Julia Gehrlein

Physics Department Colorado State University

YOUNGST@RS Interacting dark sectors in astrophysics, cosmology, and the lab

9. November 2023

Towards Resolving the Gallium Anomaly

COLORADO STATE UNIVERSITY

Julia Gehrlein

Want to detect all components of the solar neutrino flux to probe our understanding of neutrino physics and solar processes

Julia Gehrlein

Need another experiment with lower threshold to detect pp neutrinos

Use $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^$ with reaction threshold of 233 keV!

"Gallium experiments"

Julia Gehrlein

First detection of pp solar neutrinos with GALLEX, SAGE in 1992

[GALLEX, SAGE '92 '92]

Youngst@rs 2023: Gallium anomaly

First detection of pp solar neutrinos with GALLEX, SAGE in 1992

Confirmation of solar model and neutrino flavor transition in Sun

Julia Gehrlein

Youngst@rs 2023: Gallium anomaly

[GALLEX, SAGE <u>'92</u> <u>'92</u>]

Only fraction of electron neutrinos produced in the Sun arrive as electron neutrinos at Earth!

- Calibration of GALLEX, SAGE experiments with radioactive sources ^{51}Cr
- Place source inside of detector, measure number of emitted neutrinos, compare to theory prediction

Youngst@rs 2023: Gallium anomaly

Julia Gehrlein

- Calibration of GALLEX, SAGE experiments with radioactive sources ${}^{51}Cr$
- Place source inside of detector, measure number of emitted neutrinos, compare to theory prediction
 - Ratio of measured to predicted rate
 - SAGE: 0.95 ± 0.12
 - GALLEX-Cr1: 0.953 ± 0.11
 - GALLEX-Cr2: 0.812 ± 0.11
 - Found deficit of detected neutrinos compared to theory prediction!

Calibration of GALLEX, SAGE experiments with radioactive sources ^{51}Cr

Found deficit of detected neutrinos compared to theory prediction!

Julia Gehrlein

Deficit confirmed by BEST

Combined significance ~5 σ

[BEST 2201.07364]

Youngst@rs 2023: Gallium anomaly

Gallium anomaly

Vedran Brdar,^{1, a} Julia Gehrlein,^{1, b} and Joachim Kopp^{1, 2, c} ¹Theoretical Physics Department, CERN, 1 Esplanade des Particules, 1211 Geneva 23, Switzerland ²PRISMA Cluster of Excellence & Mainz Institute for Theoretical Physics, Johannes Gutenberg University, Staudingerweg 7, 55099 Mainz, Germany (Dated: June 2, 2023)

- Significant deficit of neutrinos from radioactive sources in Gallium experiments
- Is the theory prediction wrong, problems with measurement?
 - Did we find new Physics?
 - Towards Resolving the Gallium Anomaly

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Youngst@rs 2023: Gallium anomaly

How do these experiments work?

Ge extraction

Cr Source activity?

- How do these experiments work?
 - neutrino detection cross section of neutrinos on Ga?

Ge extraction efficiency?

Ge extraction

Youngst@rs 2023: Gallium anomaly

- ${}^{51}\text{Cr} + e^- \rightarrow {}^{51}\text{V} + \nu_e$
- Cr source intensity measured calorimetrically almost all the heat production comes from the de-excitation gamma rays from first excited state of ${}^{51}V$

Julia Gehrlein

Source: Chromium-51 branching ratios

Only ~ 10% of all ^{51}Cr decays populate the first excited state of ^{51}V

- Source: Chromium-51 branching ratios
 - ${}^{51}\text{Cr} + e^- \rightarrow {}^{51}\text{V} + \nu_e$
- Cr source intensity measured calorimetrically almost all the heat production comes from the de-excitation gamma rays from first excited state of ${}^{51}V$
 - Only ~ 10% of all ^{51}Cr decays populate the first excited state of ^{51}V

Can the anomaly be resolved if the BR into excited state of ^{51}V is increased? Energy of de-excitation gamma rays is larger than expected?

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

- Source: Chromium-51 branching ratios Standard assumption
 - Increase BR into excited state of ⁵¹V by 2% \rightarrow anomaly resolved increasing E_{γ} while keeping
 - $BR_{exc} \simeq 10\%$

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

- Source: Chromium-51 branching ratios Standard assumption
 - Increase BR into excited state of ⁵¹V by 2% \rightarrow anomaly resolved
 - increasing E_{γ} while keeping $BR_{exc} \simeq 10\%$
 - new heat source impacts other radioactive decays Why did we miss it so far?

Detection: The cross section for neutrino capture on Gallium-71

$$\nu_e$$
 +⁷¹ Ga –

Theoretical cross section calculation $\sigma(\nu_e + ^{71} \text{Ga})$ reevaluated recently

year

Julia Gehrlein

Youngst@rs 2023: Gallium anomaly

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

 \rightarrow^{71} Ge + e⁻

[Elliott, Gavrin, Haxton, Ibragimova, Rule 2303.13623]

[Elliott, Gavrin, Haxton <u>2306.03299]</u>

$$\nu_e$$
 +⁷¹ Ga –

Cross section calculation $\sigma(\nu_e + ^{71} \text{Ga})$ has two contributions: transitions to the ground state of 71 Ge (for which the nuclear matrix element is the same as for the well-studied inverse process, electron capture decay of 71 Ge) transitions to excited states of 71 Ge (can only be calculated theoretically, with sizeable uncertainties)

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Detection: The cross section for neutrino capture on Gallium-71

 \rightarrow^{71} Ge + e⁻

Measurement from 1985 $T_{1/2}(^{71}\text{Ge}) = 11.43 \pm 0.03 \text{ days}$

Julia Gehrlein

- **Detection: Germanium-71 Decay Rate**

[Hampel, Remsberg <u>'85</u>]

Recently measured again: same best fit, smaller uncertainty

[Collar, Yoon <u>2307.05353</u>]

fully explain anomaly: $T_{1/2}({}^{/1}\text{Ge}) > \text{larger by at least 2 days (67<math>\sigma$), reduction of significance to below 3 σ : increase of $T_{1/2}(^{71}\text{Ge})$ by about one day (33σ)

[see also Giunti, Li, Ternes, Xin <u>2212.09722</u>]

- Assumption: decay of $^{/1}$ Ge via electron capture goes to the ground

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Detection: Germanium-71 Decay to New Excited States of Gallium-71?

state of the daughter nucleus ⁷¹Ga (lowest-lying known excited state of 71 Ga has an energy above the Qvalue of 71 Ge decay)

Additional, yet undiscovered, low-lying excited state of $^{\prime 1}$ Ga?

Youngst@rs 2023: Gallium anomaly

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

- Detection: Germanium-71 Decay to New Excited States of Gallium-71?
 - ξ : the fraction of 71 Ge decays that go to the ground state of ⁷¹Ga
 - $\xi = 1$: standard assumption

Different measurements of half-life

- If~ 20% fraction of 71 Ge goes into a new state \rightarrow Nuclear matrix element for ground state-to-ground state transitions overestimated \rightarrow anomaly resolved
 - How could we have miss the existence of such an excited state?

Challenge: extracting O(100) 71 Ge nuclei from more than 47 tons of liquid gallium

Calibration of extraction efficiency with stable Ge • Solar results of experiments agree with other measurements (with 10% uncertainty)

Julia Gehrlein

Youngst@rs 2023: Gallium anomaly

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Calibration of the radiochemical Germanium extraction efficiency

Julia Gehrlein

Youngst@rs 2023: Gallium anomaly

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Calibration of the radiochemical Germanium extraction efficiency

Efficiency from calibration: 95%

Reduction of extraction efficiency to 75% resolves anomaly

Julia Gehrlein

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Calibration of the radiochemical Germanium extraction efficiency

Efficiency from calibration: 95%

Reduction of extraction efficiency to 75% resolves anomaly

 \rightarrow existence of an unidentified route for (stable) germanium to enter the detector: amount of extra germanium needed corresponds to ~ 10^{17} atoms

Gallium anomaly: BSM [BEST <u>2303.05528</u>]

Sterile neutrino mixing with electron neutrino

Electron neutrino oscillate into sterile neutrinos Survival probability: $P_{ee} = 1 - \sin^2(2\theta)\sin^2(\Delta m^2 L/(4E))$

Sterile neutrino mixing with electron neutrino

Comparison to global neutrino data (no anomalies observed!) **Reactor experiments** Beta decay experiments Solar neutrino experiments Cosmology

Preferred region from Gallium experiments ruled out

[Giunti, Li, Ternes, Tyagi, Xin 2209.00916]

Youngst@rs 2023: Gallium anomaly

Julia Gehrlein

Youngst@rs 2023: Gallium anomaly

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

- To avoid constraints from other experiments:
- Neutrinos at Gallium experiments have narrow energy range:

Neutrinos travel very short baseline:

- To avoid constraints from other experiments:
- Neutrinos at Gallium experiments have narrow energy range:
- Sterile neutrino mixing stimulated by narrow MSW or parametric resonance at Cr energy
 - Neutrinos travel very short baseline:
- Very short lived sterile neutrino decays outside of Gallium experiments into active
 - neutrinos to regenerate flux
- But regenerated neutrinos have lower energy \rightarrow alleviates tension, doesn't solve it

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Gallium anomaly: BSM [Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Invoke narrow resonance of active-sterile mixing just a Cr energy above the cutoff of the solar pp neutrino flux & below the energy of solar $^7\mathrm{Be}$ neutrinos, sub-MeV neutrinos cannot be detected with inverse beta decay

Sterile neutrino mixing stimulated by MSW resonance

Julia Gehrlein

```
Mixing angle enhanced for
V = \frac{\Delta m^2}{2E_{\nu}^{\text{res}}} \cos 2\theta_{e4}^{\text{vac}}
```


Gallium anomaly: BSM [Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Sterile neutrino mixing stimulated by MSW resonance

Active-sterile mixing angle in matter enhanced for $V = \frac{\Delta m^2}{2E_{\mu}^{\text{res}}} \cos 2\theta_{e4}^{\text{vac}}$

Potential generated by SM weak interaction too small

Julia Gehrlein

 \rightarrow introduce new interaction with ultralight DM vector ϕ^{μ} $\mathscr{L} \supset g_{s} \phi^{\mu} \overline{\nu}_{s} \gamma_{\mu} \nu_{s}$

Sterile neutrino mixing stimulated by MSW resonance

Active-sterile mixing angle in matter enhanced for $V = \frac{\Delta m^2}{2E_{\nu}^{\text{res}}} \cos 2\theta_{e4}^{\text{vac}}$

Terrestrial constraints on DMneutrino couplings significantly alleviated as DM couples to sterile in this model

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Youngst@rs 2023: Gallium anomaly

Sterile neutrino mixing stimulated by MSW resonance

Active-sterile mixing angle in matter enhanced for $V = \frac{\Delta m^2}{2E_{\nu}^{\text{res}}} \cos 2\theta_{e4}^{\text{vac}}$

Around $z \sim 7000$ adiabatic conversion of active neutrinos into steriles $\rightarrow N_{\rm eff} < N_{\rm eff}^{\rm SM}$ Introduce new decay channel $\nu_{s} \rightarrow \Phi + \nu_{a}$

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Youngst@rs 2023: Gallium anomaly

Sterile neutrino mixing stimulated by MSW resonance

- Successful explanation of Ga anomaly
- Moderate fine-tuning of MSW resonance energy and Cr energy **Consistent** with terrestrial
- probes+ small extension for cosmological probes Test with CNO neutrinos
- Test with Ga experiments with Zn or Ar source

[Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Youngst@rs 2023: Gallium anomaly

Gallium anomaly: Conclusions

Summary

- Gallium anomaly significant and unresolved
- Discussed explanations in the SM and beyond
- SM explanation: Ge extraction efficiency biased?
- BSM explanation: resonantly enhanced active-sterile mixing at Cr energy
 - Other BSM explanations in literature
- Future tests of solution to anomaly necessary!

Thanks for your attention!

Julia Gehrlein

Youngst@rs 2023: Gallium anomaly

Appendix: Gallium anomaly [Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Summary

scenario

comments

Explanations within the Standard Model

increased ⁷¹Ge half-life (Section 2.1 and Ref. [39])

new ⁷¹Ga excited state (Section 2.2)

increased BR(${}^{51}Cr \rightarrow {}^{51}V^*$) (Section 3)

 71 Ge extraction efficiency (Section 4)

lium experiments?

our rating

- would lead to smaller matrix element for $\nu + {}^{71}\text{Ga}$; but the $\star \star \Leftrightarrow \Leftrightarrow \Leftrightarrow$ ⁷¹Ge half-life has been measured many times with different methods in [38], all of which yield consistent results. So it is hard to imagine a bias in these measurements.
- would imply a bias in the extraction of the $\nu + {}^{71}$ Ga matrix $\star \star \star \Leftrightarrow \Leftrightarrow \Leftrightarrow$ element from the measured ⁷¹Ge half-life. Some very old experiments claim the existence of such a state, but this has not been confirmed in more recent observations.
- would cause a bias in translating the heat output of the source $\star \star \star \star \Leftrightarrow \Leftrightarrow$ to a neutrino production rate. Measurements of BR($^{51}Cr \rightarrow$ $^{51}V^*$) show some tension, but it is far less than the shift required to explain the gallium anomaly.
- one of SAGE's calibration runs has revealed a large bias. $\star \star \star \star \star \star$ Could a small, unnoticed, bias have been present in all gal-

Appendix: Gallium anomaly [Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Summary

scenario

comments

Explanations beyond the Standard Model

 ν_s coupled to ultralight DM (MSW resonance, Sec. 5.1.1)

 ν_s coupled to dark energy (MSW resonance, Sec. 5.1.2) ν_s coupled to ultralight DM (param. resonance, Sec. 5.1.3)

decaying ν_s (Section 5.2)

vanilla eV-scale ν_s (Refs. [17, 18])

misalignment.

resolve it.

reactor data.

our rating

- several exotic ingredients; somewhat tuned MSW resonance; $\star \star \star \star \star \star \star$ new ν_4 decay channel required for cosmology.
- cosmology similar to the previous scenario.
- several exotic ingredients; somewhat tuned parametric res- $\star \star \star \star \star \star \star$ onance; cosmology requires post-BBN DM production via
- difficult to reconcile with reactor and solar data; regeneration $\star \star \div \Leftrightarrow \Leftrightarrow \Leftrightarrow$ of active neutrinos in ν_s decays alleviates tension, but does not

Appendix: Gallium anomaly [Brdar, Gehrlein, Kopp <u>2303.05528</u>]

Summary

scenario	comments
ν_s with CPT violation (Refs. [130])	avoids constrai solar neutrinos
extra dimensions (Refs. [131–133])	neutrinos oscill agate in extra o
stochastic neutrino mixing (Ref. [<mark>134</mark>])	based on a difference production and for vanilla ν_s .
decoherence (Refs. [137, 138])	non-standard so tal energy resol explanation by
ν_s coupled to ultralight scalar (Ref. [139])	r ultralight scala sterile neutrino

our rating

- ints from reactor experiments, but those from cannot be alleviated.
- late into sterile Kaluza–Klein modes that propdimensions; in tension with reactor data.
- erence between sterile neutrino mixing angles at detection (see also [135, 136]); fit worse than
- ource of decoherence needed; known experimenlutions constrain wave packet length, making an wave packet separation alone challenging.
- r coupling to ν_s and to ordinary matter affects parameters; can not avoid reactor constraints