Neutrino forces and where to find them Walter Tangarife

Collaborators:
Mitrajyoti Ghosh, Yuval Grossman,
Xunjie X_{u}, and Bingrong Y_{u}
ARD 101 (2020) 11, 116006 JHEP 02 (2023) 092

Motivation

We learned to compute the classical Coulomb potential with Peskin

For a massive mediator: $\quad V(\mathbf{r}) \sim \int \mathrm{d}^{3} \mathbf{q}\left(\frac{1}{\mathbf{q}^{2}+m^{2}}\right) e^{-i \mathbf{q} \cdot \mathbf{r}} \sim \frac{e^{-m r}}{r}$
$V(r)$ is computed by taking the Fourier transform of the amplitude. The range of the force is given by the location of the branch cut in the matrix element in the t-plane.

Motivation
A pair of massless neutrinos mediate a long-range force via one-loop diagrams

At leading order $\quad V(r)=\frac{G_{F}^{2}}{4 \pi^{3} r^{5}}$
Feinberg \& Sucher (1968)
Feinberg, Sucher \& Au (1989)
Usu \& Sikivie (1994)

At distances larger than 1 nm , this force is weaker than the gravitational force between two protons

Motivation
A pair of massless neutrinos mediate a long-range force via one-loop diagrams

At leading order $\quad V(r)=\frac{G_{F}^{2}}{4 \pi^{3} r^{5}}$
Feinberg \& Sucher (1968)
Feinberg, Sucher \& Au (1989)
Hsu \& Sikivie (1994)

At distances larger than 1 nm , this force is weaker than the gravitational force between two protons

Is there any way to probe this force that has not been explored yet?

Possible answers
To observe a small effect, look for symmetries that this force violates:
The two-neutrino force is the largest long-range parity-violating interaction in the Standard Model

Possible answers
To observe a small effect, look for symmetries that this force violates:
The two-neutrino force is the largest long-range parity-violating interaction in the Standard Model

Look for effects in systems with many neutrinos (finite density backgrounds)

Possible answers
To observe a small effect, look for symmetries that this force violates:
The two-neutrino force is the largest long-range parity-violating interaction in the Standard Model
Spoiler:
We find that the effect is tiny

Look for effects in systems with many neutrinos (finite density backgrounds)
Spoiler:
We find that the effect is tiny

Observing atomic parity violation in atoms
Consider stimulated emission in an atom:

- Electric dipole transitions E1: between states of opposite parity
- Magnetic dipole transitions M1: between states of same parity

Parity is conserved

Observing atomic parity violation in atoms
Consider stimulated emission in an atom:

- Electric dipole transitions E1: between states of opposite parity
- Magnetic dipole transitions M1: between states of same parity

If the Hamiltonian contains a perturbation that violates parity, its eigenstates will contain a small mixture of opposite-parity corrections

Parity is conserved

Parity is violated

Observing atomic parity violation in atoms
Consider stimulated emission in an atom:

- Electric dipole transitions $E 1$: between states of opposite parity
- Magnetic dipole transitions M1: between states of same parity

If the Hamiltonian contains a perturbation that violates parity, its eigenstates will contain a small mixture of opposite-parity corrections

Optical rotation: Left-polarized and rightpolarized light will refract with different index of refraction in a sample of atomic vapors

$$
\begin{aligned}
\Phi=\frac{\pi L}{\lambda} \operatorname{Re}\left(n_{R}(\lambda)+n_{L}(\lambda)\right) \approx \frac{2 \pi L}{\lambda} \operatorname{Re}\left(n_{R}(\lambda)+n_{L}(\lambda)-2\right) & R \\
\text { near resonance } & R \equiv \operatorname{Im}\left(\frac{E 1_{P V}}{M 1}\right)
\end{aligned}
$$

Parity violating forces in the hydrogen atom
Assuming a) a static nucleus and b) that the electron velocity is a small parameter, the most general PV-potential is

$$
V_{P N C}(r)=H_{1} F(r) \vec{\sigma}_{e} \cdot \vec{v}_{e}+H_{2} F(r) \vec{\sigma}_{N} \cdot \vec{v}_{e}+C\left(\vec{\sigma}_{e} \times \vec{\sigma}_{N}\right) \cdot \vec{\nabla}[F(r)]
$$

Dobrescu \& Mocioiu (2006)

Parity violating forces in the hydrogen atom

Assuming a) a static nucleus and b) that the electron velocity is a small parameter, the most general PV -potential is

$$
V_{P N C}(r)=H_{1} F(r) \vec{\sigma}_{e} \cdot \vec{v}_{e}+H_{2} F(r) \vec{\sigma}_{N} \cdot \vec{v}_{e}+C\left(\vec{\sigma}_{e} \times \vec{\sigma}_{N}\right) \cdot \vec{\nabla}[F(r)]
$$

Tree-level

$$
\mathcal{L}_{Z \bar{\psi} \psi}=\frac{1}{2} \frac{g}{\cos \theta_{W}} \bar{\psi}\left[\left(g_{V}^{\psi}-g_{A}^{\psi} \gamma^{5}\right) \not \psi_{\psi}\right]
$$

$$
H_{1}=H_{1}^{\mathrm{tree}}=\frac{g^{2}}{2 \cos ^{2} \theta_{W}} g_{A}^{e} g_{V}^{p}
$$

$$
H_{2}=H_{2}^{\text {tree }}=\frac{g^{2}}{2 \cos ^{2} \theta_{W}} g_{V}^{e} g_{A}^{p}
$$

$$
C=C^{\text {tree }}=\frac{g^{2}}{2 \cos ^{2} \theta_{W}} \frac{g_{V}^{e} g_{A}^{p}}{2 m_{e}}
$$

$$
F(r)=F^{\text {tree }}(r)=\frac{e^{-m_{Z} r}}{4 \pi r}
$$

$$
V_{P N C}^{\mathrm{tree}} \sim \frac{g^{2}}{m_{e}}\left[\frac{e^{-m_{Z^{r}} r}}{r} \vec{\sigma}_{e} \cdot \vec{p}+\frac{e^{-m_{Z^{r}}}}{r} \vec{\sigma}_{p} \cdot \vec{p}+\left(\vec{\sigma}_{e} \times \vec{\sigma}_{p}\right) \cdot \vec{\nabla}\left(\frac{e^{-m_{Z^{r}}}}{r}\right)\right]
$$

Parity violating forces in the hydrogen atom
Assuming a) a static nucleus and b) that the electron velocity is a small parameter, the most general PV-potential is

$$
V_{P N C}(r)=H_{1} F(r) \vec{\sigma}_{e} \cdot \vec{v}_{e}+H_{2} F(r) \vec{\sigma}_{N} \cdot \vec{v}_{e}+C\left(\vec{\sigma}_{e} \times \vec{\sigma}_{N}\right) \cdot \vec{\nabla}[F(r)]
$$

Loop-level: Enter the neutrino force

$$
\left(\mathcal{O}_{Z}\right)_{i j}=-\frac{g^{2}}{8 m_{Z}^{2} c_{W}^{2}}\left[\bar{\psi} \gamma^{\mu}\left(g_{V}^{\psi}-g_{A}^{\psi} \gamma^{5}\right) \psi\right] \delta_{i j}\left[\bar{\nu}_{j} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{i}\right]+\left(\mathcal{O}_{W}\right)_{i j}=-\frac{g^{2}}{8 m_{W}^{2}} U_{\alpha j} U_{\alpha i}^{*}\left[\bar{\psi} \gamma^{\mu}\left(1-\gamma^{5}\right) \psi\right]\left[\bar{\nu}_{j} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{i}\right]
$$

Parity violating forces in the hydrogen atom
Assuming a) a static nucleus and b) that the electron velocity is a small parameter, the most general PV-potential is

$$
V_{P N C}(r)=H_{1} F(r) \vec{\sigma}_{e} \cdot \vec{v}_{e}+H_{2} F(r) \vec{\sigma}_{N} \cdot \vec{v}_{e}+C\left(\vec{\sigma}_{e} \times \vec{\sigma}_{N}\right) \cdot \vec{\nabla}[F(r)]
$$

Loop-level: Enter the neutrino force

$$
\begin{aligned}
\left(\mathcal{O}_{Z}\right)_{i j}=-\frac{g^{2}}{8 m_{Z}^{2} c_{W}^{2}}\left[\bar{\psi} \gamma^{\mu}\left(g_{V}^{\psi}-g_{A}^{\psi} \gamma^{5}\right) \psi\right] \delta_{i j}\left[\bar{\nu}_{j} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{i}\right] & +\left(\mathcal{O}_{W}\right)_{i j}=-\frac{g^{2}}{8 m_{W}^{2}} U_{\alpha j} U_{\alpha i}^{*}\left[\bar{\psi} \gamma^{\mu}\left(1-\gamma^{5}\right) \psi\right]\left[\bar{\nu}_{j} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu_{i}\right] \\
& \downarrow \\
& \mathcal{O}_{4}=-\frac{G_{F}}{\sqrt{2}}\left[\bar{\psi} \gamma^{\mu}\left(a^{\psi}-b^{\psi} \gamma^{5}\right) \psi\right]\left[\bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right]
\end{aligned}
$$

Parity violating forces in the hydrogen atom

$$
V_{P N C}(r)=H_{1} F(r) \vec{\sigma}_{e} \cdot \vec{v}_{e}+H_{2} F(r) \vec{\sigma}_{N} \cdot \vec{v}_{e}+C\left(\vec{\sigma}_{e} \times \vec{\sigma}_{N}\right) \cdot \vec{\nabla}[F(r)]
$$

Loop-level

$$
\mathcal{O}_{4}=-\frac{G_{F}}{\sqrt{2}}\left[\bar{\psi} \gamma^{\mu}\left(a^{\psi}-b^{\psi} \gamma^{5}\right) \psi\right]\left[\bar{\gamma} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right]
$$

$$
i \mathcal{M}=-\frac{\left(-i G_{F}\right)^{2}}{2} \bar{e} \bar{N}\left[\Gamma_{\mu}^{e} \Gamma_{\nu}^{N}\right] \int \frac{\mathrm{d}^{4} k \mathrm{~d}^{4} k^{\prime}}{(2 \pi)^{4}} \delta^{4}\left(q-k-k^{\prime}\right) \operatorname{Tr}\left[i \Gamma^{\mu} \frac{i\left(-k^{\prime \prime}+m\right)}{k^{\prime 2}-m^{2}} i \Gamma^{\nu} \frac{i(k+m)}{k^{2}-m^{2}}\right] e N .
$$

Parity violating forces in the hydrogen atom

$$
V_{P N C}(r)=H_{1} F(r) \vec{\sigma}_{e} \cdot \vec{v}_{e}+H_{2} F(r) \vec{\sigma}_{N} \cdot \vec{v}_{e}+C\left(\vec{\sigma}_{e} \times \vec{\sigma}_{N}\right) \cdot \vec{\nabla}[F(r)]
$$

Loop-level

$$
\mathcal{O}_{4}=-\frac{G_{F}}{\sqrt{2}}\left[\bar{\psi} \gamma^{\mu}\left(a^{\psi}-b^{\psi} \gamma^{5}\right) \psi\right]\left[\bar{\nu} \gamma_{\mu}\left(1-\gamma^{5}\right) \nu\right]
$$

$$
i \mathcal{M}=-\frac{\left(-i G_{F}\right)^{2}}{2} \bar{e} \bar{N}\left[\Gamma_{\mu}^{e} \Gamma_{\nu}^{N}\right] \int \frac{\mathrm{d}^{4} k \mathrm{~d}^{4} k^{\prime}}{(2 \pi)^{4}} \delta^{4}\left(q-k-k^{\prime}\right) \operatorname{Tr}\left[i \Gamma^{\mu} \frac{i\left(-k^{\prime \prime}+m\right)}{k^{\prime 2}-m^{2}} i \Gamma^{\nu} \frac{i(k+m)}{k^{2}-m^{2}}\right] e N .
$$

$$
V_{P N C}^{\mathrm{lop}} \approx \sum_{i} \frac{G_{A}}{m_{e}}\left(-\frac{1}{4}+s_{W}^{2}+\frac{1}{2}\left|U_{e i}\right|^{2}\right)\left[\left(2 \vec{\sigma}_{p} \cdot \overrightarrow{p_{e}}\right) V_{\nu_{i} \nu_{i}}(r)+\left(\overrightarrow{\sigma_{e}} \times \overrightarrow{\sigma_{p}}\right) \cdot \vec{\nabla} V_{\nu_{i} \nu_{i}}(r)\right]
$$

$V_{\nu \nu}$ is computed by taking the Fourier transform of the parityconserving part of the amplitude (using the Cutkosky cutting rules)

$$
V_{\nu \nu}^{\text {Dirac }}(r)=\frac{G_{F}^{2} m_{\nu}^{3}}{4 \pi^{3}} \frac{K_{3}\left(2 m_{\nu} r\right)}{r^{2}} \quad V_{\nu \nu}^{\text {Majorana }}(r)=\frac{G_{F}^{2} m_{\nu}^{2}}{2 \pi^{3}} \frac{K_{2}\left(2 m_{\nu} r\right)}{r^{3}}
$$

Effect of the neutrino force on the hydrogen atom Ghosh, Grossman \& Tangarife PRD (2020)

Unperturbed eigenstates

The energy of a state with $f, j, \ell, s_{e}=s_{p}=\frac{1}{2}$

$$
\begin{array}{r}
E_{n f j \ell}=\left(E_{0}\right)_{n}+\left(E_{\text {fine }}\right)_{n j}+\left(E_{\text {hyperfine }}\right)_{n f j \ell} \\
\left(E_{0}\right)_{n}=-\frac{\alpha^{2} m_{e}}{2 n^{2}} \quad\left(E_{\text {fine }}\right)_{n j}=-\frac{\alpha^{4} m_{e}}{2 n^{4}}\left(\frac{n}{j+\frac{1}{2}}-\frac{3}{4}\right) \\
\left(E_{\text {hyperfine }}\right)_{n f j \ell}=\frac{\alpha^{4} g_{p}}{m_{p}} a_{0}^{3} \frac{(\ell+1) m_{e}^{2}\left(f(f+1)-j(j+1)-\frac{3}{4}\right)}{4 j(j+1)}\left\langle\frac{1}{r^{3}}\right\rangle_{n \ell}
\end{array}
$$

The only degeneracy remains in m_{f}

Effect of the neutrino force on the hydrogen atom
Gosh, Grossman \& Tangarife PRD (2020)
We treat $V_{\nu \nu}$ as a perturbation $\quad\left|\psi_{q}^{1}\right\rangle=\left|\psi_{q}^{0}\right\rangle+\sum_{p \neq q} \frac{\left\langle\psi_{p}^{0}\right| V\left|\psi_{q}^{0}\right\rangle}{E_{q}^{0}-E_{p}^{0}}\left|\psi_{p}^{0}\right\rangle$

$$
\eta \equiv r / a_{0}
$$

Effect of the neutrino force on the hydrogen atom
Gosh, Grossman \& Tangarife PRD (2020)
We treat $V_{\nu \nu}$ as a perturbation $\quad\left|\psi_{q}^{1}\right\rangle=\left|\psi_{q}^{0}\right\rangle+\sum_{p \neq q} \frac{\left\langle\psi_{p}^{0}\right| V\left|\psi_{q}^{0}\right\rangle}{E_{q}^{0}-E_{p}^{0}}\left|\psi_{p}^{0}\right\rangle$

$$
\langle n \ell m| V_{P N C}^{\text {tree }}\left|n^{\prime} \ell^{\prime} m^{\prime}\right\rangle \sim \int_{0}^{\infty} \mathrm{d} \eta \eta^{2} \eta^{\ell^{\prime}} V_{P N C}^{\text {tree }}(\eta) \eta^{\ell} \sim \frac{\alpha^{2 \ell+5} m_{e}^{2+3}}{m_{Z}^{2+2}}=m_{e} \ell^{2 \ell+5}\left(\frac{m_{e}}{m_{Z}}\right)^{2 \ell+2}
$$

$$
\eta \equiv r / a_{0}
$$

Effect of the neutrino force on the hydrogen atom
Gosh, Grossman \& Tangarife PRD (2020)
We treat $V_{\nu \nu}$ as a perturbation $\quad\left|\psi_{q}^{1}\right\rangle=\left|\psi_{q}^{0}\right\rangle+\sum_{p \neq q} \frac{\left\langle\psi_{p}^{0}\right| V\left|\psi_{q}^{0}\right\rangle}{E_{q}^{0}-E_{p}^{0}}\left|\psi_{p}^{0}\right\rangle$

$$
\begin{aligned}
& \langle n \ell m| V_{P N C}^{\text {tree }}\left|n^{\prime} \ell^{\prime} m^{\prime}\right\rangle \sim \int_{0}^{\infty} \mathrm{d} \eta \eta^{2} \eta^{\ell^{\prime}} V_{P N C}^{\text {tree }}(\eta) \eta^{\ell} \sim \frac{\alpha^{2 \ell+5} m_{e}^{2 \ell+3}}{m_{Z}^{2 \ell+2}}=m_{e} \alpha^{2 \ell+5}\left(\frac{m_{e}}{m_{Z}}\right)^{2 \ell+2} \\
& \langle n \ell m| V_{P N C}^{\text {loop }}\left|n^{\prime} \ell^{\prime} m^{\prime}\right\rangle \sim \frac{G_{F}^{2}}{m_{e} a_{0}^{6}} \int \mathrm{~d} \eta \eta^{2} \eta^{\ell^{\prime}}\left(\frac{1}{\eta^{6}}\right) \eta^{\ell} \exp \left[-\eta\left(\frac{1}{n}+\frac{1}{n^{\prime}}\right)\right]
\end{aligned}
$$

for $\ell=0$ and $\ell=1$, the radial integral does not converge, indicating the failure of four-Fermi theory
for $\ell \geq 2$

$$
\frac{\alpha^{2}}{m_{e} m_{Z}^{4} a_{0}^{6}} \int_{0}^{\infty} \mathrm{d} \eta \eta^{2 \ell-3} \exp \left(-n_{\text {sup }} \eta\right) \sim m_{e} \alpha^{8}\left(\frac{m_{e}}{m_{Z}}\right)^{4} \times(f(\ell) \sim \sigma(1))
$$

Effect of the neutrino force on the hydrogen atom
Gosh, Grossman \& Tangarife PRD (2020)
Let's look now at electric and magnetic transitions: Use states with $\ell=3$ since they can mix with states with $l=2$ and $l=4$
Our goal: To compute $R \equiv \operatorname{Im}\left(\frac{E 1_{P V}}{M 1}\right)$

$$
|A\rangle=|4,3,3,5 / 2,3\rangle \equiv 4 F_{5 / 2, F=3}
$$

$$
|B\rangle=|4,3,3,7 / 2,3\rangle \equiv 4 F_{7 / 2, F=3}
$$

Before adding $V_{\nu \nu,}$, these states have the same l and there can be an M1 transition but not an E1 transition

Effect of the neutrino force on the hydrogen atom
Gosh, Grossman \& Tangarife PRD (2020)
Let's look now at electric and magnetic transitions: Use states with $\ell=3$ since they can mix with states with $l=2$ and $\ell=4$
Our goal: To compute $R \equiv \operatorname{Im}\left(\frac{E 1_{P V}}{M 1}\right)$

$$
|A\rangle=|4,3,3,5 / 2,3\rangle \equiv 4 F_{5 / 2, F=3}
$$

$$
|B\rangle=|4,3,3,7 / 2,3\rangle \equiv 4 F_{7 / 2, F=3}
$$

Before adding $V_{\nu \nu}$, these states have the same l and there can be an $M 1$ transition but not an E1 transition

But now they are corrected

$$
\begin{aligned}
& \left|A^{\prime}\right\rangle=|A\rangle+\frac{\langle\Delta| V_{P N C}|A\rangle}{E_{A}-E_{\Delta}}|\Delta\rangle+\cdots \quad\left|B^{\prime}\right\rangle=|B\rangle+\frac{\langle\Delta| V_{P N C}|B\rangle}{E_{B}-E_{\Delta}}|\Delta\rangle+\cdots \\
& |\Delta\rangle=|4,3,3,5 / 2,2\rangle
\end{aligned}
$$

Effect of the neutrino force on the hydrogen atom
$|A\rangle=|4,3,3,5 / 2,3\rangle \equiv 4 F_{5 / 2, F=3}$
$|B\rangle=|4,3,3,7 / 2,3\rangle \equiv 4 F_{7 / 2, F=3}$
$\left|A^{\prime}\right\rangle=|A\rangle+\frac{\langle\Delta| V_{P N C}|A\rangle}{E_{A}-E_{\Delta}}|\Delta\rangle+\cdots$

$$
|\Delta\rangle=|4,3,3,5 / 2,2\rangle
$$

$\left|B^{\prime}\right\rangle=|B\rangle+\frac{\langle\Delta| V_{P N C}|B\rangle}{E_{B}-E_{\Delta}}|\Delta\rangle+\cdots$

Effect of the neutrino force on the hydrogen atom
$|A\rangle=|4,3,3,5 / 2,3\rangle \equiv 4 F_{5 / 2, F=3}$
$|B\rangle=|4,3,3,7 / 2,3\rangle \equiv 4 F_{7 / 2, F=3}$
$\left|A^{\prime}\right\rangle=|A\rangle+\frac{\langle\Delta| V_{P N C}|A\rangle}{E_{A}-E_{\Delta}}|\Delta\rangle+\cdots$

$$
|\Delta\rangle=|4,3,3,5 / 2,2\rangle
$$

$\left|B^{\prime}\right\rangle=|B\rangle+\frac{\langle\Delta| V_{P N C}|B\rangle}{E_{B}-E_{\Delta}}|\Delta\rangle+\cdots$

So we can finally compute

$$
R=\operatorname{Im}\left(\frac{E 1_{P V}}{M 1}\right)=\operatorname{Im}\left(\frac{\left\langle A^{\prime}\right| \hat{P}\left|B^{\prime}\right\rangle}{\left\langle A^{\prime}\right| \hat{M}\left|B^{\prime}\right\rangle}\right) \approx\left(-\frac{1}{4}+s_{W}^{2}+\frac{1}{2}\left|U_{e i}\right|^{2}\right)\left(-7.7 \times 10^{-33}+3.7 \times 10^{-32}\left(\frac{m_{\nu_{i}}}{\alpha m_{e}}\right)^{2}\right)
$$

The rotation due to the neutrino force would be $\Phi \sim 10^{-32}$ rads

Effect of the neutrino force on the hydrogen atom

$$
\begin{array}{rlr}
|A\rangle=|4,3,3,5 / 2,3\rangle \equiv 4 F_{5 / 2, F=3} & |B\rangle=|4,3,3,7 / 2,3\rangle \equiv 4 F_{7 / 2, F=3} \\
\left|A^{\prime}\right\rangle=|A\rangle+\frac{\langle\Delta| V_{P N C}|A\rangle}{E_{A}-E_{\Delta}}|\Delta\rangle+\cdots & \\
\left|B^{\prime}\right\rangle=|B\rangle+\frac{\langle\Delta| V_{P N C}|B\rangle}{E_{B}-E_{\Delta}}|\Delta\rangle+\cdots &
\end{array}
$$

So we can finally compute

$$
R=\operatorname{Im}\left(\frac{E 1_{P V}}{M 1}\right)=\operatorname{Im}\left(\frac{\left\langle A^{\prime}\right| \hat{P}\left|B^{\prime}\right\rangle}{\left\langle A^{\prime}\right| \hat{M}\left|B^{\prime}\right\rangle}\right) \approx\left(-\frac{1}{4}+s_{W}^{2}+\frac{1}{2}\left|U_{e i}\right|^{2}\right)\left(-7.7 \times 10^{-33}+3.7 \times 10^{-32}\left(\frac{m_{\nu_{i}}}{\alpha m_{e}}\right)^{2}\right)
$$

The rotation due to the neutrino force would be $\Phi \sim 10^{-32}$ rads

This is about 23 orders of magnitude smaller than what can be measured in the lab (with Cs) Lintz, Guéna \& Bouchiat (2006)

Can we probe the neutrino force?

Not yet!
The measurement of optical rotation due to the neutrino loop is extremely challenging given the resolutions we can achieve today.

Neutrino forces in a finite-density background
We move to calculate the neutrino-exchange in the presence of a background of neutrinos

Ghosh, Grossman, Tangarife, Xu, Mu JHEP (2022)

Examples: Cosmic neutrino background, Reactor neutrino fluxes

Neutrino forces in a finite-density background
We move to calculate the neutrino-exchange in the presence of a background of neutrinos

Ghosh, Grossman, Tangarife, Xu, Mu JHEP (2022)

Examples: Cosmic neutrino background, Reactor neutrino fluxes

Neutrino forces in anisotropic backgrounds

We consider backgrounds with a specific direction, e.g. solar, supernova, and reactor neutrinos

Let's assume the neutrino flux is monochromatic (big assumption)

$$
n_{ \pm}(\mathbf{k})=(2 \pi)^{3} \delta^{3}\left(\mathbf{k}-\mathbf{k}_{0}\right) \Phi_{0}
$$

Neutrino forces in anisotropic backgrounds
We consider backgrounds with a specific direction, e.g. solar, supernova, and reactor neutrinos

Let's assume the neutrino flux is monochromatic (big assumption)

$$
n_{ \pm}(\mathbf{k})=(2 \pi)^{3} \delta^{3}\left(\mathbf{k}-\mathbf{k}_{0}\right) \Phi_{0}
$$

$$
\begin{aligned}
& V(\mathbf{r})=-\int \frac{d^{3} \mathbf{q}}{(2 \pi)^{3}} e^{i \mathbf{q} \cdot \mathbf{r}} \mathcal{A}(\mathbf{q}) \\
& i \mathcal{A}(q)=\frac{G_{F}^{2} g_{V}^{1} g_{V}^{2}}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \operatorname{Tr}\left[\gamma^{0}\left(1-\gamma_{5}\right) S_{\nu}(k) \gamma^{0}\left(1-\gamma_{5}\right) S_{\nu}(k+q)\right]
\end{aligned}
$$

Neutrino forces in anisotropic backgrounds

The resulting background potential at long distance is

$$
V_{\mathrm{bkg}}\left(r \gg E_{\nu}^{-1}, \alpha\right)=-\frac{g_{V}^{1} g_{V}^{2}}{\pi} G_{F}^{2} \Phi_{0} E_{\nu} \frac{1}{r}\left\{\cos ^{2}\left(\frac{\alpha}{2}\right) \cos \left[(1-\cos \alpha) E_{\nu} r\right]+\sin ^{2}\left(\frac{\alpha}{2}\right) \cos \left[(1+\cos \alpha) E_{\nu} r\right]\right\}
$$

In the limit $r \gg E_{\nu}^{-1}, \alpha \ll 1$,

$$
V_{\mathrm{bkg}}=-\frac{g_{V}^{1} g_{V}^{2}}{\pi} G_{F}^{2} \times \Phi_{0} E_{\nu} \times \frac{1}{r} \times \cos \left(\frac{\alpha^{2} E_{\nu} r}{2}\right)
$$

Walter Tangarife (Loyola Chicago)

Neutrino forces in anisotropic backgrounds

The resulting background potential at long distance is

$$
V_{\mathrm{bkg}}\left(r \gg E_{\nu}^{-1}, \alpha\right)=-\frac{g_{V}^{1} g_{V}^{2}}{\pi} G_{F}^{2} \Phi_{0} E_{\nu} \frac{1}{r}\left\{\cos ^{2}\left(\frac{\alpha}{2}\right) \cos \left[(1-\cos \alpha) E_{\nu} r\right]+\sin ^{2}\left(\frac{\alpha}{2}\right) \cos \left[(1+\cos \alpha) E_{\nu} r\right]\right\}
$$

In the limit $r \gg E_{\nu}^{-1}, \alpha \ll 1$,

$$
V_{\mathrm{bkg}}=-\frac{g_{V}^{1} g_{V}^{2}}{\pi} G_{F}^{2} \times \Phi_{0} E_{\nu} \times \frac{1}{r} \times \cos \left(\frac{\alpha^{2} E_{\nu} r}{2}\right)
$$

Taking into account finite size and energy spread,

$$
\alpha^{2} \lesssim \frac{\pi}{\Delta\left(E_{\nu} r\right)}
$$

Walter Tangarife (Loyola Chicago)

Can we probe this force with experiments?

WEP: possible differences between the accelerations of different test bodies in the same gravitational field.

ISL: the variation of the gravitational attraction between two test bodies when their distance varies.

\exp	$\delta V / V_{\text {gravity }}$	$\langle r\rangle$	
Washington2007	3.2×10^{-16}	$\sim 6400 \mathrm{~km}$	
Washington1999	3.0×10^{-9}	$\sim 0.3 \mathrm{~m}$	
Irvine1985	0.7×10^{-4}	$2-5 \mathrm{~cm}$	
Irvine1985	2.7×10^{-4}	$5-105 \mathrm{~cm}$	
Wuhan2012	10^{-3}	$\sim 2 \mathrm{~mm}$	
Wuhan2020	3×10^{-2}	$\sim 0.1 \mathrm{~mm}$	
Washington2020	~ 1	$52 \mu \mathrm{~m}$	
Future levitated optomechanics	$\sim 10^{4}$	$1 \mu \mathrm{~m}$	
\uparrow			
sensitivities			

Can we probe this force with experiments?

Can we probe the neutrino force?
Not yet!
The measurement of optical rotation due to the neutrino loop is extremely challenging given the resolutions we can achieve today.

Nonetheless, this calculation, performed for other systems, could lead to somewhat larger quantities and the next step would most likely be an application of this idea to manyelectron atoms, beyond the simple hydrogen case. The matrix elements in these atoms are amplified by an additional Z^{3} factor.

On the other hand, a strong neutrino background could significantly enhance neutrino forces. in particular, in the small- α limit, the force could be behave as $7 / r$ even in the long-range regime.

The neutrino force in the solar or reactor neutrino background is much more experimentally accessible than the one in vacuum. Dedicated experimental efforts are called for to check if these enhancement factors can be exploit in order to detect the elusive neutrino force.

The propagator
$S_{F} \propto \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \frac{1}{\sqrt{2 E_{\mathbf{k}}}} e^{-i p \cdot x+i k \cdot y}\langle 0| a_{\mathbf{p}} a_{\mathbf{k}}^{\dagger}|0\rangle$

The propagator
$S_{F} \propto \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \frac{1}{\sqrt{2 E_{\mathbf{k}}}} e^{-i p \cdot x+i k \cdot y}\langle 0| a_{\mathbf{p}} a_{\mathbf{k}}^{\dagger}|0\rangle$
Replace $|0\rangle \rightarrow|w\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} w(\mathbf{p}) a_{\mathbf{p}}^{\dagger}|0\rangle,\langle w \mid w\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}}|w(\mathbf{p})|^{2} \equiv 1$

The propagator
$S_{F} \propto \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \frac{1}{\sqrt{2 E_{\mathbf{k}}}} e^{-i p \cdot x+i k \cdot y}\langle 0| a_{\mathbf{p}} a_{\mathbf{k}}^{\dagger}|0\rangle$
Replace $|0\rangle \rightarrow|w\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} w(\mathbf{p}) a_{\mathbf{p}}^{\dagger}|0\rangle,\langle w \mid w\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}}|w(\mathbf{p})|^{2} \equiv 1$
$S_{F} \propto \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \frac{1}{\sqrt{2 E_{\mathbf{k}}}} e^{-i p \cdot x+i k \cdot y}\langle w| a_{\mathbf{p}} a_{\mathbf{k}}^{\dagger}|w\rangle \propto-\int_{\mathbf{p k}} w^{*}(\mathbf{k}) w(\mathbf{p})$

The propagator

$$
\begin{aligned}
& S_{F} \propto \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \frac{1}{\sqrt{2 E_{\mathbf{k}}} e^{-i p} \cdot x+i k \cdot y}\langle 0| a_{a_{\mathbf{p}} a_{\mathbf{k}}|0\rangle} \\
& \text { Replace }|0\rangle \rightarrow|w\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} w(\mathbf{p}) a_{\mathbf{p}}^{\dagger}|0\rangle,\langle w \mid w\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}}|w(\mathbf{p})|^{2} \equiv 1
\end{aligned}
$$

$S_{F} \propto \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \frac{1}{\sqrt{2 E_{\mathbf{k}}}} e^{-i p \cdot x+i k \cdot y}\langle w| a_{\mathbf{p}} a_{\mathbf{k}}^{\dagger}|w\rangle \propto-\int_{\mathrm{pk}} w^{*}(\mathbf{k}) w(\mathbf{p})$

$$
\begin{aligned}
w^{*}(\mathbf{k}) w(\mathbf{p}) \xrightarrow{\text { smearing }} \frac{1}{V} \int w^{*}(\mathbf{k}) w(\mathbf{p}) e^{i(\mathbf{p}-\mathbf{k}) \cdot \Delta \mathbf{x}} d^{3} \Delta \mathbf{x} & =\frac{(2 \pi)^{3} \delta^{3}(\mathbf{p}-\mathbf{k})}{V}|w(\mathbf{p})|^{2} \\
& =(2 \pi)^{3} \delta^{3}(\mathbf{p}-\mathbf{k}) n_{+}(\mathbf{p})
\end{aligned}
$$

The propagator

$$
\begin{aligned}
& S_{F} \propto \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \frac{1}{\sqrt{2 E_{\mathbf{k}}}} e^{-i p \cdot x+i k \cdot y}\langle 0| a_{\mathbf{p}} a_{\mathbf{k}}^{\dagger}|0\rangle \\
& \text { Replace }|0\rangle \rightarrow|w\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} w(\mathbf{p}) a_{\mathbf{p}}^{\dagger}|0\rangle,\langle w \mid w\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}}|w(\mathbf{p})|^{2} \equiv 1
\end{aligned}
$$

$$
S_{F} \propto \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \frac{1}{\sqrt{2 E_{\mathbf{k}}}} e^{-i p \cdot x+i k \cdot y}\langle w| a_{\mathbf{p}} a_{\mathbf{k}}^{\dagger}|w\rangle \propto-\int_{\mathbf{p k}} w^{*}(\mathbf{k}) w(\mathbf{p})
$$

$$
\begin{aligned}
& w^{*}(\mathbf{k}) w(\mathbf{p}) \xrightarrow{\text { smearing }} \frac{1}{V} \int w^{*}(\mathbf{k}) w(\mathbf{p}) e^{i(\mathbf{p}-\mathbf{k}) \cdot \Delta \mathbf{x}} d^{3} \Delta \mathbf{x}=\frac{(2 \pi)^{3} \delta^{3}(\mathbf{p}-\mathbf{k})}{V}|w(\mathbf{p})|^{2} \\
&=(2 \pi)^{3} \delta^{3}(\mathbf{p}-\mathbf{k}) n_{+}(\mathbf{p}) \\
&-\int_{\mathbf{p k}} w^{*}(\mathbf{k}) w(\mathbf{p}) \xrightarrow{\text { smearing }}-\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{-i p \cdot(x-y)}{2 E_{\mathbf{p}}} n_{+}(\mathbf{p}) \\
&=-\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot(x-y)}(2 \pi) \delta\left(p^{2}-m^{2}\right) \Theta\left(p^{0}\right) n_{+}(\mathbf{p})
\end{aligned}
$$

The propagator

$$
\begin{aligned}
& S_{F} \propto \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \frac{1}{\sqrt{2 E_{\mathbf{k}}}} e^{-i p \cdot x+i k \cdot y}\langle 0| a_{\mathbf{p}} a_{\mathbf{k}}^{\dagger}|0\rangle \\
& \text { Replace }|0\rangle \rightarrow|w\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} w(\mathbf{p}) a_{\mathbf{p}}^{\dagger}|0\rangle,\langle w \mid w\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}}|w(\mathbf{p})|^{2} \equiv 1
\end{aligned}
$$

$$
S_{F} \propto \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \frac{1}{\sqrt{2 E_{\mathbf{k}}}} e^{-i p \cdot x+i k \cdot y}\langle w| a_{\mathbf{p}} a_{\mathbf{k}}^{\dagger}|w\rangle \propto-\int_{\mathbf{p k}} w^{*}(\mathbf{k}) w(\mathbf{p})
$$

$$
\begin{array}{r}
w^{*}(\mathbf{k}) w(\mathbf{p}) \xrightarrow{\text { smearing }} \frac{1}{V} \int w^{*}(\mathbf{k}) w(\mathbf{p}) e^{i(\mathbf{p}-\mathbf{k}) \cdot \Delta \mathrm{x}} d^{3} \Delta \mathbf{x}=\frac{(2 \pi)^{3} \delta^{3}(\mathbf{p}-\mathbf{k})}{V}|w(\mathbf{p})|^{2} \\
=(2 \pi)^{3} \delta^{3}(\mathbf{p}-\mathbf{k}) n_{+}(\mathbf{p}) \\
-\int_{\mathbf{p k}} w^{*}(\mathbf{k}) w(\mathbf{p}) \xrightarrow{\text { smearing }}-\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{e^{-i p \cdot(x-y)}}{2 E_{\mathbf{p}}} n_{+}(\mathbf{p}) \\
=-\int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot(x-y)}(2 \pi) \delta\left(p^{2}-m^{2}\right) \Theta\left(p^{0}\right) n_{+}(\mathbf{p})
\end{array}
$$

$S_{F} \propto \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p \cdot(x-y)}\left\{\frac{i}{p^{2}-m^{2}+i \epsilon}-(2 \pi) \delta\left(p^{2}-m^{2}\right) \Theta\left(p^{0}\right) n_{+}(\mathbf{p})\right\}$

