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Cosmic Microwave Background (CMB)

Large Scale Structure

Bullet Cluster Merger

Galactic Rotation Curves

DM
Gravitational 
Interactions

How do we know dark matter exist?

Size

Credit: De Leo-Winkler(10 kpc)

Credit: NASA / WMAP

credit: Springel et al. 2015 (10-100 Gpc)

credit: NASA/CXC/M. Weiss (Gpc)
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Modified from a slide from Tien-Tien Yu (Oregon) 



DM	Gravity	in	Smaller	Scale?

Precision Astrometry
Tsai et al., arXiv:2210.03749 

(under review by Nature Astronomy)

DM Gravitational Interactions

Size
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Stars

Solar	System	Objects

Mario De Leo-Winkler (University of California, Riverside)

Credit: NASA/JPL-Caltech

Velocity	measurements	
ineffective
We	need	to	go	beyond	it!

A	question	we	asked

�̅�!" = 0.3 GeV/cm#,
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A	question	we	asked

Yu-Dai	Tsai	(UC	Irvine)	

Stars

Solar	System	Objects

Mario De Leo-Winkler (University of California, Riverside)

Credit: NASA/JPL-Caltech

Credit: Xenon 1T Col.

Crucial	for	Direct	Detection	of	DM

N Hanacek/NIST

Wave-like DM Particle-like DM 



Beyond	Velocity:	Perihelion	Precession
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Credit: WilllowW under CC BY 3.0

• “Anomalous” precession of Mercury's perihelion 

• One of the first ways to confirm General Relativity

Credit: M. Toews

• 𝑎 is the semi-major axis
• e is the eccentricity, quantify how 

non-spherical the orbit is.

https://creativecommons.org/licenses/by/3.0


Our	Project:	(Local)	Dark	Matter	Induce	Precession

Dark Matter Gravity:

Induced Precession:
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Tsai et al, arXiv:2210.03749 

https://arxiv.org/abs/2210.03749
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Asteroids	&	Planetary	Defense

• Tracking asteroids is important to our safety

• We have space missions, like OSIRIS-REx, to track dangerous asteroids like Bennu, 

return sample.

• NASA Plan: OSIRIS-REx will track Apophis and become OSIRIS-APEX

Bennu

OSIRIS-REx

Credit: NASA



Bennu	Data	from	OSIRIS-REx
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• Using OSIRIS-REx X-band radiometric & optical navigation tracking data 
from December 2018 to October 2020, 
detailed in, e.g., Farnocchia et al., Icarus 369 (2021) 114594.

• Geocentric pseudo-range points for the Bennu barycenter were derived; 
Each pseudo-range point represents the roundtrip light time from the 
geocenter to the Bennu barycenter corrected by solar relativistic effects. 

• The uncertainty is 15 ns, corresponding to about 2 m.

Tsai et al, arXiv:2210.03749 

https://arxiv.org/abs/2210.03749


Robust	Analysis:	High-Fidelity	Force	Model

JPL Planetary Ephemerides DE424

343 Small-body 
Perturbers

Relativistic 
Effects

Oblateness

1) Yarkovsky effect 
2) Solar radiation pressure
3) Poynting-Robertson drag,
Farnocchia et al., Icarus 369 (2021) 114594.
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Adding	Dark	Matter	to	the	Force	Model

Force terms considered by 
Davide Farnocchia

The dark matter 
contribution

List of additional perturbations considered:
1) Errors in planetary trajectories and masses; 2) Errors in perturber 
masses & trajectories; 3) Higher order relativistic terms; 4) Higher 
order gravity terms; 5) Simplified assumptions in nongravitational 
force model (non-spherical effects, Yarkovsky, solar torque, physical 
parameter evolution, etc.); 7) Solar mass loss and solar wind; 
8) Meteoroid impacts, Spacecraft interaction
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Estimating the 𝜌$ parameter



New	Model-Independent	Constraints
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• The horizontal lines are NOT error bars, but the coverage of the constraints.
• The effects of minor perturbers and and other perturbations in backup slides

• 𝝆𝒎𝒂𝒙(r) is the derived 
upper bound on DM

• "𝜌$% = 0.3 GeV/cm&

• NEO: Near-Earth Objects

r: Distance from the Sun
Astronomical unit (AU)

Tsai, Eby, Arakawa, Farnocchia, Safronova, arXiv:2210.03749 

• Bennu result:

https://arxiv.org/abs/2210.03749


Implication	of	Our	Constraints:	DM	Over-density	(I)

1. Strong constraints on DM models predict local over-density in solar 

system, including solar halo, axion mini-cluster, solar basin, etc.
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r: Distance from the Sun
Astronomical unit (AU)

Tsai, et al, arXiv:2210.03749 Tsai, Eby, Safronova, Nature Astronomy (2022)

https://arxiv.org/abs/2210.03749


Implications	of	the	Constraints	(II)

2. Strong constraints on DM-SM long-range interaction, 

only ~ 4-6 order stronger than gravity: very strong bound
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Constraints on particle physics and cosmology motivated models, 
Tsai, et al, in progress



Implications of the Constraints: CvB (III)

3. Close-to-leading constraints on 
    cosmic neutrino background (CvB) 
    over-density profile.
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Tsai, et al, arXiv:2210.03749 

https://arxiv.org/abs/2210.03749
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Our	Results:	Fifth	Forces
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Model Independent Parametrization:

Model 
Specifics:

Has implications on ultralight/fuzzy dark matter,
 𝐿' − 𝐿(,* gauge theories, dark energy models, etc.

Tsai, Wu, Vagnozzi, Visinelli, JCAP (2023)
2107.04038 

For LLR, see, e.g., Williams, Turyshev, Boggs, PRL (2004)

https://arxiv.org/abs/2107.04038
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“Yukawa”	Gravity	Parametrization
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Objects	of	Interest



Summary	of	High-Energy	Theory	Targets
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• Particle	theory	inputs	are	crucial

• Calling	for	modern	data-analysis	approaches

• GR Test:

• Fifth Forces:

• Dark Matter:
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Schive, et. al., Nature Physics ‘14 



NASA	DSAC	&	Parker	Solar	Probe
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• NASA Deep Space Atomic Clock (DSAC) 
loses one second every 10 million years, proven in controlled Earth tests. 

• The clock has operated for more than 12 months in space; demonstrated 
long-term fractional frequency stability of 3 × 10!𝟏𝟓
Burt et al., Nature 595 (2021) 43.

• Exceeds previous space clock performance by up to an order of magnitude

• Parker Solar Probe (PSP)
see, “Probing the energetic particle environment near the Sun,” McComas, 
William Matthaeus et al, Nature (2019).

• Excited to learn from the experts!

My Question: Why don’t we put a quantum clocks on a solar probe?
What fundamental physics can we study?

Credit: NASA

DSAC/JPL

Size of PSP ~ 1.0  × 3.0  × 2.3 m 
(685 kg	→	555 kg)

29 × 26 × 23 cm (17.5 kg)



SpaceQ	Mission	Concept
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(Non-relativistic solution)

Aya Tsuboi (IPMU)

N. Hanacek/NIST

• Oscillation frequency ~ dark matter mass

• Propose a two-clock comparison experiment 
onboard a future Solar Probe

Tsai, Eby, Safronova, Nature Astronomy (2022)
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Tsai, Eby, Safronova, Nature Astronomy (2022)

Naturalness	condition:

Projected	Sensitivity	for	ULDM

0.1	AU:	motivated	by	the	Parker	Solar	Probe

AMO convention

(+ photon & gluon couplings)

Motivate 
Novel Clocks!
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Spatial Variation of Fundamental Constants

δU: change in gravitational potential .

• Achieve constraints on 𝑘! that are a factor of ∼ 300 stronger!

from Earth to Solar probe at 0.1 AU.

Earth variation.

electron to proton mass ratio

quark and QCD parametersfine-structure constant

Tsai, Eby, Safronova, Nature Astronomy (2022)

Safronova et al, Rev. Mod. Phys. (2018)

Lange et al, PRL (2021)



The	Elusive	Universe	is	at	the	horizon
We	have	a	practical	roadmap	forward

to	explore	it	wide	&	deep
Thank	you	for	listening!

Frederick	Reines
Nobel	Prize	Laureate;	Professor	at	UC	Irvine
Utilized	a	nuclear	reactor	to	study	free	neutrinos

Tsai et al, arXiv:2210.03749 

https://arxiv.org/abs/2210.03749
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High-Energy	Theories
String	Theory,
Grand	Unification	(GUT),	
etc.

Neutrino

Precision

Energy
Coupling	strength

Mass

A	Strong	Probe	of	the	Elusive	Universe

Yu-Dai	Tsai	(UC	Irvine)	

Planetary	Data
Space	Missions
Quantum	Sensors
…

Gravity
(General	Relativity)

Dark	Matter

Pa
rti
cle
	Th
eo
ry
	&	

Co
sm
olo
gy
	Co
nn
ec
tio
nsNeutrino	Experiments

LHC	Forward	Physics	
Facility
…

The	rest	of	the	
Standard	Model	(SM)

Intensity
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Asteroids	&	Other	Solar	System	Objects

Use millions of solar-system objects to study many fundamental physics topics. 
Need theory & data expertise to realize the full potential of the dataset.

Radar (Goldstone)

Space Missions

Optical (Pan-STARRS)

Credit: NASA

Credit: NASA

Credit: UH IfA

Public Domain


