, our

conclusions have a di↵erent tone. While we emphasize the fact that there is indeed a strong

enhancement when Eq. (4.14) is satisfied, Ref. [58] is worried about the feasibility of designing

experiments that can use it.
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A The background e↵ect on fermion propagators

The neutrino propagator in a background with finite neutrino number density in Eq. (2.3)

can be found in various references including books and reviews on finite temperature field

theory [32–36]. In this appendix, we provide a simple and pedagogical re-derivation of the
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where we have used ap|wi = w(p)|0i. Note that w(p) has been defined in such a way that

the particle’s position and momentum are nearly fixed at certain values (say x0 and p0). One

can perform spatial translation of the wave package w(p) ! w�x(p) ⌘ e
ip·�x

w(p) so that

its position is changed to x0 + �x while the momentum is unchanged. Now, if we randomly

choose �x with a uniform probability distribution in a large volume V (much larger than the

distribution of each wave package), the position of the particle would be evenly smeared in

V . For w
⇤(k)w(p) in Eq. (A.7), the smearing leads to
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where in the last step we have identified |w(p)|2/V as n+(p) because
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(2⇡)3 |w(p)|2 = 1 and

the number density after smearing is
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Combining Eq. (A.9) with the vacuum part in Eq. (A.4), we obtain

SF /

Z
d

4
p

(2⇡)4
e
�ip·(x�y)

⇢
i

p2 � m2 + i✏
� (2⇡)�

�
p
2
� m

2
�
⇥
�
p
0
�
n+(p)

�
. (A.10)

For an anti-particle background, the above calculation is similar except that some minus signs

are flipped. In the presence of both particles and anti-particles in the background, we obtain
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where SF (p) is the propagator in the momentum space [i.e. the Fourier transform of SF (x�y)],

the prefactor
�
/p + m

�
can be inferred from the vacuum propagator. The result is the same

as the fermion propagator derived in finite temperature field theory.

From the above calculation, one can see that the background e↵ect comes from the second

term in Eq. (A.6), proportional to hw|a
†
kap|wi. Recall that the annihilation operator ap acting

on |wi can be interpreted as reducing one particle in the background. Hence hw|a
†
kap|wi

corresponds to first absorbing a particle of momentum p from the background (ap|wi =

w(p)|0i), and returning a particle of momentum k back to the background. Smearing the

single particle state in Eq. (A.8) leads to �
3(p� k), which guarantees that the particle being

returned has the same momentum as the one being absorbed.

Intuitively, the modified propagator in Eq. (2.3) can be understood as the vacuum ex-

pectation value of two fermion fields with the vacuum state |0i replaced by the modified

background state |wi, which is the vacuum equipped with some on-shell background fermions.

Then the Wick contraction can be carried out not only between the two internal fermion fields

(leading to the vacuum propagator), but also among the internal fields and the background

fermions (leading to the modified term). Therefore, the modified term is naturally propor-

tional to the number density of background fermions, with the factor 2⇡�(p2
� m

2)⇥(p0)
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approach than ours. They included the energy spread in the wave packets first and then took

a monochromatic directional flux and fixed ↵ = 0, while we consider the smearing e↵ect by

varying E⌫ and ↵ of the flux. While the details of our analyses are not identical, the results

of the current version of our work are in agreement with the results of Ref. [58]. Yet, our

conclusions have a di↵erent tone. While we emphasize the fact that there is indeed a strong

enhancement when Eq. (4.14) is satisfied, Ref. [58] is worried about the feasibility of designing

experiments that can use it.
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A The background e↵ect on fermion propagators

The neutrino propagator in a background with finite neutrino number density in Eq. (2.3)

can be found in various references including books and reviews on finite temperature field

theory [32–36]. In this appendix, we provide a simple and pedagogical re-derivation of the

formula without using finite temperature field theory, aiming at providing a physical interpre-

tation of the background e↵ect.

Let us start with the propagator of a generic fermion in vacuum, which is defined as

SF (x � y) ⌘ h0|T (x) (y)|0i , (A.1)

where T indicates that it is a time-ordered product. Using

 =

Z
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3
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s
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s(p)e�ip·x + b
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i
, (A.2)

where we follow the standard notation of Ref. [59], and assuming x
0

> y
0 so that T can be

removed, we obtain
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where for brevity we have neglected u
s, v

s, and the script s (they only a↵ect the structure of

Dirac spinors). The “· · · ” denote terms proportional to h0|apbk|0i, h0|b
†
pa

†
k|0i, or h0|b

†
pbk|0i,
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all being zero. Since h0|apa
†
k|0i = (2⇡)3�3(p � k), Eq. (A.3) gives
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The last step is simply the reverse process of computing the contour integral of p
0, with the

underlying assumption that x
0

> y
0. For x

0
< y

0, the time ordering guarantees the same

result.

Now we shall replace |0i with a background state. Let us first consider a single-particle

state which contains a particle with an almost certain position and an almost certain momen-

tum. The two cannot be simultaneously fixed at exact values due to the uncertainty principle,

but one can nevertheless introduce a wave package function w(p) so that both w(p) and its

Fourier transform
R

w(p)eip·x
d

3
x are limited in a small region of their respective space—for

further elucidation, see e.g. Appendix A of Ref. [60]. The single particle state is then defined

as
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Z
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where the last step is defined as the normalization condition of w(p).

Replacing |0i ! |wi in Eq. (A.3), we obtain
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where
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leads to the same result as the vacuum case and the second term represents the background

e↵ect. We denote the contribution of the latter by S
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where we have used ap|wi = w(p)|0i. Note that w(p) has been defined in such a way that

the particle’s position and momentum are nearly fixed at certain values (say x0 and p0). One

can perform spatial translation of the wave package w(p) ! w�x(p) ⌘ e
ip·�x

w(p) so that

its position is changed to x0 + �x while the momentum is unchanged. Now, if we randomly

choose �x with a uniform probability distribution in a large volume V (much larger than the

distribution of each wave package), the position of the particle would be evenly smeared in

V . For w
⇤(k)w(p) in Eq. (A.7), the smearing leads to

w
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where in the last step we have identified |w(p)|2/V as n+(p) because
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the number density after smearing is
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Combining Eq. (A.9) with the vacuum part in Eq. (A.4), we obtain
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For an anti-particle background, the above calculation is similar except that some minus signs

are flipped. In the presence of both particles and anti-particles in the background, we obtain
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where SF (p) is the propagator in the momentum space [i.e. the Fourier transform of SF (x�y)],

the prefactor
�
/p + m

�
can be inferred from the vacuum propagator. The result is the same

as the fermion propagator derived in finite temperature field theory.

From the above calculation, one can see that the background e↵ect comes from the second

term in Eq. (A.6), proportional to hw|a
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kap|wi. Recall that the annihilation operator ap acting

on |wi can be interpreted as reducing one particle in the background. Hence hw|a
†
kap|wi

corresponds to first absorbing a particle of momentum p from the background (ap|wi =

w(p)|0i), and returning a particle of momentum k back to the background. Smearing the

single particle state in Eq. (A.8) leads to �
3(p� k), which guarantees that the particle being

returned has the same momentum as the one being absorbed.

Intuitively, the modified propagator in Eq. (2.3) can be understood as the vacuum ex-
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where SF (p) is the propagator in the momentum space [i.e. the Fourier transform of SF (x�y)],
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Intuitively, the modified propagator in Eq. (2.3) can be understood as the vacuum ex-
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Then the Wick contraction can be carried out not only between the two internal fermion fields
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fermions (leading to the modified term). Therefore, the modified term is naturally propor-

tional to the number density of background fermions, with the factor 2⇡�(p2
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where SF (p) is the propagator in the momentum space [i.e. the Fourier transform of SF (x�y)],

the prefactor
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can be inferred from the vacuum propagator. The result is the same

as the fermion propagator derived in finite temperature field theory.

From the above calculation, one can see that the background e↵ect comes from the second

term in Eq. (A.6), proportional to hw|a
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kap|wi. Recall that the annihilation operator ap acting

on |wi can be interpreted as reducing one particle in the background. Hence hw|a
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pectation value of two fermion fields with the vacuum state |0i replaced by the modified

background state |wi, which is the vacuum equipped with some on-shell background fermions.

Then the Wick contraction can be carried out not only between the two internal fermion fields
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