Interacting Neutrinos in Cosmology

Isabel M. Oldengott

UCLouvain, CP3

08 November 2023 YOUNGST@RS - Interacting dark sectors in astrophysics, cosmology, and the lab

Introduction

Energy density:

$$\rho^{rad} \equiv \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma}$$

N_{eff} = 3.040 (Bennet et al. 2020), N_{eff} = 3.043 (Cielo et al. 2023)

$$> N_{\text{eff}} = 2.92^{+0.36}_{-0.37} (95\% \text{ CL})$$
(Planck 2018)

Assumptions about neutrinos made in ΛCDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- Neutrinos follow a relativistic Fermi-Dirac spectrum

• They have a temperature of
$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$$

• There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

Assumptions about neutrinos made in ACDM

- Neutrinos are free-streaming after 1 MeV (i.e. they are stable and have no interactions)
- Neutrinos follow a relativistic Fermi-Dirac spectrum

• They have a temperature of $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$

Modified by non-standard interactions

• There are as many neutrinos as anti-neutrinos (negligible lepton asymmetry)

Neutrino sector: Clear hint for physics beyond the standard model Non-standard neutrino interactions $\mathcal{L}_{\mathrm{int}} = \mathfrak{g}_{ij} \bar{ u}_i u_j \phi$ \blacksquare Strongly constrained massless scalar limit: $\Gamma_{\rm new} \sim qT$ $\Gamma_{\rm new} \sim G_{\rm eff}^2 T^5$ massive scalar limit: 10-14 standard decoupling, standard decoupling 10-16 delayed decoupling evolution rates [eV] 10-18 recoupling 10-20 10-22 $\mathfrak{g} = 10^{-28}$ $G_{\rm eff} = 10^7 G_{\rm F}$ $g = 10^{-27}$ 10-24 $G_{\mathrm{eff}} = 10^8 G_{\mathrm{F}}$ $g = 10^{-26}$ 10-26 $G_{\mathrm{eff}} = 10^9 G_{\mathrm{F}}$ $g = 10^{-25}$ 10-28 $G_{\rm eff} = 10^{10} G_{\rm F}$ 101 102 103 104 100 105 106 T [eV] 10-30 103 100 101 10^{2} 104 105 106 T [eV] \rightarrow massless: see e.g. Brinckmann et al. 2023, Venzor et al. 2022, Forastieri et al. 2019, Forastieri et al. 2015, Archidiacono et al. 2013 \rightarrow 0.1 eV – 1 MeV range: see e.g. Sandner et al. 2023, Venzor et al. 2023, CMB signature?

Escudero & 2019

Cosmic Microwave Background $\mathcal{O}(0.3\,\mathrm{eV})$

\rightarrow Cosmic perturbation theory:

1) Perturbed Einstein equation: $\bar{G}_{\mu\nu} + \delta G_{\mu\nu} = 8\pi G (\bar{T}_{\mu\nu} + \delta T_{\mu\nu})$

2) Perturbed phase-space distribution $f(\mathbf{k}, \mathbf{q}, \tau) = \overline{f}(q, \tau) (1 + \Psi(\mathbf{k}, \mathbf{q}, \tau))$

Perturbed Boltzmann equation:

standard free-streaming case

$$\dot{\Psi}(\mathbf{k},\mathbf{q},\tau) + \mathrm{i}\frac{|\mathbf{q}||\mathbf{k}|}{\epsilon}(\hat{k}\cdot\hat{q})\Psi(\mathbf{k},\mathbf{q},\tau) + \frac{\partial\ln\bar{f}_i(|\mathbf{q}|,\tau)}{\partial\ln|\mathbf{q}|}\left[\dot{\tilde{\eta}} - (\hat{k}\cdot\hat{q})^2\frac{\dot{h}+6\dot{\tilde{\eta}}}{2}\right] = \mathbf{v}[\mathbf{q}]$$

 $\dot{\Psi}$

Decompose phase-space perturbation

into Legendre polynomials:

$$\Psi(|\mathbf{k}|, |\mathbf{q}|, \hat{k} \cdot \hat{q}) = \sum_{\ell=0}^{\ell} (-i)^{\ell} (2\ell+1) \Psi_{\ell}(|\mathbf{k}|, |\mathbf{q}|) P_{\ell}(\hat{k} \cdot \hat{q})$$

→ Neutrino Boltzmann hierarchy:

$$\begin{split} \dot{\Psi}_0 &= -\frac{qk}{\epsilon} \Psi_1 + \frac{1}{6} \dot{h} \frac{d\ln f_0}{d\ln q} + \mathcal{O}_{\bullet} [], \quad \text{free-streaming} \\ \dot{\Psi}_1 &= \frac{qk}{3\epsilon} (\Psi_0 - 2\Psi_2) + \mathcal{O}_{\bullet}], \\ \dot{\Psi}_2 &= \frac{qk}{5\epsilon} (2\Psi_1 - 3\Psi_3) - \left(\frac{1}{15} \dot{h} + \frac{2}{5} \dot{\eta}\right) \frac{d\ln f_0}{d\ln q} + \mathcal{O}_{\bullet}], \\ \ell_{\geq 3} &= \frac{qk}{(2\ell+1)\epsilon} \left[\ell \Psi_{\ell-1} - (\ell+1) \Psi_{\ell+1} \right] + \mathcal{O}_{\bullet}] \end{split}$$

General expected signal from interactions:

suppression of free-streaming

 \rightarrow enhancement of neutrino monopole/perturbed energy density

 \rightarrow enhancement of temperature anisotropies

Neutrino Boltzmann hierarchy

(IMO, C. Rampf, Y. Y. Y. Wong 2014)

$$\begin{split} \dot{\Psi}_{0}(q) &= -k\Psi_{1}(q) + \frac{1}{6} \frac{\partial \ln \bar{f}}{\partial \ln q} \dot{h} - \frac{40}{3} G^{\mathrm{m}} q \, T_{\nu,0}^{4} \, \Psi_{0}(q) \\ &+ G^{\mathrm{m}} \int \mathrm{d}q' \, \frac{q'}{q\bar{f}(q)} \left[2K_{0}^{\mathrm{m}}(q,q') - \frac{20}{9} q^{2} \, q'^{2} e^{-q/T_{\nu,0}} \right] \, \bar{f}_{\nu}(q') \, \Psi_{0}(q') \,, \\ \dot{\Psi}_{1}(q) &= -\frac{2}{3} k\Psi_{2}(q) + \frac{1}{3} k\Psi_{0}(q) - \frac{40}{3} G^{\mathrm{m}} q \, T_{\nu,0}^{4} \, \Psi_{1}(q) \\ &+ G^{\mathrm{m}} \int \mathrm{d}q' \, \frac{q'}{q\bar{f}(q)} \left[2K_{1}^{\mathrm{m}}(q,q') + \frac{10}{9} q^{2} \, q'^{2} e^{-q/T_{\nu,0}} \right] \, \bar{f}(q') \, \Psi_{1}(q') \,, \\ \dot{\Psi}_{2}(q) &= -\frac{3}{5} k\Psi_{3}(q) + \frac{2}{5} k\Psi_{1}(q) - \frac{\partial \ln \bar{f}}{\partial \ln q} \left(\frac{2}{5} \dot{\bar{\eta}} + \frac{1}{15} \dot{h} \right) - \frac{40}{3} G^{\mathrm{m}} q \, T_{\nu,0}^{4} \, \Psi_{2}(q) \\ &+ G^{\mathrm{m}} \int \mathrm{d}q' \, \frac{q'}{q\bar{f}(q)} \left[2K_{2}^{\mathrm{m}}(q,q') - \frac{2}{9} q^{2} \, q'^{2} e^{-q/T_{\nu,0}} \right] \, \bar{f}(q') \, \Psi_{2}(q') \,, \\ \dot{\Psi}_{\ell>2}(q) &= \frac{k}{2\ell+1} \left[\ell \Psi_{\ell-1}(q) - (\ell+1) \Psi_{\ell+1}(q) \right] - \frac{40}{3} G^{\mathrm{m}} q \, T_{\nu,0}^{4} \, \Psi_{\ell}(q) \\ &+ G^{\mathrm{m}} \int \mathrm{d}q' \, 2 \frac{q'}{q\bar{f}(q)} \, K_{\ell}^{\mathrm{m}}(q,q') \, \bar{f}(q') \, \Psi_{\ell}(q') \end{split}$$

(compare e.g. with Cyr-Racine et. al. 2013, Lancaster 2017, Kreisch et al. 2019)

G. Barenboim, P. Denton, IMO, 2019

IMO, C. Rampf, T. Tram, Y. Y. Y. Wong, 2017

 \rightarrow Interesting for inflationary model selection

→ Helps to weaken the Hubble tension

"Solution of the Hubble tension" (C. Kreisch, F.-Y. Cyr-Racine, O. Doré 2019)

Final remarks:

• Strongly interacting mode in cosmological data is persistent.

(e.g. Kreisch et al. 2022, Camarena 2023)

• CMB analysis with Planck-2018 data & different data combinations: Does not solve the Hubble tension (alleviates it at most).

(S. R. Choudhury at al. 2021 & 2022, A. Mazumdar et al. 2021, A. Das et al. 2021, T. Brinckmann et al. 2020 & 2021)

• Strong constraints from BBN and laboratory experiments. (Blinov at al. 2019, K-F Lyu et al. 2020, Brdar at al. 2020)