Probing self-interacting sterile neutrino dark matter with the diffuse supernova neutrino background

Anna M. Suliga

University of California, Berkeley University of California, San Diego arXiv: 2310.07145, with B. Balantekin, G. Fuller, and A. Ray

MITP, November 8, 2023

Neutrinos:

- $\sim 10^{58}$ of them emitted from a single core collapse
- only they (+ GW) can reveal the deep interior conditions
- only they (+ GW) are emitted from the collapse to a black hole

Neutrinos:

- $\sim 10^{58}$ of them emitted from a single core collapse
- only they (+ GW) can reveal the deep interior conditions
- only they (+ GW) are emitted from the collapse to a black hole

Why core-collapse supernovae are good physics probes?

Advantages

- extreme physical conditions not accessible on Earth: very high densities, long baselines etc.
- within our reach to detect (SK, JUNO, XENON, PandaX...)

What can we learn with a variety of detectors?

- explosion mechanism
- yields of heavy elements
- compact object formation
- neutrino flavor evolution
- non-standard physics

Bethe & Wilson (1985), Fischer et al. (2011)...

Woosley et al. (1994), Surman & McLaughlin (2003)...

Warren et al. (2019), Li, Beacom et al. (2020)...

Balantekin & Fuller (2013), Tamborra & Shalgar (2020)... McLaughlin et al. (1999), de Gouvêa et al. (2019) ... 2/13

Why focus only on a single rare event?

Single galactic SN event

- rare event
- precise infromation about one star

Multiple SN events (larger distances)

- accumulation of events
- will detect in coming years

Images: Kurzgesagt 3/13

Diffuse supernova neutrino background (DSNB)

The DSNB is sensitive to:

- $R_{\rm SN}, f_{\rm BH-SN}$
- neutrino flavor evolution
- equation of state
- mass accretion rate in BH-SN
- non-standard physics

Guseinov (1967), Totani et al. (2009), Ando, Sato (2004), Lunardini (2009), Beacom (2010),... Recent reviews: Kresse et al. (2020), **AMS** (2022), Ando et al. (2023), ... 4/13

Diffuse supernova neutrino background: current limits

SK with 0.01 Gd: \sim same limits with \sim 5x shorter exposure SK collab. (2023)

- $\bar{\nu}_e \approx 2.7 \text{ cm}^{-2} \text{ s}^{-1}$ for $E_{\nu} > 17.3 \text{ MeV}$ SK collab. (2021), SK collab. (2023) soon detected by SK (Gd) Beacom, Vagins (2004) and JUNO JUNO collab. (2021)
- $\nu_e \approx 19 \text{ cm}^{-2} \text{ s}^{-1}$ for $E_{\nu} \epsilon$ [22.9, 36.9 MeV] SNO collab. (2020) possibly detectable by DUNE Møller, **AMS**, Tamborra, Denton (2018), Zhu et al. (2019)
- $\nu_x \approx 750 \text{ cm}^{-2} \text{ s}^{-1}$ for $E_{\nu} > 19.3 \text{ MeV SK}$ Lunardini, Pestes (2008) much better limits with DARWIN Strigari (2009), **AMS**, Beacom, Tamborra (202

Astrophysical uncertainties affecting the DSNB

- Neutrino Flux from an "Average Supernova" Lunardini (2009), Lunardini & Tamborra (2012), Horiuchi et al. (2018), Kresse et al. (2018), ...
- Cosmological Supernovae Rate Beacom (2010)Horiuchi et al. (2011), Ando et al. (2023), ..., ...
- Initial Mass Function
 Ziegler, Edwards, AMS, Tamborra, Horiuchi, Ando, Freese (2022)
- Fraction of Black-Hole-Forming Progenitors Lunardini (2009), Lien et al. (2010), Keehn & Lunardini (2012), Priya & Lunardini (2017) Møller, AMS, Tamborra, Denton (2018), Horiuchi et al. (2018), Kresse et al. (2018), ...
- Binary Interactions

Horiuchi, Kinugawa, Takiwaki, Takahashi (2021)

Non exhaustive list of references

Astrophysical uncertainties affecting the DSNB

Kresse et al. (2020) 10^{1} $\phi_{>17.3}\gtrsim 3.1/\mathrm{cm}^2/\mathrm{s}$ $\phi_{>17.3}\lesssim 3.1/\mathrm{cm}^2/\mathrm{s}$ $d\phi/dE$ [MeV⁻¹cm⁻²s⁻¹ fiducia 10^{0} 10^{-1} 17.3 MeV 10^{-2} $\bar{\nu}_{P}$ 10^{-3} 10 20 30 40 E [MeV]

• models with the extreme combinations of parameters are disfavoured

• large emission from black-hole-forming collapses and their fraction

Neutrino Flux from an "Average Supernova"

What types of new physics can be probed with DSNB given the astrophysical uncertainties?

KeV-mass sterile neutrino self-interactions

$$\sigma(E_{\nu}) = \frac{g_s^4}{4\pi} \frac{s}{(s - m_{\phi}^2)^2 + m_{\phi}^4 \Gamma_{\phi}^2} \approx \frac{\pi g_s^2}{m_{\phi}^2} E_{\nu} \delta(E_R - E_{\nu}), \text{ where } E_R = m_{\phi}^2 / 2m_s$$

• sterile component in the DSNB ν_i interacts with the mostly sterile relic background of N_i

Modified DSNB flux

$$\phi_{\alpha}(E_{\nu}) \simeq \sum_{i=1}^{3} |U_{\alpha i}|^2 \int_{0}^{z_{\max}} dz \; \frac{P_i(E_{\nu}, z)}{H(z)} \times \; R_{\text{SN}}(z) \; F_{\text{SN}}^i(E_{\nu}(1+z))$$

Probability of interaction

$$P_i(E_\nu, z) = e^{-\tau_i(E_\nu, z)}$$

$$\tau_i(E_{\nu}, z) \simeq \tau_R \Theta(z - z_R) = \frac{\Gamma_R(z_R)}{(1 + z_R)H(z_R)} \Theta(z - z_R)$$

where $z_R = E_R/E_{\nu} - 1$, interaction rate $\Gamma_R(z_R) \simeq |U_{si}|^2 n_{\nu_s}(z_R) \sigma_R$, and sterile neutrino number density $n_{\nu_s}(z_R) = n_{\nu_s}(1 + z_R)^3$

smilar studies for active neutrino self-interactions and eV-mass sterile neutrinos:

Goldberg et al. (2005), Baker et al. (2007), Farzan, Palomares-Ruiz (2014), Reno et al. (2018), Creque-Sarbinowski et al. (2021) 10/13

Secret neutrino interactions: DSNB

•Sterile neutrino self-interactions may result in features in DSNB

Sensitivity limits

Overalap with the TRISTAN experiment paramater spaceReduction of the astrophysical uncertainties helps but not by a lot

- Diffuse supernova neutrino background may soon be detected
- Flux encodes infformation about whole supernova population
- Sterile neutrino self-interactions can imprint dips in the flux
- Testable parameter space overalaps with TRISTAN
- Dips in the DSNB may point to rich dark sector

Thank you for the attention!

The fraction of black-hole-forming progenitors

The fraction of black-hole-forming progenitors

Fraction of black-hole-forming progenitors influences the highly energetic part of the DSNB, above \sim 15 MeV.

Lunardini (2009), Keehn, Lunardini (2010), Lunardini, Tamborra (2012), Priya, Lunardini (2017), Møller, **AMS** et al. (2018), Nakazato et al. (2018) Kresse et al. (2020), ...

Cosmological supernovae rate

The supernovae rate influences the normalization of the DSNB. Ando, Sato (2004), Beacom (2010), Horiuchi et al. (2011), Møller, **AMS**, Tamborra, Denton (2018), Nakazato et al. (2018), ...

Expected 1σ uncertainty: fraction of BH forming progenitors

- The high uncertainty comes from $f_{\rm BH-SN}$ -mass accretion rate degeneracy
- DUNE is sensitive to neutrinos → helps to reduce the uncertainty

Møller, AMS, Tamborra, Denton (2018)

Expected 1σ uncertainty: local supernova rate

• Relative error of 20%-33% independent of the mass ordering.

Møller, AMS, Tamborra, Denton (2018)

Varying Initial Mass Function

- larger fraction of stars may evolve to black holes at high redshift
- changed rate of the core-collapse supernovae

Majority of massive stars have stellar companions and experience binary interactions Sana et al. 2012, Zapartas et al. 2020

Images: iflscience, Wiki

Majority of massive stars have stellar companions and experience binary interactions Sana et al. 2012, Zapartas et al. 2020

Effects on the stellar population Horiuchi et al. 2021

- change in mass due to mass transfer
- reduced progenitor counts
- increased progenitor counts

Images: iflscience, Wiki

Binary interactions: impact on DSNB

- enhancement ≤ 75% compared to estimate w/o binary considerations
- core mass increases due to rotational effects
- more studies needed

Limits from the SN 1987A

AMS, Beacom, Tamborra (2022)