Model independent explorations of the dark matter production mechanisms

Disha Bhatia Instituto de Fisica, Universidade de São Paulo, Brasil

November 6, 2023

Dark matter as an hypothesis of missing mass

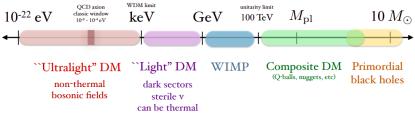
• The experimental observations at all scales can be explained if we hypothesize the missing mass as the new matter.

• Very little properties of DM are known – cold, collisionless and interacts very with the visible matter.

Dark matter as an hypothesis of missing mass

• The experimental observations at all scales can be explained if we hypothesize the missing mass as the new matter.

• Very little properties of DM are known – cold, collisionless and interacts very with the visible matter.



(from T. Li, Tasi, 2019)

Natural question: how such wide mass range of DM got produced in early universe, and can we test it beyond gravitational interactions?

Dark matter observed density

• The most useful information about dark matter is it's present day energy density i.e.

$$\Omega_{\mathsf{DM}} = \sum_{i} \frac{\rho_{\chi_{i}}}{\rho_{\mathsf{crit}}} = \sum_{i} \frac{m_{\chi_{i}} n_{\chi_{i}}(\mathsf{today})}{\rho_{\mathsf{crit}}} = \sum_{i} \frac{m_{\chi_{i}} Y_{\chi_{i}}(\mathsf{today}) \, s(\mathsf{today})}{\rho_{\mathsf{crit}}}$$

- Assumption: One component of dark matter satisfying the full relic gives us a conservative range of the masses and couplings which can be probed at experiments.
- Assuming standard cosmological evolution of the early universe, the initial comoving DM density is

$$Y_{\chi_i}({ t initial}) = Y_{\chi_i}({ t today}) = rac{\Omega_{\mathsf{DM}}}{m_{\chi_i}} rac{
ho_{\mathsf{crit}}}{s({ t today})}$$

Dark matter observed density

• The most useful information about dark matter is it's present day energy density i.e.

$$\Omega_{\mathsf{DM}} = \sum_{i} \frac{\rho_{\chi_{i}}}{\rho_{\mathsf{crit}}} = \sum_{i} \frac{m_{\chi_{i}} n_{\chi_{i}}(\mathsf{today})}{\rho_{\mathsf{crit}}} = \sum_{i} \frac{m_{\chi_{i}} Y_{\chi_{i}}(\mathsf{today}) \, s(\mathsf{today})}{\rho_{\mathsf{crit}}}$$

- Assumption: One component of dark matter satisfying the full relic gives us a conservative range of the masses and couplings which can be probed at experiments.
- Assuming standard cosmological evolution of the early universe, the initial comoving DM density is

$$Y_{\chi_i}({ t initial}) = Y_{\chi_i}({ t today}) = rac{\Omega_{\mathsf{DM}}}{m_{\chi_i}} rac{
ho_{\mathsf{crit}}}{s({ t today})}$$

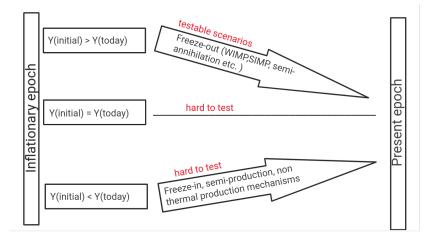
• The most useful information about dark matter is it's present day energy density i.e.

$$\Omega_{\mathsf{DM}} = \sum_{i} \frac{\rho_{\chi_{i}}}{\rho_{\mathsf{crit}}} = \sum_{i} \frac{m_{\chi_{i}} n_{\chi_{i}}(\mathsf{today})}{\rho_{\mathsf{crit}}} = \sum_{i} \frac{m_{\chi_{i}} Y_{\chi_{i}}(\mathsf{today}) \, s(\mathsf{today})}{\rho_{\mathsf{crit}}}$$

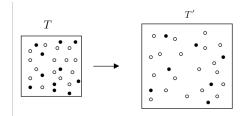
- Assumption: One component of dark matter satisfying the full relic gives us a conservative range of the masses and couplings which can be probed at experiments.
- Assuming standard cosmological evolution of the early universe, the initial comoving DM density is

$$Y_{\chi_i}(\mathsf{initial}) = Y_{\chi_i}(\mathsf{today}) = rac{\Omega_{\mathsf{DM}}}{m_{\chi_i}} rac{
ho_{\mathsf{crit}}}{s(\mathsf{today})}$$

Dark matter observed density continued..



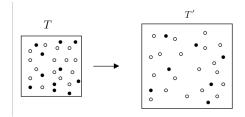
Thermal production of matter and dark matter



• Thermal mechanism to generate DM in early universe quite attractive \Rightarrow independent of the initial conditions.

• Since rate $\propto\sigma,$ the cross-section of these interactions critical in determining DM densities.

Thermal production of matter and dark matter



- Thermal mechanism to generate DM in early universe quite attractive \Rightarrow independent of the initial conditions.
- Since rate $\propto\sigma,$ the cross-section of these interactions critical in determining DM densities.

- Mass range of $\mathcal{O}(10)(\text{GeV}) \mathcal{O}(10 \text{ TeV})$ falls under the regime of WIMP.
- Lot of experimental and theoretical probes in this region (Null results).
- Derivation of generalised properties important.
- With 2 \rightarrow 2 kind of interactions, a generalized upper bound on thermal DM (O(100) TeV) obtained using S-matrix unitarity. (Griest and Kammionkowsky, 1989)

- Mass range of $\mathcal{O}(10)(\text{GeV}) \mathcal{O}(10 \text{ TeV})$ falls under the regime of WIMP.
- Lot of experimental and theoretical probes in this region (Null results).
- Derivation of generalised properties important.
- With $2 \rightarrow 2$ kind of interactions, a generalized upper bound on thermal DM ($\mathcal{O}(100)$ TeV) obtained using S-matrix unitarity. (Griest and Kammionkowsky, 1989)

- Mass range of $\mathcal{O}(10)(\text{GeV}) \mathcal{O}(10 \text{ TeV})$ falls under the regime of WIMP.
- Lot of experimental and theoretical probes in this region (Null results).
- Derivation of generalised properties important.
- With 2 \rightarrow 2 kind of interactions, a generalized upper bound on thermal DM ($\mathcal{O}(100)$ TeV) obtained using S-matrix unitarity. (Griest and Kammionkowsky, 1989)

- Mass range of $\mathcal{O}(10)(\text{GeV}) \mathcal{O}(10 \text{ TeV})$ falls under the regime of WIMP.
- Lot of experimental and theoretical probes in this region (Null results).
- Derivation of generalised properties important.
- With $2 \rightarrow 2$ kind of interactions, a generalized upper bound on thermal DM $(\mathcal{O}(100) \text{ TeV})$ obtained using S-matrix unitarity. (Griest and Kammionkowsky, 1989)

• How holy is the above bound?

(answering this requires the reconsidring the assumptions used in evaluating DM abundances.)

• How to maximise the detection reach for the thermal DM candidates (in the weakly interacting regime) at the LHC?

(This crucially depends on choosing the optimal theoretical framework)

< A > <

• How holy is the above bound?

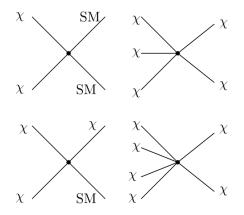
(answering this requires the reconsidring the assumptions used in evaluating DM abundances.)

• How to maximise the detection reach for the thermal DM candidates (in the weakly interacting regime) at the LHC?

(This crucially depends on choosing the optimal theoretical framework)

A. Determination of upper mass of dark matter for general $n \rightarrow 2$ annihilations

D. Bhatia and S. Mukhopadhyay, JHEP 03, 133 (2021)



- Non-observations of dark matter at experiments has led beleive that perhaps the couplings of DM with SM are even weaker than assumed.
- Different scenarios can set DM abundances instead of $\chi\chi \to {\rm SM}~{\rm SM},$ we can have

- Self interacting scalars can easily give rise to above model ⇒ 3 → 2 model in particular has gained lot of importance in literature → Cannibal models.
- Presence of tiny coupling within DM-SM sector to establish kinetic equilibrium but small enough to not have any significant contribution in the annihilation/creation of DM.
- Goal is to use S-matrix unitarity to determine the upper bound on the mass of the DM for generic $n \rightarrow 2$ annihilations.

< □ > < □ > < □ > < □ > < □ > < □ >

- Non-observations of dark matter at experiments has led beleive that perhaps the couplings of DM with SM are even weaker than assumed.
- $\bullet\,$ Different scenarios can set DM abundances instead of $\chi\chi\to$ SM SM, we can have

$$\chi\chi \to \text{HS HS}$$
 or $\chi\chi\ldots\chi$ $\Leftrightarrow \chi\chi$

- Self interacting scalars can easily give rise to above model ⇒ 3 → 2 model in particular has gained lot of importance in literature → Cannibal models.
- Presence of tiny coupling within DM-SM sector to establish kinetic equilibrium but small enough to not have any significant contribution in the annihilation/creation of DM.
- Goal is to use S-matrix unitarity to determine the upper bound on the mass of the DM for generic $n \rightarrow 2$ annihilations.

< □ > < 同 > < 三 > < 三 >

- Non-observations of dark matter at experiments has led beleive that perhaps the couplings of DM with SM are even weaker than assumed.
- $\bullet\,$ Different scenarios can set DM abundances instead of $\chi\chi\to$ SM SM, we can have

$$\chi\chi \to \text{HS HS}$$
 or $\chi\chi\ldots\chi$ $\Leftrightarrow \chi\chi$

- Self interacting scalars can easily give rise to above model ⇒ 3 → 2 model in particular has gained lot of importance in literature → Cannibal models.
- Presence of tiny coupling within DM-SM sector to establish kinetic equilibrium but small enough to not have any significant contribution in the annihilation/creation of DM.
- Goal is to use S-matrix unitarity to determine the upper bound on the mass of the DM for generic $n \rightarrow 2$ annihilations.

< □ > < □ > < □ > < □ > < □ > < □ >

- Non-observations of dark matter at experiments has led beleive that perhaps the couplings of DM with SM are even weaker than assumed.
- $\bullet\,$ Different scenarios can set DM abundances instead of $\chi\chi\to$ SM SM, we can have

$$\chi\chi \to \text{HS HS}$$
 or $\chi\chi\ldots\chi$ $\Leftrightarrow \chi\chi$

- Self interacting scalars can easily give rise to above model ⇒ 3 → 2 model in particular has gained lot of importance in literature → Cannibal models.
- Presence of tiny coupling within DM-SM sector to establish kinetic equilibrium but small enough to not have any significant contribution in the annihilation/creation of DM.
- Goal is to use S-matrix unitarity to determine the upper bound on the mass of the DM for generic $n \rightarrow 2$ annihilations.

< □ > < □ > < □ > < □ > < □ > < □ >

- Non-observations of dark matter at experiments has led beleive that perhaps the couplings of DM with SM are even weaker than assumed.
- $\bullet\,$ Different scenarios can set DM abundances instead of $\chi\chi\to$ SM SM, we can have

$$\chi\chi \to \text{HS HS}$$
 or $\chi\chi\ldots\chi$ $\Leftrightarrow\chi\chi$

- Self interacting scalars can easily give rise to above model ⇒ 3 → 2 model in particular has gained lot of importance in literature → Cannibal models.
- Presence of tiny coupling within DM-SM sector to establish kinetic equilibrium but small enough to not have any significant contribution in the annihilation/creation of DM.
- Goal is to use S-matrix unitarity to determine the upper bound on the mass of the DM for generic $n \rightarrow 2$ annihilations.

- One stable massive particle which contributes maximally to the observed relic density.
- DM is atleast kinetically coupled with the SM bath.
- Dominant annihilations are through 2 → 2 reactions. (may or may not be to SM states).
- There is no asymmetry between DM and $\overline{\text{DM}}$ states.
- Universe is radiation dominated during freeze-out.
- The total entropy remains conserved as the universe expands adiabatically.

• To determine DM abundance, one has to formally solve the Boltzmann equation i.e.

$$E\left(\partial_t - H\vec{p}.\nabla_p\right)f_{\chi} = C[f_{\chi}]$$

Since DM is in kinetic equilibrium with SM, solving zeroth order BE is sufficient.

$$\frac{1}{a^3} \frac{d(n_{\chi} a^3)}{dt} = \langle \sigma v \rangle_f n_{\chi}^2 - \langle \sigma v \rangle_b n_{SM}^2 \quad \text{for } 2 \rightarrow 2$$
$$= \langle \sigma v^{n-1} \rangle_f n_{\chi}^n - \langle \sigma v \rangle_b n_{\chi}^2 \quad \text{for } n \rightarrow 2$$

- The partial wave decomposition complicated for n > 2 as more and more angular variables are involved.
- One has to repeat the process for each n in order to evaluate generalized bounds on $n \rightarrow 2$ cross-section
- Simple trick: we estimate the maximum value of thermal averaged cross-section for $n \rightarrow 2$ in terms of $2 \rightarrow n$.
- We use the equality of rates in equilibrium of forward-backward processes:

$$\frac{1}{a^3}\frac{dn_{\chi}a^3}{dt} = \left[\langle \sigma v^{n-1} \rangle_f n_{\chi}^n - \langle \sigma v \rangle_b n_{\chi}^2\right] = 0 \quad \text{for } n \to 2$$

$$2 \operatorname{Im} \mathcal{M}_{el}(\alpha_2 \to \alpha_2) = \int d\Pi_n (2\pi)^4 \delta^4 (p_{\alpha_2} - p_{\beta_2}) |\mathcal{M}_{el}(\alpha_2 \to \beta_2)|^2 + \sum_{n'} \int d\Pi_2 (2\pi)^4 \delta^4 (p_{\alpha_2} - p_{\beta(n')}) |\mathcal{M}_{in}(\alpha_2 \to \beta_{n'}|^2)$$

- The partial wave decomposition complicated for n > 2 as more and more angular variables are involved.
- One has to repeat the process for each n in order to evaluate generalized bounds on $n \rightarrow 2$ cross-section
- Simple trick: we estimate the maximum value of thermal averaged cross-section for $n \rightarrow 2$ in terms of $2 \rightarrow n$.
- We use the equality of rates in equilibrium of forward-backward processes:

$$\frac{1}{a^3}\frac{dn_{\chi}a^3}{dt} = \left[\langle \sigma v^{n-1} \rangle_f n_{\chi}^n - \langle \sigma v \rangle_b n_{\chi}^2\right] = 0 \quad \text{for } n \to 2$$

$$2 \operatorname{Im} \mathcal{M}_{el}(\alpha_2 \to \alpha_2) = \int d\Pi_n (2\pi)^4 \delta^4 (p_{\alpha_2} - p_{\beta_2}) |\mathcal{M}_{el}(\alpha_2 \to \beta_2)|^2 + \sum_{n'} \int d\Pi_2 (2\pi)^4 \delta^4 (p_{\alpha_2} - p_{\beta(n')}) |\mathcal{M}_{in}(\alpha_2 \to \beta_{n'}|^2)$$

- The partial wave decomposition complicated for n > 2 as more and more angular variables are involved.
- One has to repeat the process for each n in order to evaluate generalized bounds on $n \rightarrow 2$ cross-section
- Simple trick: we estimate the maximum value of thermal averaged cross-section for n → 2 in terms of 2 → n.

• We use the equality of rates in equilibrium of forward-backward processes:

$$\frac{1}{a^3}\frac{dn_{\chi}a^3}{dt} = \left[\langle \sigma v^{n-1} \rangle_f n_{\chi}^n - \langle \sigma v \rangle_b n_{\chi}^2\right] = 0 \quad \text{for } n \to 2$$

$$2 \operatorname{Im} \mathcal{M}_{el}(\alpha_2 \to \alpha_2) = \int d\Pi_n (2\pi)^4 \delta^4 (p_{\alpha_2} - p_{\beta_2}) |\mathcal{M}_{el}(\alpha_2 \to \beta_2)|^2 + \sum_{n'} \int d\Pi_2 (2\pi)^4 \delta^4 (p_{\alpha_2} - p_{\beta(n')}) |\mathcal{M}_{in}(\alpha_2 \to \beta_{n'}|^2)$$

- The partial wave decomposition complicated for n > 2 as more and more angular variables are involved.
- One has to repeat the process for each n in order to evaluate generalized bounds on $n \rightarrow 2$ cross-section
- Simple trick: we estimate the maximum value of thermal averaged cross-section for n → 2 in terms of 2 → n.
- We use the equality of rates in equilibrium of forward-backward processes:

$$\frac{1}{a^3}\frac{dn_{\chi}a^3}{dt} = \left[\langle \sigma v^{n-1} \rangle_f n_{\chi}^n - \langle \sigma v \rangle_b n_{\chi}^2\right] = 0 \quad \text{for } n \to 2$$

$$2 \operatorname{Im} \mathcal{M}_{el}(\alpha_2 \to \alpha_2) = \int d\Pi_n (2\pi)^4 \delta^4 (p_{\alpha_2} - p_{\beta_2}) |\mathcal{M}_{el}(\alpha_2 \to \beta_2)|^2 + \sum_{n'} \int d\Pi_2 (2\pi)^4 \delta^4 (p_{\alpha_2} - p_{\beta(n')}) |\mathcal{M}_{in}(\alpha_2 \to \beta_{n'}|^2)$$

- The partial wave decomposition complicated for n > 2 as more and more angular variables are involved.
- One has to repeat the process for each n in order to evaluate generalized bounds on $n \rightarrow 2$ cross-section
- Simple trick: we estimate the maximum value of thermal averaged cross-section for n → 2 in terms of 2 → n.
- We use the equality of rates in equilibrium of forward-backward processes:

$$\frac{1}{a^3}\frac{dn_{\chi}a^3}{dt} = \left[\langle \sigma v^{n-1} \rangle_f n_{\chi}^n - \langle \sigma v \rangle_b n_{\chi}^2\right] = 0 \quad \text{for } n \rightarrow 2$$

$$2\mathrm{Im}\mathcal{M}_{\mathsf{el}}(\alpha_2 \to \alpha_2) = \int d\Pi_n (2\pi)^4 \delta^4 (p_{\alpha_2} - p_{\beta_2}) |\mathcal{M}_{\mathsf{el}}(\alpha_2 \to \beta_2)|^2 + \sum_{n'} \int d\Pi_2 (2\pi)^4 \delta^4 (p_{\alpha_2} - p_{\beta(n')}) |\mathcal{M}_{\mathsf{in}}(\alpha_2 \to \beta_{n'}|^2)$$

S-matrix unitarity continued ...

• For maximizing inelastic scattering $S^{\dagger}S \rightarrow 1 \Rightarrow S_{\rm in}^{\dagger}S_{\rm in} \rightarrow 1 \Rightarrow S_{\rm el}^{\dagger}S_{\rm el} \rightarrow 0$.

$$\sigma_{ ext{in,total}} ~=~ \sum_{\ell} rac{\pi}{|ec{p_1}|^2} S_2(2\ell+1) \left(1-\langle \ell,m|S_{ ext{el}}^{\dagger}S_{ ext{el}}|\ell,m
angle
ight)$$

• To determine the conservative limit, we assume:

 $\sigma_{\rm in,total} \approx \sigma_{{\rm in},2
ightarrow n}$

• The annihilation cs for $n \rightarrow 2$ can be determined as:

$$\langle \sigma_{n \to 2} v^{n-1} \rangle_{\max} = \sum_{\ell} (2\ell+1) \frac{2^{\frac{3n-2}{2}} (\pi x)^{\frac{3n-5}{2}}}{g_{\chi}^{k-2} m_{\chi}^{3n-4}}.$$

S-matrix unitarity continued ...

• For maximizing inelastic scattering $S^{\dagger}S \rightarrow 1 \Rightarrow S_{\rm in}^{\dagger}S_{\rm in} \rightarrow 1 \Rightarrow S_{\rm el}^{\dagger}S_{\rm el} \rightarrow 0.$

$$\sigma_{ ext{in,total}} = \sum_{\ell} rac{\pi}{|ec{p_1}|^2} S_2(2\ell+1) \left(1 - \langle \ell, m | S_{ ext{el}}^{\dagger} S_{ ext{el}} | \ell, m
angle
ight)$$

• To determine the conservative limit, we assume:

 $\sigma_{\rm in,total} \approx \sigma_{{\rm in},2 \to n}$

• The annihilation cs for $n \rightarrow 2$ can be determined as:

$$\langle \sigma_{n \to 2} v^{n-1} \rangle_{\max} = \sum_{\ell} (2\ell+1) \frac{2^{\frac{3n-2}{2}} (\pi x)^{\frac{3n-5}{2}}}{g_{\chi}^{k-2} m_{\chi}^{3n-4}}.$$

S-matrix unitarity continued ...

• For maximizing inelastic scattering $S^{\dagger}S \rightarrow 1 \Rightarrow S_{\rm in}^{\dagger}S_{\rm in} \rightarrow 1 \Rightarrow S_{\rm el}^{\dagger}S_{\rm el} \rightarrow 0$.

$$\sigma_{ ext{in,total}} = \sum_{\ell} rac{\pi}{|ec{p_1'}|^2} S_2(2\ell+1) \left(1 - \langle \ell, m | S_{ ext{el}}^{\dagger} S_{ ext{el}} | \ell, m
angle
ight)$$

• To determine the conservative limit, we assume:

$$\sigma_{\rm in,total} \approx \sigma_{{\rm in},2 \to n}$$

• The annihilation cs for $n \rightarrow 2$ can be determined as:

$$\langle \sigma_{n \to 2} v^{n-1} \rangle_{\max} = \sum_{\ell} (2\ell+1) \frac{2^{\frac{3n-2}{2}} (\pi x)^{\frac{3n-5}{2}}}{g_{\chi}^{k-2} m_{\chi}^{3n-4}}.$$

• Using the equality of rates, we converted the $n \rightarrow 2$ problem to $2 \rightarrow n$.

 Using the conservative limit of 2 → n dominating the total inelastic cross-section, we determined the upper bound on cross-section simple using the knowledge of 2 → 2 elastic scattering.

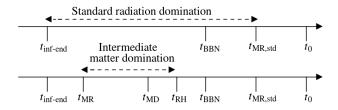
- Using the equality of rates, we converted the $n \rightarrow 2$ problem to $2 \rightarrow n$.
- Using the conservative limit of 2 → n dominating the total inelastic cross-section, we determined the upper bound on cross-section simple using the knowledge of 2 → 2 elastic scattering.

Symmetry	Annihilation channels	$\ell = 0$	$\ell = 1$	$\ell = 0 + 1$
<i>Z</i> ₂	$\chi+\chi^*\to {\rm SM}+{\rm SM}$	127.7 TeV	220 TeV	253.5 TeV
Z ₃	$3\chi^{(*)} ightarrow 2\chi^{(*)}$	1.15 GeV	1.72 GeV	1.91 GeV
Z ₂	$4\chi ightarrow 2\chi$	6.9 MeV	9.4 MeV	10.1 MeV
Z_5	$5\chi^{(*)} ightarrow 2\chi^{(*)}$	112.5 keV	138 keV	145.5 keV

Table: Unitarity upper limits on thermal DM mass in a radiation dominated Universe

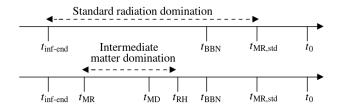
The mass bounds decrease with increase in n to accomodate for flux factor suppressions.

Intermediate matter domination



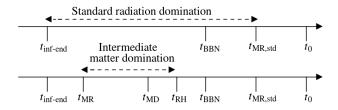
- t_{MR}: Epoch of matter-radiation equality
- t_{MD} : Epoch where matter decays starts to become important
- t_{RH} : Epoch where radiation domination is restored.
 - BBN requires Universe to be RD at temperatures $\mathcal{O}(MeV)$.
 - No experimental information about the early universe for temperatures greater than roughly a MeV.
 - We may have some period of MD, between inflation and BBN perhaps due to the presence of long lived massive particles which are decoupled from the thermal plasma.

Intermediate matter domination



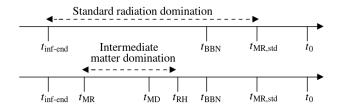
- t_{MR}: Epoch of matter-radiation equality
- t_{MD} : Epoch where matter decays starts to become important
- *t*_{RH}: Epoch where radiation domination is restored.
 - BBN requires Universe to be RD at temperatures $\mathcal{O}(MeV)$.
 - No experimental information about the early universe for temperatures greater than roughly a MeV.
 - We may have some period of MD, between inflation and BBN perhaps due to the presence of long lived massive particles which are decoupled from the thermal plasma.

Intermediate matter domination



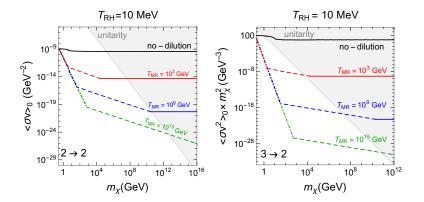
- t_{MR}: Epoch of matter-radiation equality
- t_{MD} : Epoch where matter decays starts to become important
- t_{RH} : Epoch where radiation domination is restored.
 - BBN requires Universe to be RD at temperatures $\mathcal{O}(MeV)$.
 - No experimental information about the early universe for temperatures greater than roughly a MeV.
 - We may have some period of MD, between inflation and BBN perhaps due to the presence of long lived massive particles which are decoupled from the thermal plasma.

Intermediate matter domination



- *t*_{MR}: Epoch of matter-radiation equality
- t_{MD} : Epoch where matter decays starts to become important
- *t*_{RH}: Epoch where radiation domination is restored.
 - BBN requires Universe to be RD at temperatures $\mathcal{O}(MeV)$.
 - No experimental information about the early universe for temperatures greater than roughly a MeV.
 - We may have some period of MD, between inflation and BBN perhaps due to the presence of long lived massive particles which are decoupled from the thermal plasma.

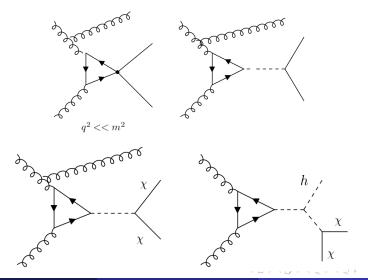
Unitarity limits with intermediate matter domination



The consequence of entropy dilution is that we can overproduce DM in early universe which results in the larger masses.

B. Phenomenological analysis of multi-pseudoscalar mediated dark matter models

S. Banerjee, G. Bélanger, D. Bhatia, B. Fuks, S. Raychaudhuri



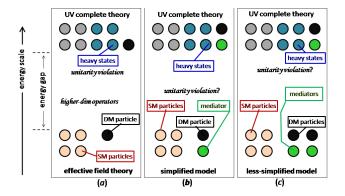
- We return to WIMP DM candidates i.e. with mass ranges $\mathcal{O}(10~\text{GeV})$ few TeVs.
- Experimentally null results so far.
- Signals hidden in un-conventional channels?
- Need to revisit the theoretical and experimental frameworks at LHC.

- We return to WIMP DM candidates i.e. with mass ranges $\mathcal{O}(10~\text{GeV})$ few TeVs.
- Experimentally null results so far.
- Signals hidden in un-conventional channels?
- Need to revisit the theoretical and experimental frameworks at LHC.

- We return to WIMP DM candidates i.e. with mass ranges $\mathcal{O}(10~\text{GeV})$ few TeVs.
- Experimentally null results so far.
- Signals hidden in un-conventional channels?
- Need to revisit the theoretical and experimental frameworks at LHC.

- We return to WIMP DM candidates i.e. with mass ranges $\mathcal{O}(10~\text{GeV})$ few TeVs.
- Experimentally null results so far.
- Signals hidden in un-conventional channels?
- Need to revisit the theoretical and experimental frameworks at LHC.

Three theoretical approaches of DM searches at the LHC



- EFT: fails to capture the correct momentum dependence, since the assumption $q^2 \ll m^2$ breaks.
- Simplified model: Although captures broad features of several models, however in doing so left with fewer channels to probe (mono-jet).
 - may be new physics lying in some other channels.
 - Simps like EFT's do not respect full gauge symmetry, construction based on gauge invariance ⇒ more particles hence more phenomenological channels)
- Less simplified models: They are closer to UV complete models, hence more cumbersome. Not all particles lead to significant DM phenomenology. Several assumptions required.
 - The simplest gauge extensions of pseudoscalar models require two generations of Higgs doublet along with an additional scalar ⇒ 15 free parameters.

< □ > < 同 > < 回 > < 回 > < 回 >

- EFT: fails to capture the correct momentum dependence, since the assumption $q^2 << m^2$ breaks.
- Simplified model: Although captures broad features of several models, however in doing so left with fewer channels to probe (mono-jet).
 - may be new physics lying in some other channels.
 - Simps like EFT's do not respect full gauge symmetry, construction based on gauge invariance ⇒ more particles hence more phenomenological channels)
- Less simplified models: They are closer to UV complete models, hence more cumbersome. Not all particles lead to significant DM phenomenology. Several assumptions required.
 - The simplest gauge extensions of pseudoscalar models require two generations of Higgs doublet along with an additional scalar ⇒ 15 free parameters.

- EFT: fails to capture the correct momentum dependence, since the assumption $q^2 << m^2$ breaks.
- Simplified model: Although captures broad features of several models, however in doing so left with fewer channels to probe (mono-jet).
 - may be new physics lying in some other channels.
 - Simps like EFT's do not respect full gauge symmetry, construction based on gauge invariance ⇒ more particles hence more phenomenological channels)
- Less simplified models: They are closer to UV complete models, hence more cumbersome. Not all particles lead to significant DM phenomenology. Several assumptions required.
 - The simplest gauge extensions of pseudoscalar models require two generations of Higgs doublet along with an additional scalar ⇒ 15 free parameters.

- EFT: fails to capture the correct momentum dependence, since the assumption $q^2 << m^2$ breaks.
- Simplified model: Although captures broad features of several models, however in doing so left with fewer channels to probe (mono-jet).
 - may be new physics lying in some other channels.
 - Simps like EFT's do not respect full gauge symmetry, construction based on gauge invariance ⇒ more particles hence more phenomenological channels)
- Less simplified models: They are closer to UV complete models, hence more cumbersome. Not all particles lead to significant DM phenomenology. Several assumptions required.
 - The simplest gauge extensions of pseudoscalar models require two generations of Higgs doublet along with an additional scalar ⇒ 15 free parameters.

- EFT: fails to capture the correct momentum dependence, since the assumption $q^2 \ll m^2$ breaks.
- Simplified model: Although captures broad features of several models, however in doing so left with fewer channels to probe (mono-jet).
 - may be new physics lying in some other channels.
 - Simps like EFT's do not respect full gauge symmetry, construction based on gauge invariance ⇒ more particles hence more phenomenological channels)
- Less simplified models: They are closer to UV complete models, hence more cumbersome. Not all particles lead to significant DM phenomenology. Several assumptions required.
 - The simplest gauge extensions of pseudoscalar models require two generations of Higgs doublet along with an additional scalar \Rightarrow 15 free parameters.

- EFT: fails to capture the correct momentum dependence, since the assumption $q^2 << m^2$ breaks.
- Simplified model: Although captures broad features of several models, however in doing so left with fewer channels to probe (mono-jet).
 - may be new physics lying in some other channels.
 - Simps like EFT's do not respect full gauge symmetry, construction based on gauge invariance ⇒ more particles hence more phenomenological channels)
- Less simplified models: They are closer to UV complete models, hence more cumbersome. Not all particles lead to significant DM phenomenology. Several assumptions required.
 - The simplest gauge extensions of pseudoscalar models require two generations of Higgs doublet along with an additional scalar \Rightarrow 15 free parameters.

- Gauge invariance: The requirement of gauge invariance is going to introduce more states and would prevent violation of unitarity i.e. $S^{\dagger}S = I$ in some processes.
 - But the question really is does this lead to violation of unitarity in the processes relevant for our purposes?
 - The ans. is it happens at really large couplings and has very little to do with addition of new states for typical mono-X searches (Englert, McCullough, Spannowsky, 2016)
- 2 More phenomenologically relevant channels:
 - They can be described in a model independent manner if we classify the models on the basis of additional number of relevant mediators + DM particles (S. Banerjee, G. Bélanger, D. Bhatia, B. Fuks and S. Raychaudhuri, JHEP 07, 111 (2022)).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Gauge invariance: The requirement of gauge invariance is going to introduce more states and would prevent violation of unitarity i.e. $S^{\dagger}S = I$ in some processes.
 - But the question really is does this lead to violation of unitarity in the processes relevant for our purposes?
 - The ans. is it happens at really large couplings and has very little to do with addition of new states for typical mono-X searches (Englert, McCullough, Spannowsky, 2016)

2 More phenomenologically relevant channels:

 They can be described in a model independent manner if we classify the models on the basis of additional number of relevant mediators + DM particles (S. Banerjee, G. Bélanger, D. Bhatia, B. Fuks and S. Raychaudhuri, JHEP 07, 111 (2022)).

- Gauge invariance: The requirement of gauge invariance is going to introduce more states and would prevent violation of unitarity i.e. $S^{\dagger}S = I$ in some processes.
 - But the question really is does this lead to violation of unitarity in the processes relevant for our purposes?
 - The ans. is it happens at really large couplings and has very little to do with addition of new states for typical mono-X searches (Englert, McCullough, Spannowsky, 2016)

One phenomenologically relevant channels:

 They can be described in a model independent manner if we classify the models on the basis of additional number of relevant mediators + DM particles (S. Banerjee, G. Bélanger, D. Bhatia, B. Fuks and S. Raychaudhuri, JHEP 07, 111 (2022)).

- Gauge invariance: The requirement of gauge invariance is going to introduce more states and would prevent violation of unitarity i.e. $S^{\dagger}S = I$ in some processes.
 - But the question really is does this lead to violation of unitarity in the processes relevant for our purposes?
 - The ans. is it happens at really large couplings and has very little to do with addition of new states for typical mono-X searches (Englert, McCullough, Spannowsky, 2016)
- Ø More phenomenologically relevant channels:
 - They can be described in a model independent manner if we classify the models on the basis of additional number of relevant mediators + DM particles (S. Banerjee, G. Bélanger, D. Bhatia, B. Fuks and S. Raychaudhuri, JHEP 07, 111 (2022)).

- Gauge invariance: The requirement of gauge invariance is going to introduce more states and would prevent violation of unitarity i.e. $S^{\dagger}S = I$ in some processes.
 - But the question really is does this lead to violation of unitarity in the processes relevant for our purposes?
 - The ans. is it happens at really large couplings and has very little to do with addition of new states for typical mono-X searches (Englert, McCullough, Spannowsky, 2016)
- Ø More phenomenologically relevant channels:
 - They can be described in a model independent manner if we classify the models on the basis of additional number of relevant mediators + DM particles (S. Banerjee, G. Bélanger, D. Bhatia, B. Fuks and S. Raychaudhuri, JHEP 07, 111 (2022)).

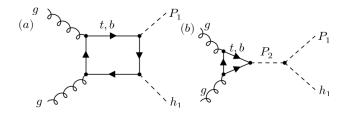
- Just like Simplified models, we can examine the constraints at LHC based on the well-defined mediators.
- For example, the scalar mediators are heavily constrained using combined constraints for relic + direct-detection.
- Less simplified models necessarily introduce large number of mediators, among which only some mediators can be relevantly compared across different experiments for example. pseudoscalar mediators.

- Just like Simplified models, we can examine the constraints at LHC based on the well-defined mediators.
- For example, the scalar mediators are heavily constrained using combined constraints for relic + direct-detection.
- Less simplified models necessarily introduce large number of mediators, among which only some mediators can be relevantly compared across different experiments for example. pseudoscalar mediators.

- Just like Simplified models, we can examine the constraints at LHC based on the well-defined mediators.
- For example, the scalar mediators are heavily constrained using combined constraints for relic + direct-detection.
- Less simplified models necessarily introduce large number of mediators, among which only some mediators can be relevantly compared across different experiments for example. pseudoscalar mediators.

Example: Two mediated pseudoscalar models

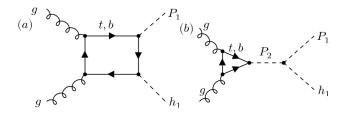
- We extend our theoretical framework by considering two pseudoscalar mediators as apperance of the atleast a second pseudoscalar is inevitable in the UV completion.
- For example, with the interaction P_2P_1h , one can generate resonantly enhanced mono-higgs signatures.



• Couplings written using principles of $U(1)_{em}$ gauge invariance, Lorentz invariance and requirement of narrow-width.

Example: Two mediated pseudoscalar models

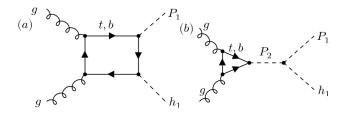
- We extend our theoretical framework by considering two pseudoscalar mediators as apperance of the atleast a second pseudoscalar is inevitable in the UV completion.
- For example, with the interaction P_2P_1h , one can generate resonantly enhanced mono-higgs signatures.



• Couplings written using principles of $U(1)_{em}$ gauge invariance, Lorentz invariance and requirement of narrow-width.

Example: Two mediated pseudoscalar models

- We extend our theoretical framework by considering two pseudoscalar mediators as apperance of the atleast a second pseudoscalar is inevitable in the UV completion.
- For example, with the interaction P_2P_1h , one can generate resonantly enhanced mono-higgs signatures.



• Couplings written using principles of $U(1)_{em}$ gauge invariance, Lorentz invariance and requirement of narrow-width.

Phenomenology of the 2-mediator pseudoscalar models

- The most immediate question which we may ask is when is the effect of second pseudoscalar mediator starts to important
- Alternatively what are the cases where we can still describe the analysis using single-mediator models.

Scenarios	Relic density	LHC phenomenology
$m_{P_2} \gg m_{P_1}$	single-mediator case	single-mediator case
$m_{P_2} > m_{P_1}$	single-mediator case	two-mediator case (enhanced mono-Higgs rates)
$m_{P_2} \sim m_{P_1}$	single-mediator case (as effective coupling)	single-mediator case (as effective coupling)

- The most immediate question which we may ask is when is the effect of second pseudoscalar mediator starts to important
- Alternatively what are the cases where we can still describe the analysis using single-mediator models.

Scenarios	Relic density	LHC phenomenology
$m_{P_2} \gg m_{P_1}$	single-mediator case	single-mediator case
$m_{P_2} > m_{P_1}$	single-mediator case	two-mediator case (enhanced mono-Higgs rates)
$m_{P_2} \sim m_{P_1}$	single-mediator case (as effective coupling)	single-mediator case (as effective coupling)

- In order to derive constraints for the best possible scenario: assume BSM contributions to mono-jet production are dominated by the effect of the first mediator.
- Find the limit in which other mono-X signatures may become dominant.

• Criteria is set by:

$$rac{g_q^2 y_\chi^2}{m_{P_2}^2} \le 0.1 \; rac{g_q^2 y_\chi^2}{m_{P_1}^2} \quad ext{or} \quad m_{P_2} \ge 3.16 \; m_{P_1} \; ,$$

This demands the the cs contribution is less than equal to 10%, which easily lies in the theory error regime.

This also assumes that we are focusing on the case where $m_{P_1,P_2} > 2m_{\chi}$.

• Both monojet and relic density constraints are then identical to the single mediator case.

Image: A matrix and a matrix

- In order to derive constraints for the best possible scenario: assume BSM contributions to mono-jet production are dominated by the effect of the first mediator.
- Find the limit in which other mono-X signatures may become dominant.

• Criteria is set by:

$$\frac{g_q^2 y_\chi^2}{m_{P_2}^2} \le 0.1 \ \frac{g_q^2 y_\chi^2}{m_{P_1}^2} \quad \text{or} \quad m_{P_2} \ge 3.16 \ m_{P_1} \ ,$$

This demands the the cs contribution is less than equal to 10%, which easily lies in the theory error regime.

This also assumes that we are focusing on the case where $m_{P_1,P_2} > 2m_{\chi}$.

• Both monojet and relic density constraints are then identical to the single mediator case.

< □ > < 同 > < 回 > < 回 > < 回 >

- In order to derive constraints for the best possible scenario: assume BSM contributions to mono-jet production are dominated by the effect of the first mediator.
- Find the limit in which other mono-X signatures may become dominant.
- Criteria is set by:

$$rac{g_q^2 y_\chi^2}{m_{P_2}^2} \le 0.1 \; rac{g_q^2 y_\chi^2}{m_{P_1}^2} \quad ext{or} \quad m_{P_2} \ge 3.16 \; m_{P_1} \; ,$$

This demands the the cs contribution is less than equal to 10%, which easily lies in the theory error regime.

This also assumes that we are focusing on the case where $m_{P_1,P_2} > 2m_{\chi}$.

• Both monojet and relic density constraints are then identical to the single mediator case.

- In order to derive constraints for the best possible scenario: assume BSM contributions to mono-jet production are dominated by the effect of the first mediator.
- Find the limit in which other mono-X signatures may become dominant.
- Criteria is set by:

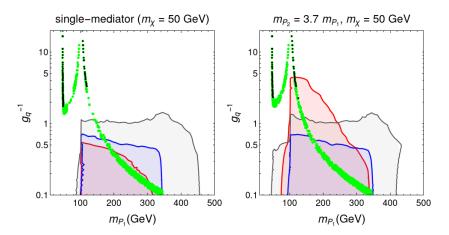
$$rac{g_q^2 y_\chi^2}{m_{P_2}^2} \le 0.1 \; rac{g_q^2 y_\chi^2}{m_{P_1}^2} \quad ext{or} \quad m_{P_2} \ge 3.16 \; m_{P_1} \; ,$$

This demands the the cs contribution is less than equal to 10%, which easily lies in the theory error regime.

This also assumes that we are focusing on the case where $m_{P_1,P_2} > 2m_{\chi}$.

• Both monojet and relic density constraints are then identical to the single mediator case.

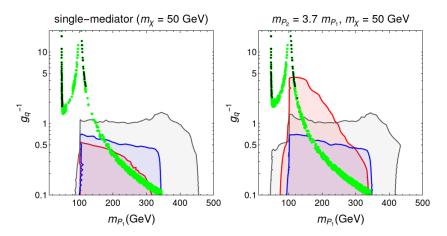
Effect of second mediator



Constraints incorporated:

- relic + indirect
- monohiggs, monojet, tt+met

Effect of second mediator



Constraints incorporated:

- relic + indirect
- monohiggs, monojet, tt+met

- We presented the less-simplified models using a phenomenological description.
- As an example considered a two mediator pseudoscalar model
- This is by large less constrained from the combined constraints of relic+direct detection
- LHC could serve as a potential in by large constraining these models specially for standard cosmologies.
- Analysis can be generalised for other topologies and spins.

- We presented the less-simplified models using a phenomenological description.
- As an example considered a two mediator pseudoscalar model
- This is by large less constrained from the combined constraints of relic+direct detection
- LHC could serve as a potential in by large constraining these models specially for standard cosmologies.
- Analysis can be generalised for other topologies and spins.

- We presented the less-simplified models using a phenomenological description.
- As an example considered a two mediator pseudoscalar model
- This is by large less constrained from the combined constraints of relic+direct detection
- LHC could serve as a potential in by large constraining these models specially for standard cosmologies.
- Analysis can be generalised for other topologies and spins.

- We presented the less-simplified models using a phenomenological description.
- As an example considered a two mediator pseudoscalar model
- This is by large less constrained from the combined constraints of relic+direct detection
- LHC could serve as a potential in by large constraining these models specially for standard cosmologies.
- Analysis can be generalised for other topologies and spins.

- We presented the less-simplified models using a phenomenological description.
- As an example considered a two mediator pseudoscalar model
- This is by large less constrained from the combined constraints of relic+direct detection
- LHC could serve as a potential in by large constraining these models specially for standard cosmologies.
- Analysis can be generalised for other topologies and spins.

- The coupling constant modifiers g_q are assumed to be the same across all generations and for up-type and down-type quarks
- The mixing of the two pseudoscalars is taken maximal, $\theta = \pi/4$.
- $y_{\chi} = 1$.
- Fix $m_{11}P_2P_1H$ by requiring $\Gamma(P_2)/m_{P_2} < 10\%$.
- Similarly, the other trilinears can be fixed using higgs decay to invisibles.
- Essentially we are left with following free parameters:

$$\left\{g_q, m_{P_1}, m_{P_2}, m_{\chi}\right\}.$$

- The coupling constant modifiers g_q are assumed to be the same across all generations and for up-type and down-type quarks
- The mixing of the two pseudoscalars is taken maximal, $\theta = \pi/4$.
- $y_{\chi} = 1$.
- Fix $m_{11}P_2P_1H$ by requiring $\Gamma(P_2)/m_{P_2} < 10\%$.
- Similarly, the other trilinears can be fixed using higgs decay to invisibles.
- Essentially we are left with following free parameters:

$$\left\{g_q, m_{P_1}, m_{P_2}, m_{\chi}\right\}.$$

- The coupling constant modifiers g_q are assumed to be the same across all generations and for up-type and down-type quarks
- The mixing of the two pseudoscalars is taken maximal, $\theta = \pi/4$.

•
$$y_{\chi} = 1$$
.

- Fix $m_{11}P_2P_1H$ by requiring $\Gamma(P_2)/m_{P_2} < 10\%$.
- Similarly, the other trilinears can be fixed using higgs decay to invisibles.
- Essentially we are left with following free parameters:

$$\left\{g_q, m_{P_1}, m_{P_2}, m_{\chi}\right\}.$$

- The coupling constant modifiers g_q are assumed to be the same across all generations and for up-type and down-type quarks
- The mixing of the two pseudoscalars is taken maximal, $\theta = \pi/4$.

•
$$y_{\chi} = 1$$
.

- Fix $m_{11}P_2P_1H$ by requiring $\Gamma(P_2)/m_{P_2} < 10\%$.
- Similarly, the other trilinears can be fixed using higgs decay to invisibles.
- Essentially we are left with following free parameters:

$$\left\{g_q, m_{P_1}, m_{P_2}, m_{\chi}\right\}.$$

- The coupling constant modifiers g_q are assumed to be the same across all generations and for up-type and down-type quarks
- The mixing of the two pseudoscalars is taken maximal, $\theta = \pi/4$.

•
$$y_{\chi} = 1$$
.

- Fix $m_{11}P_2P_1H$ by requiring $\Gamma(P_2)/m_{P_2} < 10\%$.
- Similarly, the other trilinears can be fixed using higgs decay to invisibles.
- Essentially we are left with following free parameters:

$$\left\{g_q, m_{P_1}, m_{P_2}, m_{\chi}\right\}.$$

- The coupling constant modifiers g_q are assumed to be the same across all generations and for up-type and down-type quarks
- The mixing of the two pseudoscalars is taken maximal, $\theta = \pi/4$.

•
$$y_{\chi} = 1$$
.

- Fix $m_{11}P_2P_1H$ by requiring $\Gamma(P_2)/m_{P_2} < 10\%$.
- Similarly, the other trilinears can be fixed using higgs decay to invisibles.
- Essentially we are left with following free parameters:

$$\bigg\{g_q,\ m_{P_1},\ m_{P_2},\ m_{\chi}\bigg\}.$$