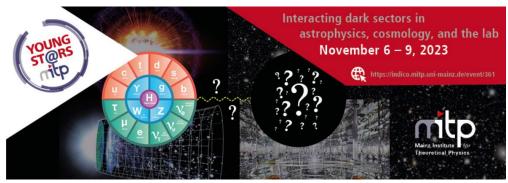


Asymmetries in Extended Dark Sectors: A Cogenesis Scenario

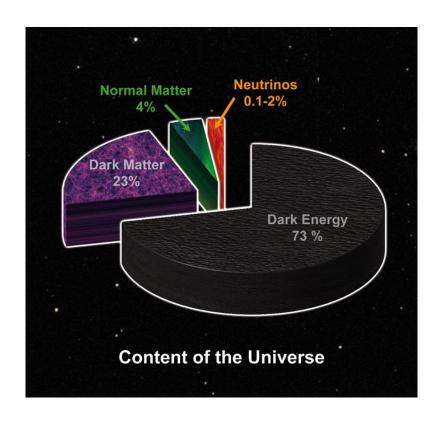
Juan Herrero-García, GL, Drona Vatsyayan [2301.13238]

Giacomo Landini



Dark Matter

Dark Matter is five times more abundant than baryonic matter

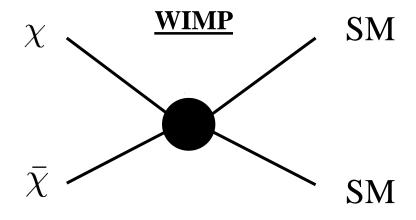


$$ho_{
m DM} \simeq 5
ho_B$$

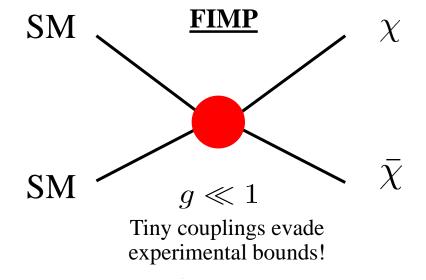
A common origin for baryons and DM?

Standard (symmetric) production

Freeze-out: DM is in thermal equilibrium with the SM



Freeze-in: DM is **not** in thermal equilibrium with the SM



Dark Matter is symmetric (?)

$$Y_{\chi} = Y_{\bar{\chi}}$$

Asymmetric Dark Matter

The Baryon abundance is set by an asymmetry

$$\eta_B = Y_b - Y_{\bar{b}} = 0.88 \times 10^{-11}$$

The nature of DM could also be asymmetric!

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}}$$

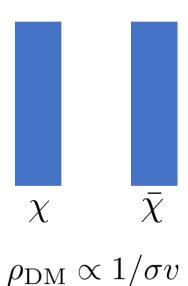
$$\frac{\rho_{\rm DM}}{\rho_B} = \frac{m_{\rm DM}\eta_D}{m_p\eta_B} \simeq 5$$

Attractive scenario: $\eta_D \simeq \eta_B \longrightarrow m_{\rm DM} \simeq 5 m_p \simeq 5 {\rm ~GeV}$

Asymmetric Dark Matter

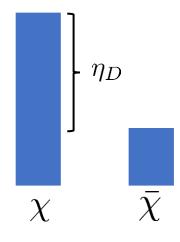
$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_{\chi}$$

Symmetric



Asymmetric

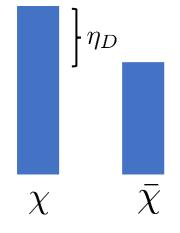
$$r < 10^{-2}$$



$$\rho_{\rm DM} \propto m \eta_D$$

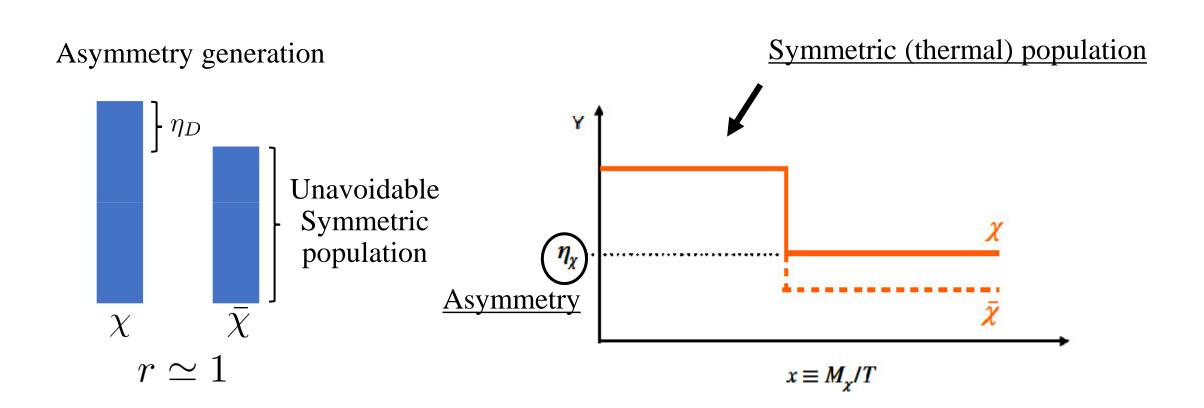
Partially Asymmetric

$$10^{-2} < r < 0.9$$



$$\rho_{\rm DM} = f(m, \sigma v, \eta_D)$$

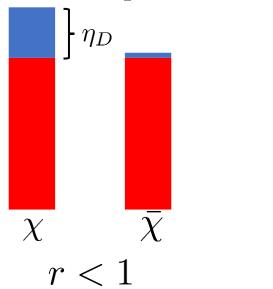
$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_{\chi}$$

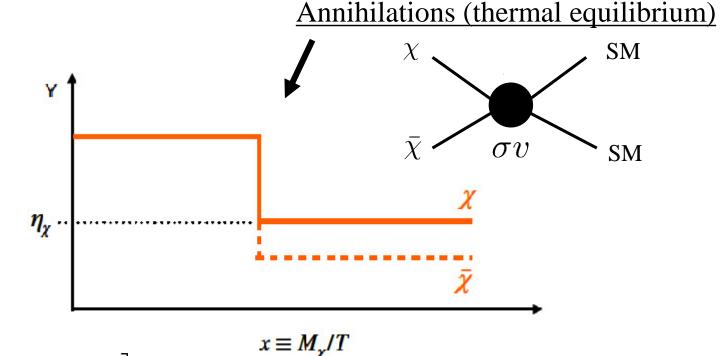


$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_{\chi}$$

$$r = Y_{\bar{\chi}}/Y_{\chi}$$

Annihilation of the symmetric component

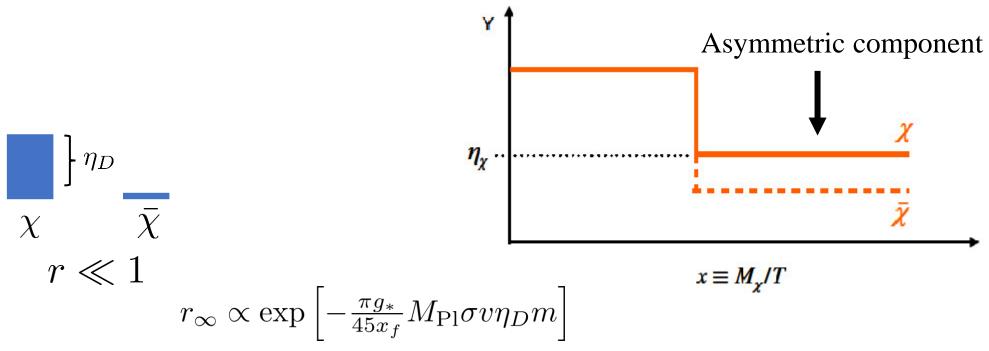




$$r_{\infty} \propto \exp\left[-\frac{\pi g_*}{45x_f}M_{\rm Pl}\sigma v\eta_D m\right]$$

Graesser, Shoemaker, Vecchi [1103.2771]

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_{\chi}$$

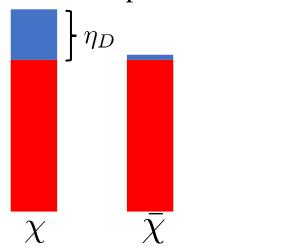


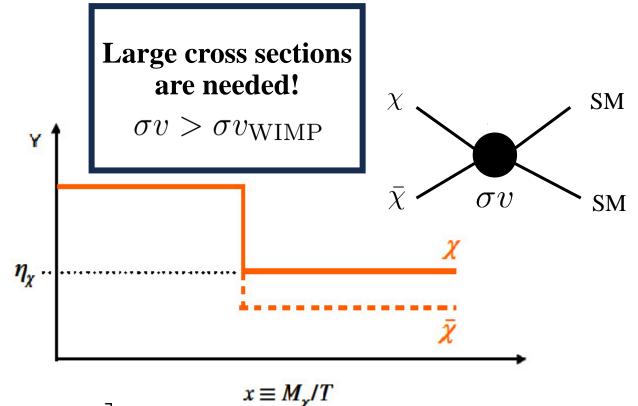
Graesser, Shoemaker, Vecchi [1103.2771]

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_{\chi}$$

$$r = Y_{\bar{\chi}}/Y_{\chi}$$

Annihilation of the symmetric component





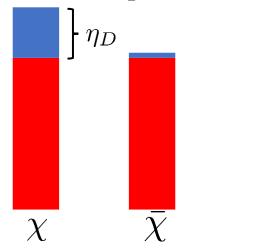
$$r_{\infty} \propto \exp\left[-\frac{\pi g_*}{45x_f}M_{\rm Pl}\sigma v\eta_D m\right]$$

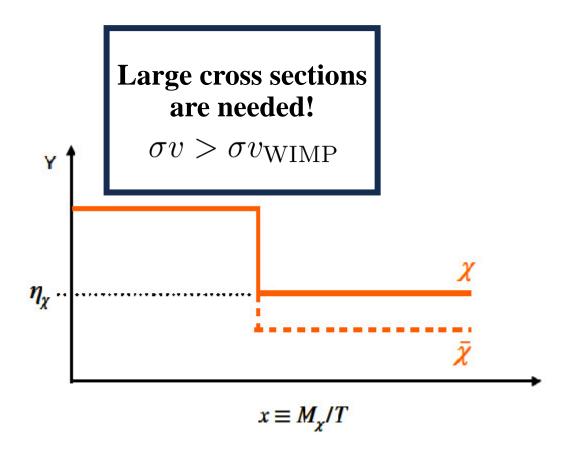
[1103.2771]

Asymmetric freeze-in?

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_{\chi}$$

Annihilation of the symmetric component





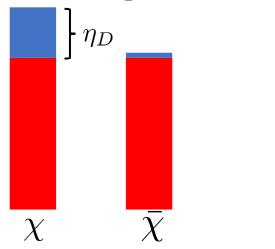
Asymmetric DM out of equilibrium (tiny couplings, freeze-in)?

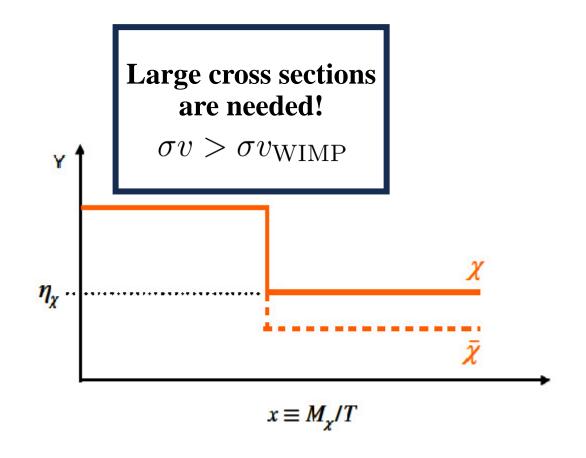
(How to erase the symmetric component?)

Asymmetric freeze-in?

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_{\chi}$$

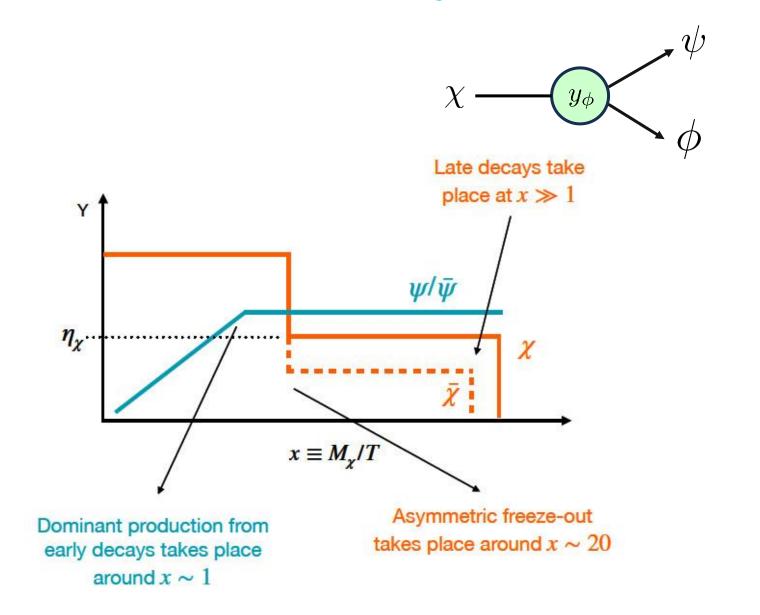
Annihilation of the symmetric component

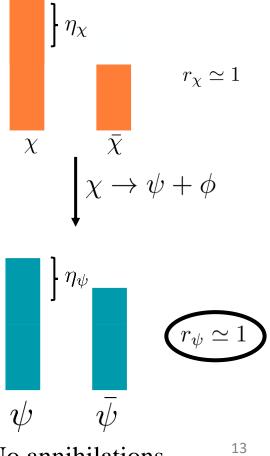




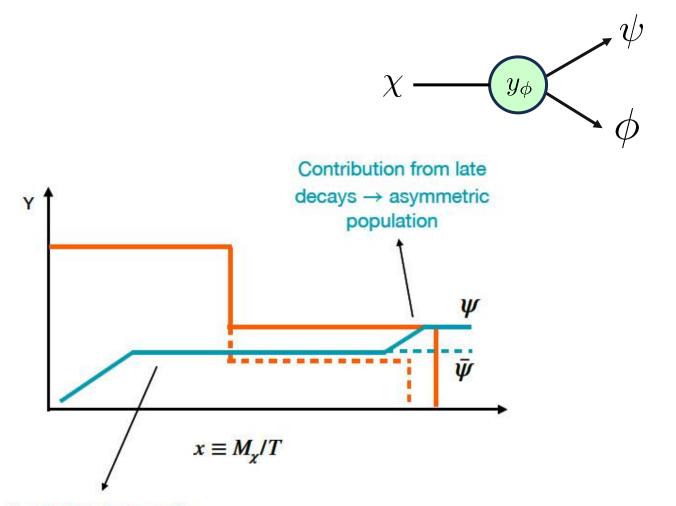
Idea: late decays of an asymmetric species

Early vs Late decays



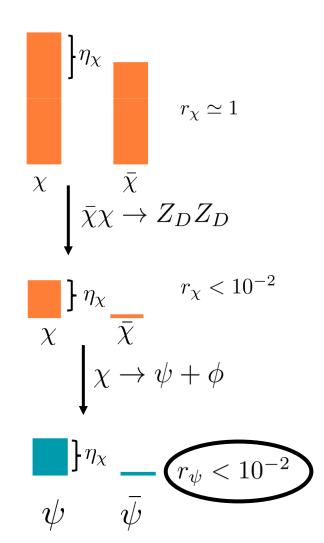


Early vs Late decays



Production from early decays: symmetric population

Asymmetric FIMP DM!



A Cogenesis scenario

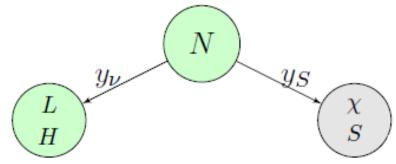
Falkowski, Ruderman, Volansky [1101.4936]

CP-violating decays of **RHNs** out of equilibrium

Lepton asymmetry

Sphalerons

Baryon asymmetry η_B



In thermal equilibrium

Dark asymmetry generation

$$\eta_{\chi} = \eta_S \sim \eta_B$$

 $\bar{\chi}\chi$, $S^{\dagger}S$ annihilations erase symmetric components

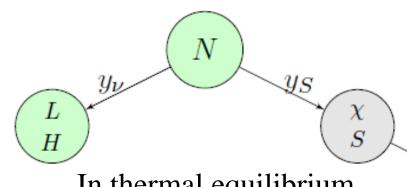
A Cogenesis scenario

CP-violating decays of **RHNs** out of equilibrium

Lepton asymmetry

Sphalerons

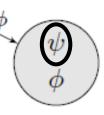
Baryon asymmetry η_B



Dark asymmetry generation

$$\eta_{\chi} = \eta_S \sim \eta_B$$

In thermal equilibrium



FIMP DM particle (out of equilibrium)

$$\chi \to \psi + \phi$$
$$\eta_{\psi} = \eta_{\chi}$$

The asymmetry is transferred to ψ via **late** decays after χ symmetric population has been erased

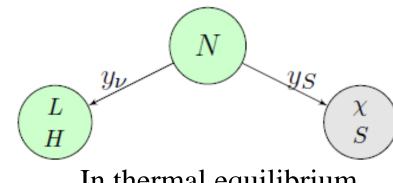
A Cogenesis scenario

CP-violating decays of **RHNs** out of equilibrium

Lepton asymmetry

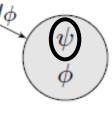
Sphalerons

Baryon asymmetry η_B



In thermal equilibrium

Dark asymmetry generation $\eta_{\chi} = \eta_S \sim \eta_B$



FIMP DM particle (out of equilibrium)

Neutrino masses
$$m_{\nu} = -m_D M_N^{-1} m_D^T$$

$$\chi \to \psi + \phi$$
$$\eta_{\psi} = \eta_{\chi}$$

The asymmetry is transferred to ψ via **late** decays after χ symmetric population has been erased

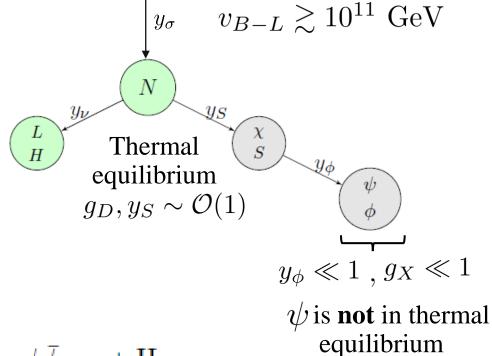
This scenario can explain neutrino masses, baryon asymmetry and (FIMP) Dark Matter!

The model

Field	Spin	$U(1)_{B-L}$	$(U(1)_D$	$U(1)_X$
N_R^i	1/2	-1	0	0
σ	0	+2	0	0
χ_0	1/2	-1	1	0
ψ_{0}	1/2	0	0	+1
S	0	0	-1	0
ϕ	0	+1	-1	+1

 $M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$

DM stability + Dirac Nature



$$\mathcal{L}_{\rm int} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.}.$$

Neutrino masses

$$M_{N_1} \propto \langle \sigma \rangle = v_{B-L} \longrightarrow m_{\nu} = -m_D M_N^{-1} m_D^T$$

The model

$$U(1)_{B-L} \otimes U(1)_D \otimes U(1)_X \rightarrow U(1)_D \otimes U(1)_X \rightarrow U(1)_{X+D}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\langle \sigma \rangle = v_{B-L} > 10^{11} \text{ GeV} \qquad \langle \phi \rangle = v_{\phi} \ll v_{B-L}$$

DM candidates

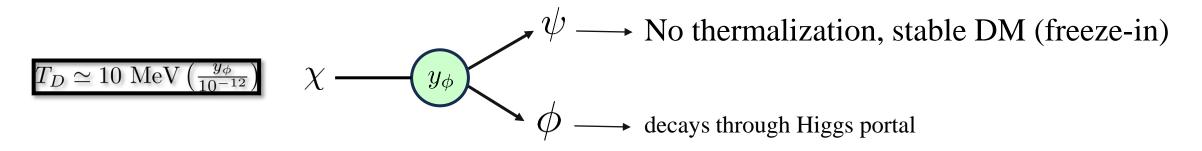
Particle	$U(1)_{X+D}$
χ	+1
ψ	+1
S	-1

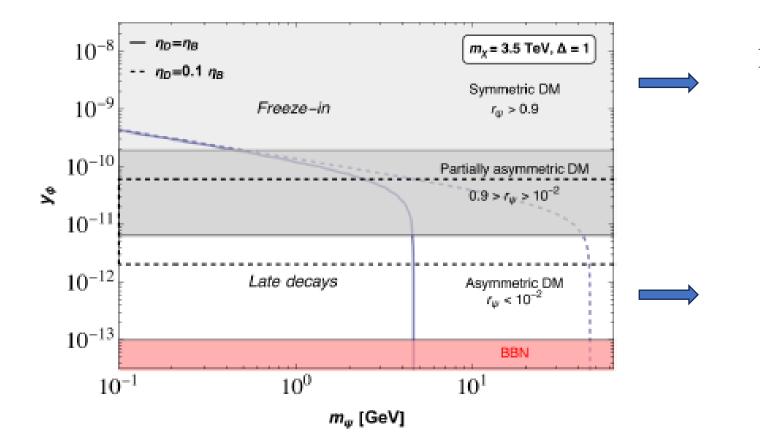
 $S \to \bar{\psi} + \bar{\nu}$ or $\psi \to S^{\dagger} + \nu$ are allowed but suppressed

Both cosmologically stable

Multicomponent DM

DM production (Fermion)





Early decays are dominant

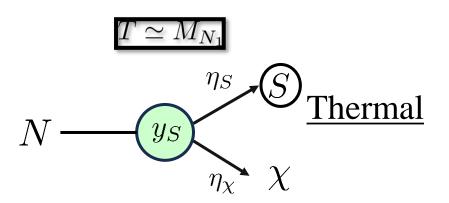
$$Y_{\psi} = Y_{\bar{\psi}}$$

Symmetric DM

Late decays are dominant

$$Y_{\psi} = \eta_{\psi} \gg Y_{\bar{\psi}}$$

Asymmetric DM

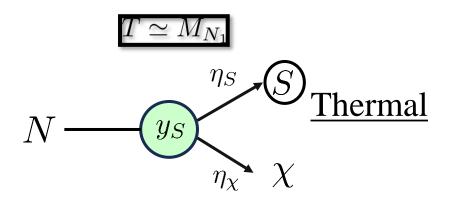


Asymmetric freeze-out $S^{\dagger}S \to \phi\phi$

$$Y_S = \eta_S$$

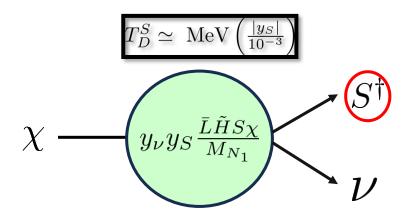
S

$$S^{\dagger}$$

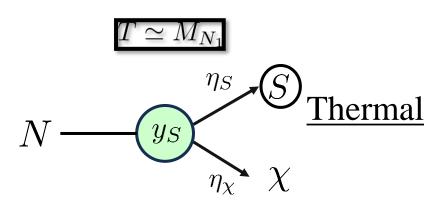


Asymmetric freeze-out $S^{\dagger}S \rightarrow \phi \phi$

$$Y_S = \eta_S$$

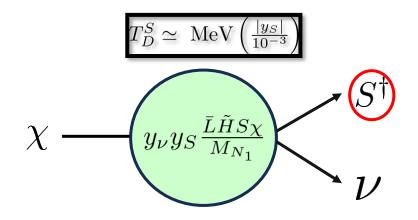


$$Y_{S^{\dagger}} = \frac{R}{1+R} \eta_S$$



Asymmetric freeze-out $S^{\dagger}S \rightarrow \phi \phi$

$$Y_S = \eta_S$$



$$Y_{S^{\dagger}} = \frac{R}{1+R} \eta_S$$

$$R = \frac{\Gamma(\chi \to S^{\dagger} \nu)}{\Gamma(\chi \to \psi \phi)} \sim \frac{|y_S|^2}{y_\phi^2} \frac{m_\nu}{M_{N_1}}$$

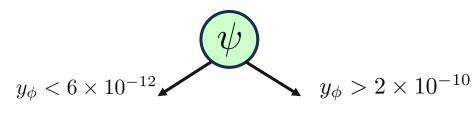
No extra decays, asymmetric DM (freeze-out)

$$Y_S = \eta_S \ , \ Y_{S^\dagger} = \frac{R}{1+R} \eta_S$$

Cancellation of the asymmetry, symmetric DM (freeze-out)

Scenarios

Freeze-in

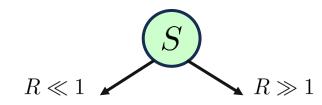


<u>Asymmetric</u>

Late decays

Symmetric

Early decays



Asymmetric

Freeze-out

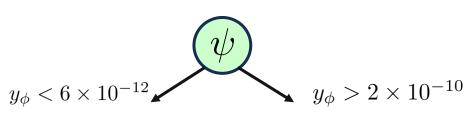
Symmetric

Freeze-out + Late decays

Sc.	ψ population	S population	$10^{-10} y_{\phi} / \sqrt{\eta_D / \eta_B}$	R	$T_D^{(S)}/T_*^{(S)}$
1	Asymmetric	Asymmetric	≤ 0.06	≪ 1	Any
2	Asymmetric	Partially Asymmetric	≤ 0.06	$\mathcal{O}(1)$	< 1
1-2	Asymmetric	Asymmetric	≤ 0.06	$\mathcal{O}(1)$	> 1
3	Partially Asymmetric	Asymmetric	0.06 - 2	$\ll 1$	Any
4	Partially Asymmetric	Partially Asymmetric	0.06 - 2	$\mathcal{O}(1)$	< 1
3-4	Partially Asymmetric	Asymmetric	0.06 - 2	$\mathcal{O}(1)$	> 1
5	Symmetric	Asymmetric	$\gtrsim 2$	$\ll 1$	Any
6	Negligible	Symmetric	$y_{\phi} \lesssim 5 \times 10^{-7}$	$\gtrsim \mathcal{O}(10)$	< 1

Scenarios

Freeze-in



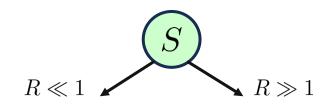
Asymmetric

Late decays

Symmetric

Early decays

Thermal

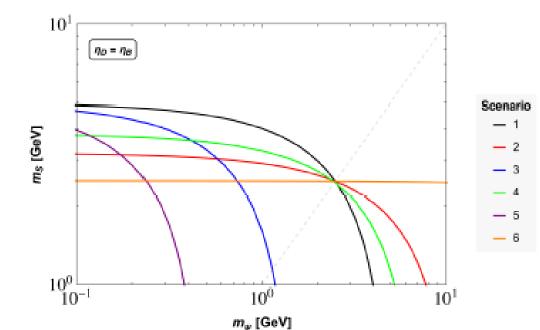


<u>Asymmetric</u>

<u>Symmetric</u>

Freeze-out

Freeze-out + Late decays



$$\frac{\Omega_{\psi}}{\Omega_{S}} = \frac{m_{\psi}(\eta_{D} + Y_{\text{FI}})}{\eta_{D} m_{S} f(R)}, \qquad \frac{\Omega_{\text{DM}}}{\Omega_{B}} = \frac{m_{\psi}(\eta_{D} + Y_{\text{FI}}) + \eta_{D} m_{S} f(R)}{\eta_{B} (1 + R) m_{p}},$$

$$f(R) \equiv \begin{cases} 1 + 2R & \text{if } T_D^{(S)} < T_*^{(S)} \\ 1 & \text{if } T_D^{(S)} > T_*^{(S)} \end{cases}.$$

The DM abundance is reproduced for

$$m_{\psi}, m_S \sim \text{GeV}$$

Phenomenology

Freeze-in: small couplings, suppressed DD

$$y_{\phi} \ll 1$$
 $g_X \ll 1$

ADM: suppressed ID + annihilations in dark sectors

Large B-L scale: no collider searches $v_{B-L}\gtrsim 10^{11}~{\rm GeV}$

DD of scalar DM through Higgs portal

$$\lambda_{HS}(H^{\dagger}H)(S^{\dagger}S)$$

ID of scalar DM when S is symmetric

Enhanced ID signal for Scenario 6

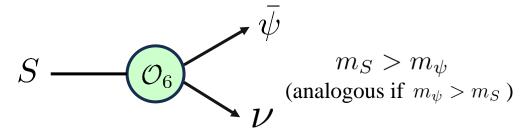
$$Y_S = Y_{S^{\dagger}} = \eta_S$$
 $m_S = 2.5 \text{ GeV}$ $\sigma v > \sigma v_{\text{WIMP}}$

+ neutrino line!

Smoking gun: neutrino line

$$\mathcal{O}_6 = \bar{L}\tilde{H}S\phi^{\dagger}\psi$$

generated at $E \ll m_\chi \ll M_{N_1}$



$$\Gamma(S \to \bar{\psi} + \nu) = \frac{|y_S|^2 y_\phi^2 m_S}{32\pi} \left(\frac{v_\phi}{m_\chi}\right)^2 \left(\frac{m_\nu}{M_{N_1}}\right) \left(1 - \frac{m_\psi^2}{m_S^2}\right)$$

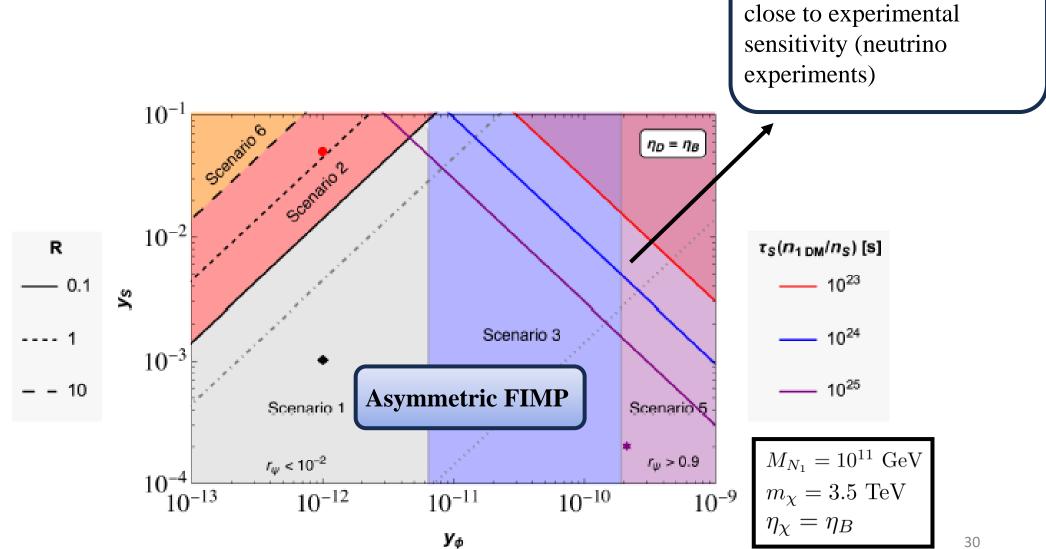
Neutrino line peaked at $E_{\nu} \simeq m_S/2 \longrightarrow \mathcal{O}(\text{GeV})$

Experimental bound $\tau > 10^{23} \ {\rm sec}$

Future neutrino telescopes? $\tau \sim 10^{24-25}~{\rm sec}$

[Palomares-Ruiz 2008, Garcia-Cely et al. 2017, Coy et al. 2021]

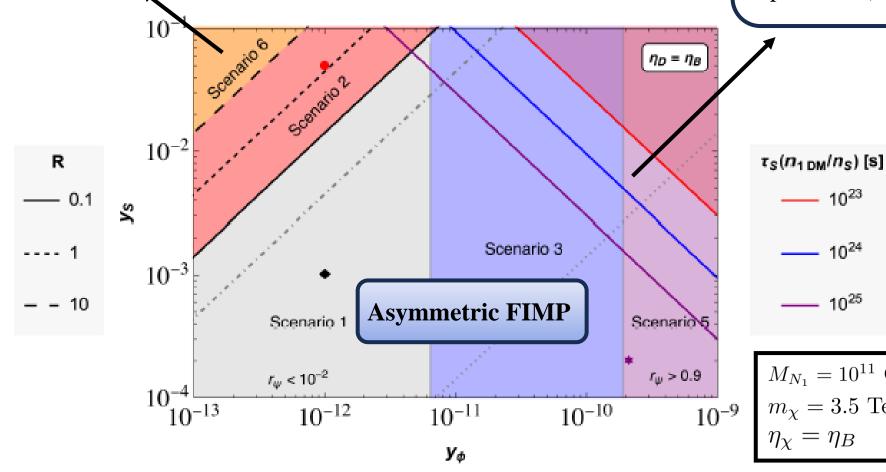
Summary



Smoking Gun **neutrino line**:

Symmetric 1DM with interesting features (mix Cold/Warm DM, enhanced ID signals,...)

Smoking Gun **neutrino line**: close to experimental sensitivity (neutrino experiments)

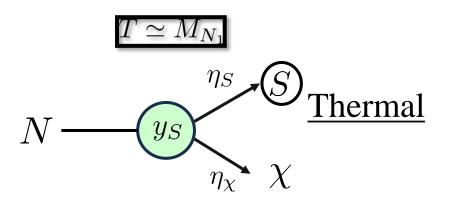


 $M_{N_1} = 10^{11} \text{ GeV}$

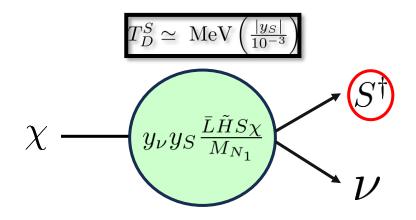
- 10²³

 10^{24}

- 10²⁵



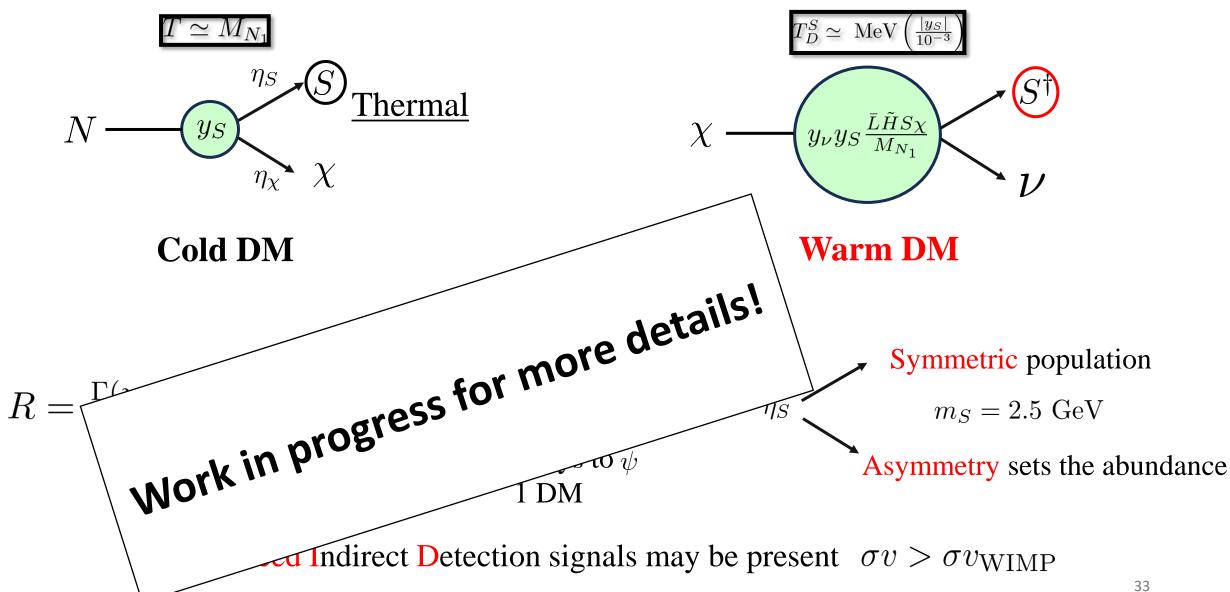
Cold DM



Warm DM

$$R = \frac{\Gamma(\chi \to S^\dagger \nu)}{\Gamma(\chi \to \psi \phi)} \sim \frac{|y_S|^2}{y_\phi^2} \frac{m_\nu}{M_{N_1}} \gg 1 \longrightarrow Y_S = Y_{S^\dagger} = \eta_S$$
 Symmetric population
$$m_S = 2.5 \text{ GeV}$$
 No decays to ψ Asymmetry sets the abundance 1 DM

Enhanced Indirect Detection signals may be present $\sigma v > \sigma v_{\text{WIMP}}$



Summary

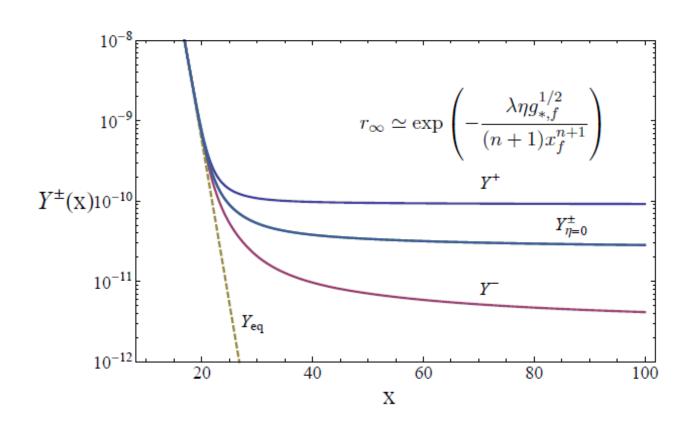
- Asymmetric DM models needs large annihilations cross section: thermalization
- Asymmetric FIMP DM can be realized through late decays of asymmetric particle
- The framework naturally needs an extended dark sector: multicomponent DM, baryogenesis, neutrino masses
- Late DM decays can be constrained by neutrino experiments

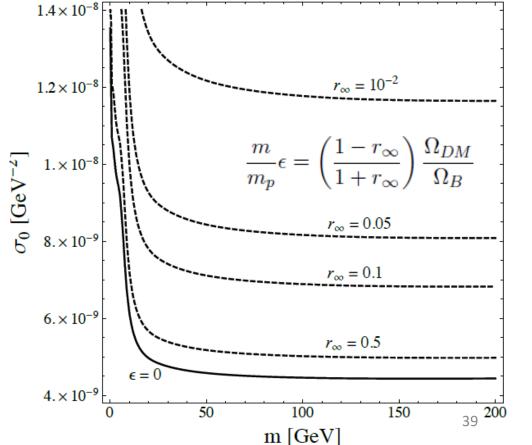
Backup

Asymmetric WIMP

$$\frac{dr}{dx} = -\lambda \eta g_*^{1/2} x^{-n-2} \begin{bmatrix} r - \frac{Y_{eq}^2}{\eta^2} (1-r)^2 \end{bmatrix} \qquad \begin{aligned} r &= Y^-/Y^+ \\ \eta &= Y^+ - Y^- = \epsilon \eta_B \\ \lambda &= \left(\frac{\pi}{45}\right)^{1/2} M_{Pl} m \sigma_0 \end{aligned}$$

$$r=Y^-/Y^+$$
 Graesser, Shoemaker, Vecchi $\eta=Y^+-Y^-=\epsilon\eta_B$ $\lambda=\left(rac{\pi}{45}
ight)^{1/2}M_{Pl}m\sigma_0$





Partially asymmetric DM

$$\rho_{\rm DM} = s \sum_{i} m_{i} \eta_{i} \left(1 + 2 \frac{r_{i}}{1 - r_{i}} \right)$$

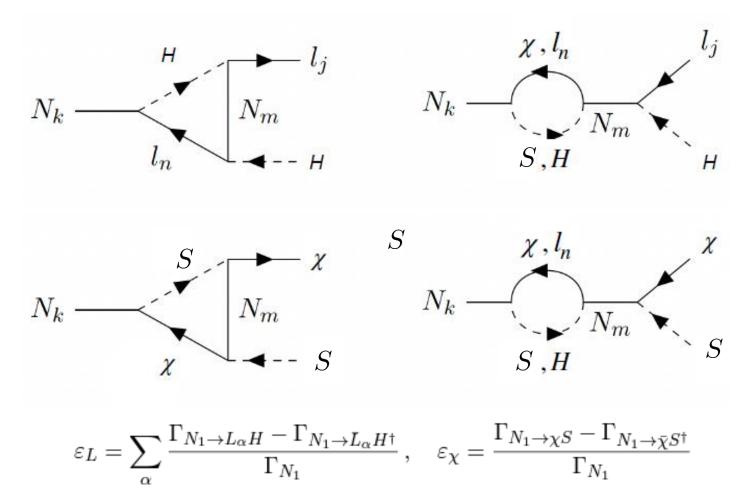
$$\downarrow \qquad \qquad \downarrow$$
Asymmetric

Asymmetric

Cogenesis

Generation of the asymmetries through out-of-equilibrium decays

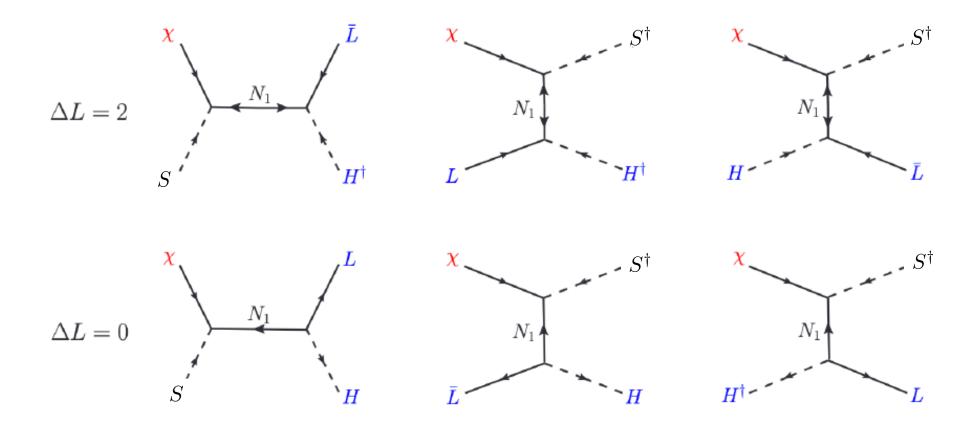
Falkowski, Ruderman, Volansky [1101.4936]



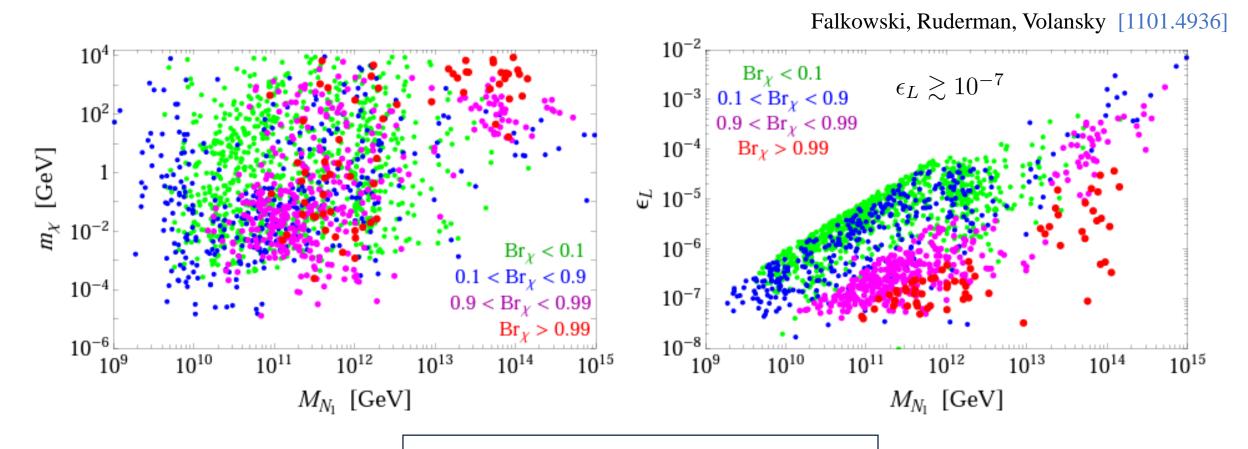
Cogenesis

Washout and transfer of the asymmetries

Falkowski, Ruderman, Volansky [1101.4936]

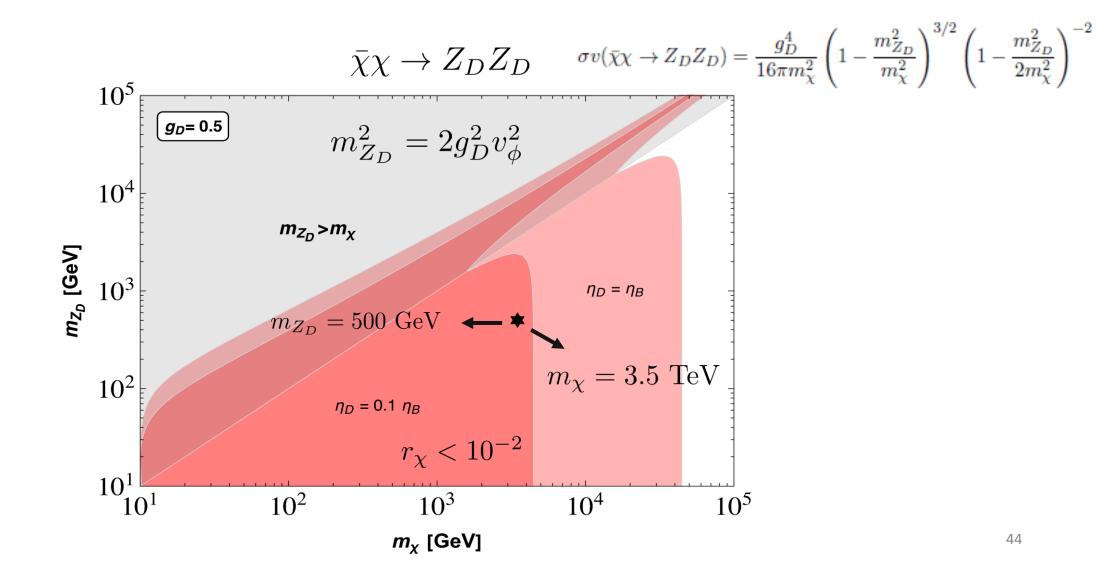


Cogenesis



SM lepton asymmetry, neutrino spectrum and mixing angles are correctly reproduced

Fermion annihilations



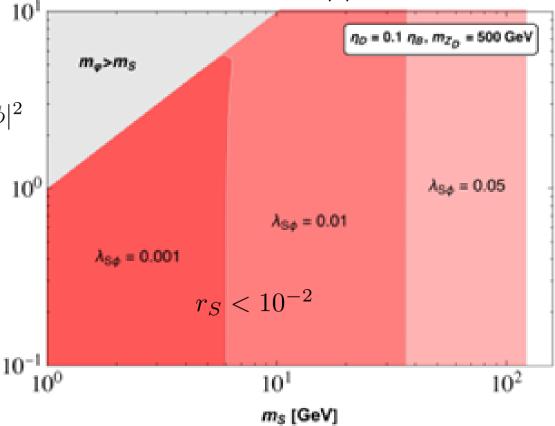
Scalar annihilations

Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
N_R^i	1/2	-1	0	0
σ	0	+2	0	0
χ_0	1/2	-1	1	0
ψ_0	1/2	0	0	+1
S	0	0	-1	0
ϕ	0	+1	-1	+1

$$\phi(x) = v_{\phi} + \varphi(x)/\sqrt{2}$$

Various terms in the scalar potential such as $\lambda_{S\phi}|S|^2|\phi|^2$

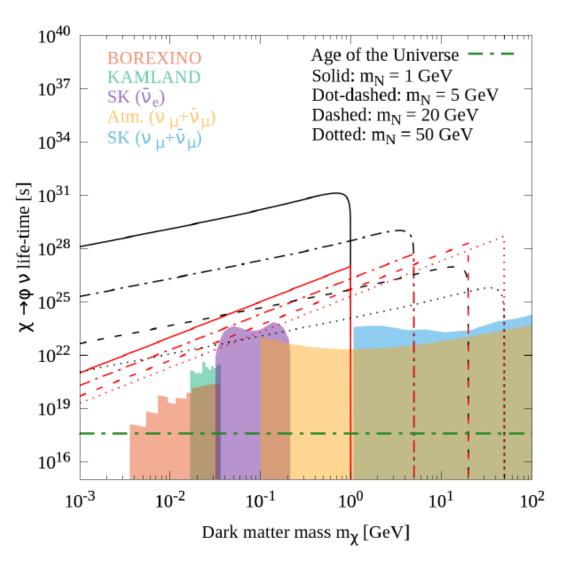
 $\sigma v(S^\dagger S \to \varphi \varphi) \simeq \frac{\lambda_{S\phi}^2}{32\pi m_S^2} \left(1 - \frac{m_\varphi^2}{m_S^2}\right)^{1/2} \left(\frac{1 - m_\varphi^2/2m_S^2 - 2\lambda_{S\phi}v_\phi^2/m_S^2}{1 - m_\varphi^2/2m_S^2}\right)^2$



 $S^{\dagger}S \to \varphi \varphi$

Sc.	ψ	S	$\Omega_{ m DM}/\Omega_B$	Ω_S/Ω_ψ
1	Asymmetric LD $\chi \to \psi \varphi$ $Y_{\psi}^+ = \eta_D$ $Y_{\psi}^- \ll Y_{\psi}^+$	$\begin{array}{l} \text{Asymmetric} \\ \text{FO } S^\dagger S \to \varphi \varphi \\ Y_S^+ = \eta_D \\ Y_S^- \ll Y_S^+ \end{array}$	$rac{\eta_D}{\eta_B}rac{m_\psi + m_S}{m_P}$	$rac{m_{\psi}}{m_S}$
2	Asymmetric LD $\chi \to \psi \varphi$ $Y_{\psi}^+ = \eta_D/(1+R)$ $Y_{\psi}^- \ll Y_{\psi}^+$	Partially asymmetric FO $S^{\dagger}S \rightarrow \varphi \varphi$ $+ \text{LD } \chi \rightarrow S^{\dagger}\nu_L$ $Y_S^+ = \eta_D$ $Y_S^- = \eta_D R/(1+R)$	$\frac{\eta_D}{\eta_B} \frac{m_\psi + (1+2R)m_S}{(1+R)m_p}$	$\frac{m_{\psi}}{m_S(1+2R)}$
1-2	Asymmetric LD $\chi \to \psi \varphi$ $Y_{\psi}^+ = \eta_D/(1+R)$ $Y_{\psi}^- \ll Y_{\psi}^+$	$\begin{array}{c} \text{Asymmetric} \\ \text{FO } S^\dagger S \to \varphi \varphi \\ + \text{ LD } \chi \to S^\dagger \nu_L \\ Y_S^+ = \eta_D/(1+R) \\ Y_S^- \ll Y_S^+ \end{array}$	$rac{\eta_D}{\eta_B}rac{m_\psi + m_S}{(1+R)m_p}$	$rac{m_{\psi}}{m_S}$
3	Partially asymmetric FI + LD $\chi \to \psi \varphi$ $Y_{\psi}^+ = Y_{\rm FI}/2 + \eta_D$ $Y_{\psi}^- = Y_{\rm FI}/2$	Asymmetric FO $S^{\dagger}S \rightarrow \varphi \varphi$ $Y_S^+ = \eta_D$ $Y_S^- \ll Y_S^+$	$\frac{m_{\psi}(\eta_D + Y_{\mathrm{FI}}) + \eta_D m_S}{\eta_B m_p}$	$\frac{m_{\psi}(\eta_D + Y_{\rm FI})}{m_S \eta_D}$
4	Partially Asymmetric FI +LD $\chi \rightarrow \psi \varphi$ $Y_{\psi}^{+} = (Y_{\rm FI}/2 + \eta_{D})/(1 + R)$ $Y_{\psi}^{-} = Y_{\rm FI}/(2(1 + R))$	Partially Asymmetric FO $S^{\dagger}S \rightarrow \varphi \varphi$ $+$ LD $\chi \rightarrow S^{\dagger}\nu_L$ $Y_S^+ = \eta_D$ $Y_S^- = \eta_D R/(1+R)$	$\frac{m_{\psi}(\eta_D + Y_{\rm FI}) + \eta_D(1 + 2R)m_S}{\eta_B(1 + R)m_p}$	$\frac{m_{\psi}(\eta_D + Y_{\mathrm{FI}})}{m_S \eta_D (1 + 2R)}$
3-4	Partially Asymmetric FI +LD $\chi \rightarrow \psi \varphi$ $Y_{\psi}^{+} = (Y_{\rm FI}/2 + \eta_{D})/(1+R)$ $Y_{\psi}^{-} = Y_{\rm FI}/(2(1+R))$	$\begin{array}{c} \text{Asymmetric} \\ \text{FO } S^\dagger S \to \varphi \varphi \\ + \text{ LD } \chi \to S^\dagger \nu_L \\ Y_S^+ = \eta_D/(1+R) \\ Y_S^- \ll Y_S^+ \end{array}$	$\frac{m_{\psi}(\eta_D + Y_{\rm FI}) + \eta_D m_S}{\eta_B(1+R)m_p}$	$\frac{m_{\psi}(\eta_D + Y_{\rm FI})}{m_S \eta_D}$
5	Symmetric FI $\chi \to \psi \varphi$ $Y_{\psi}^+ = Y_{\rm FI}/2 + \eta_D \simeq Y_{\rm FI}/2$ $Y_{\psi}^- = Y_{\rm FI}/2$	Asymmetric FO $S^{\dagger}S \rightarrow \varphi \varphi$ $Y_S^+ = \eta_D$ $Y_S^- \ll Y_S^+$	$rac{\eta_D}{\eta_B} rac{m_{\psi}(Y_{\mathrm{FI}}/\eta_D) + m_S}{m_p}$	$rac{m_{\psi}Y_{\mathrm{FI}}}{m_{S}\eta_{D}}$
6	Negligible production	Symmetric FO $S^{\dagger}S \rightarrow \varphi \varphi$ $+ \text{ LD } \chi \rightarrow S^{\dagger}\nu_L$ $Y_S^+ = \eta_D$ $Y_S^- = \eta_D$	< 1	$\frac{\eta_D}{\eta_B} \frac{2m_S}{m_p}$

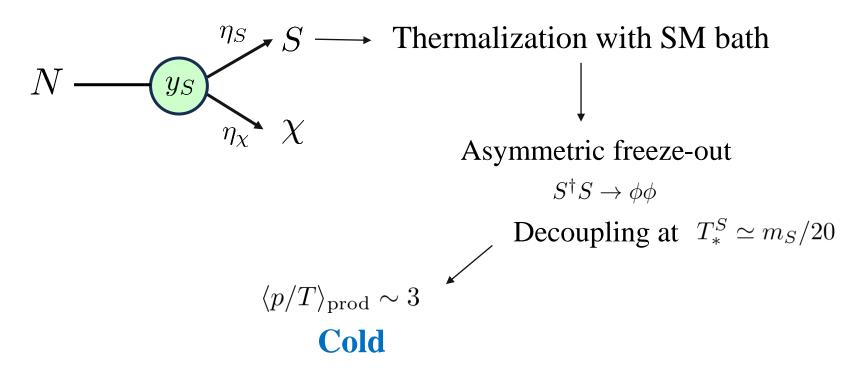
Smoking gun: neutrino line



Cold vs Warm

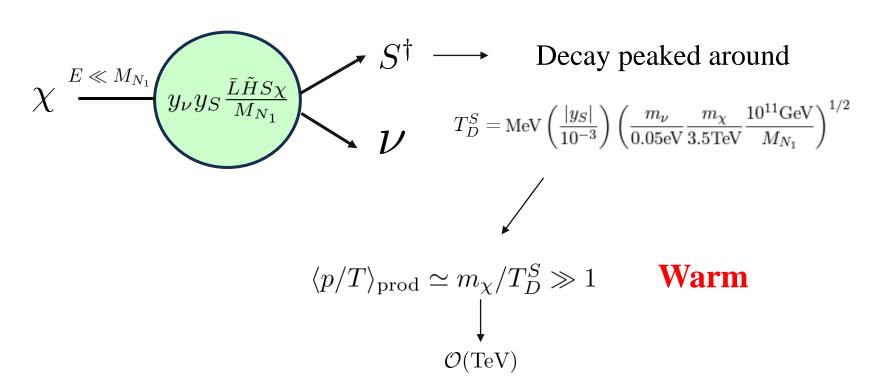
Small-scale structure constraint

$$m_S \gtrsim 3.5 \text{ KeV} \langle p/T \rangle_{\text{prod}} \left(\frac{10}{g_s(T_D^S)}\right)^{1/3}$$
 $\mathcal{O}(\text{GeV})$

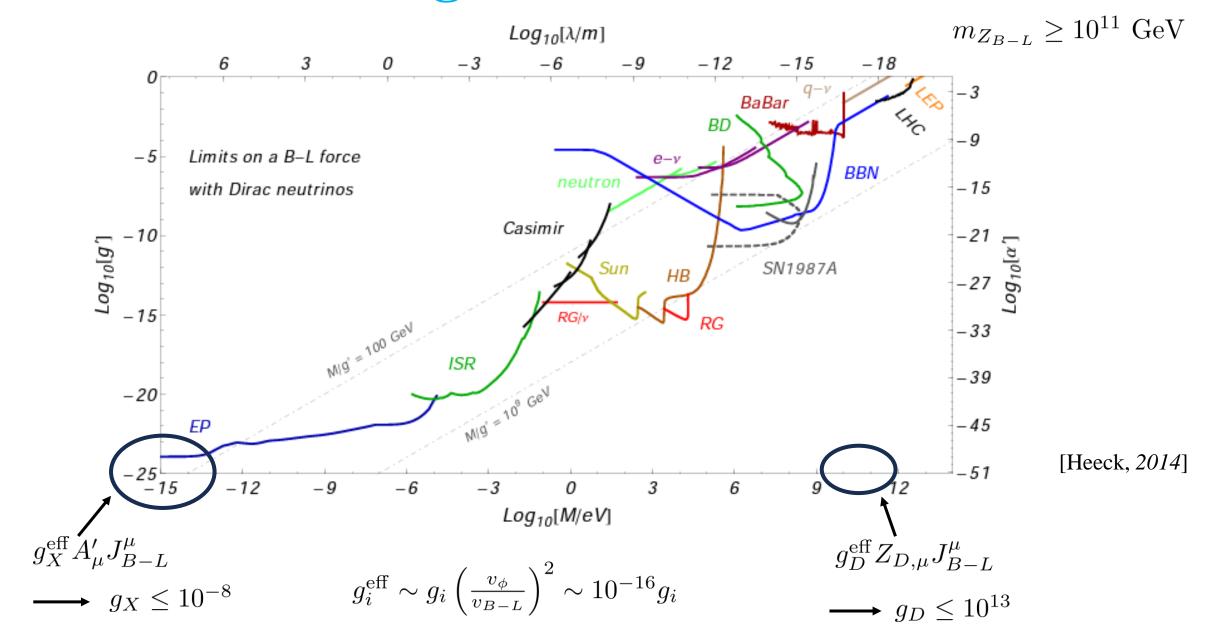


Cold vs Warm

Small-scale structure $m_S \gtrsim 3.5~{
m KeV} \langle p/T \rangle_{
m prod} \left(\frac{10}{g_s(T_D^S)} \right)^{1/3}$ constraint $\mathcal{O}({
m GeV})$



Gauge boson bounds



Lowering the
$$B - L$$
 scale Resonant leptogenesis Inverse see-saw

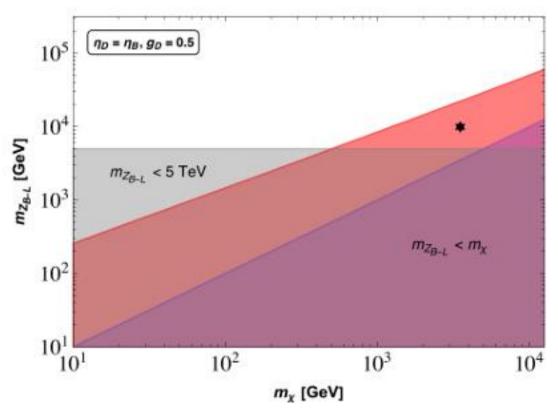
Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
S_L	1/2	0	0	0
σ'	0	+1	0	0

$$\langle \sigma' \rangle = v_{B-L} \sim \mathcal{O}(\text{TeV})$$

$$\uparrow$$

$$\mathcal{L}_{\text{ISS}} = \overline{S_L} i \partial S_L - \sigma' \overline{S_L} y_{\sigma'} N_R - \frac{1}{2} \overline{S}_L \mu S_L^c + \text{H.c.}$$

Neutrino masses $m_{\nu} \simeq m_D M_D^{-1} \mu (M_D^{-1})^T m_D^T$



Lowering the
$$B - L$$
 scale \frown Resonant leptogenesis Inverse see-saw

Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
S_L	1/2	0	0	0
σ'	0	+1	0	0

$$\langle \sigma' \rangle = v_{B-L} \sim \mathcal{O}(\text{TeV})$$

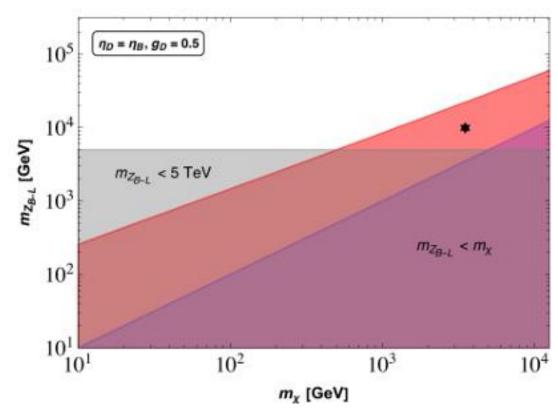
$$\uparrow$$

$$\mathcal{L}_{\text{ISS}} = \overline{S_L} i \partial \!\!\!/ S_L - \sigma' \overline{S_L} y_{\sigma'} N_R - \frac{1}{2} \overline{S}_L \mu S_L^c + \text{H.c.}$$

Low-scale $m_{Z_{B-L}}$ allows for annihilations to SM fermions to erase the symmetric component

$$\bar{\chi}\chi \to Z_{B-L} \to \bar{q}q(\bar{l}l)$$

(highly suppressed in the high-scale scenario)



Lowering the
$$B - L$$
 scale Resonant leptogenesis Inverse see-saw

Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
S_L	1/2	0	0	0
σ'	0	+1	0	0

$$\langle \sigma' \rangle = v_{B-L} \sim \mathcal{O}(\text{TeV})$$

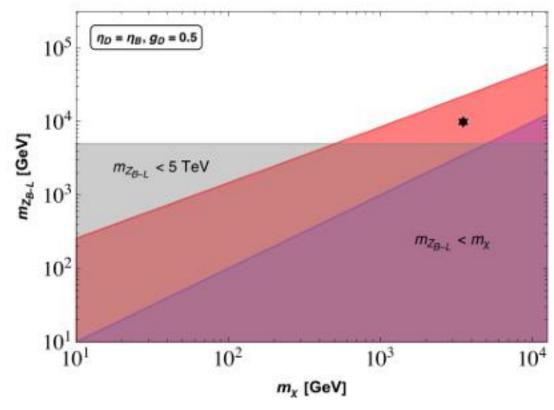
$$\uparrow \qquad \qquad \uparrow$$

$$\mathcal{L}_{\text{ISS}} = \overline{S_L} i \partial S_L - \sigma' \overline{S_L} y_{\sigma'} N_R - \frac{1}{2} \overline{S}_L \mu S_L^c + \text{H.c.}$$

The ratio m_{ν}/M_{N_1} is enhanced

Scenarios with $R \gg 1$ are preferred

S is the dominant DM candidate



Lowering the
$$B - L$$
 scale Resonant leptogenesis Inverse see-saw

Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
S_L	1/2	0	0	0
σ'	0	+1	0	0

$$\langle \sigma' \rangle = v_{B-L} \sim \mathcal{O}(\text{TeV})$$

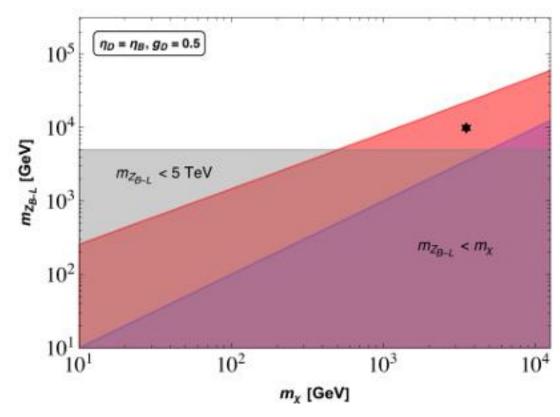
$$\uparrow \qquad \qquad \uparrow$$

$$\mathcal{L}_{\text{ISS}} = \overline{S_L} i \partial S_L - \sigma' \overline{S_L} y_{\sigma'} N_R - \frac{1}{2} \overline{S}_L \mu S_L^c + \text{H.c.}$$

Collider searches

$$\bar{q}q \to Z_{B-L} \to \bar{\chi}\chi$$

Looking for missing energy from χ decays



Dark Matter nature

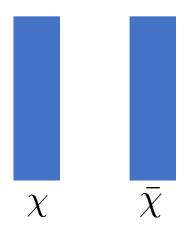
Asymmetry and Fractional asymmetry

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_{\chi}$$

$$r = Y_{\bar{\chi}}/Y_{\chi}$$

Symmetric

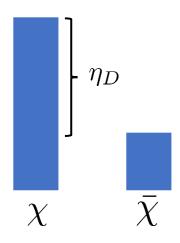
$$r_{\infty} > 0.9$$



$$\rho_{\rm DM} \propto 1/\sigma v$$

Asymmetric

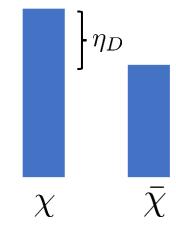
$$r_{\infty} < 10^{-2}$$



$$\rho_{\rm DM} \propto m \eta_D$$

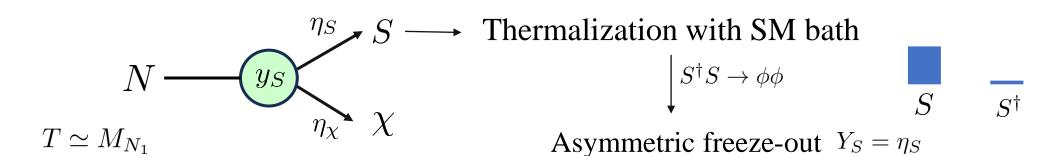
Partially Asymmetric

$$10^{-2} < r_{\infty} < 0.9$$



$$\rho_{\rm DM} = f(m, \sigma v, \eta_D)$$

DM production (Scalar)

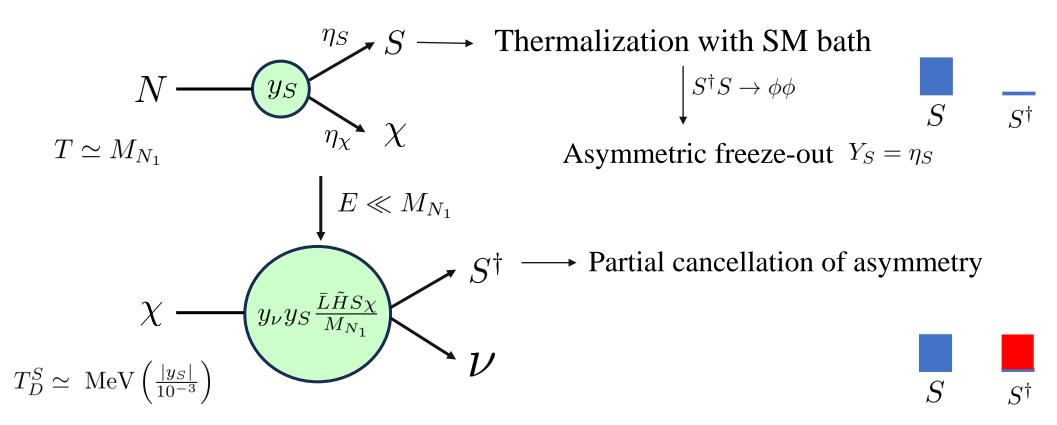


DM production (Scalar)



$$T_D^S \simeq \operatorname{MeV}\left(\frac{|y_S|}{10^{-3}}\right)$$

DM production (Scalar)



$$R = \frac{\Gamma(\chi \to S^{\dagger} \nu)}{\Gamma(\chi \to \psi \phi)} \sim \frac{|y_S|^2}{y_{\phi}^2} \frac{m_{\nu}}{M_{N_1}}$$

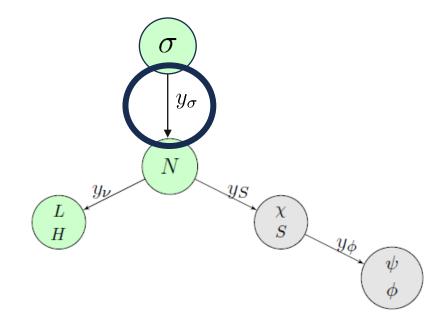
No extra decays, asymmetric DM (freeze-out)

$$Y_S = \eta_S \ , \ Y_{S^\dagger} = \frac{R}{1+R} \eta_S$$

Cancellation of the asymmetry, symmetric DM (freeze-out) 58

•	Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
(N_R^i	1/2	-1	0	0
	σ	0	+2	0	0
•	χ_0	1/2	-1	1	0
	ψ_0	1/2	0	0	+1
	S	0	0	-1	0
	ϕ	0	+1	-1	+1

$$M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$$



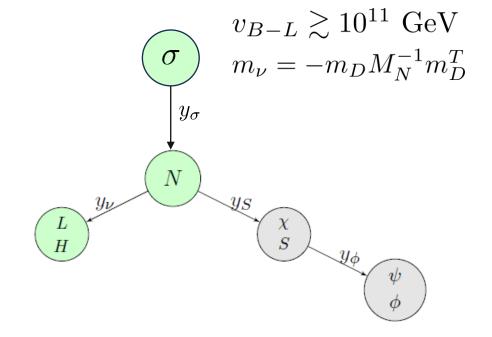
$$\mathcal{L}_{\rm int} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.}.$$

Majorana masses for RHNs from $U(1)_{B-L}$ breaking $v_{B-L} \gtrsim 10^{11} \text{ GeV}$

neutrino masses (Type- I see-saw) $m_{\nu} = -m_D M_N^{-1} m_D^T$

Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
N_R^i	1/2	-1	0	Û
σ	0	+2	0	0
χ_0	1/2	-1	1	0
ψ_{0}	1/2	0	0	+1
S	0	0	-1	0
ϕ	0	+1	-1	+1

$$M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$$



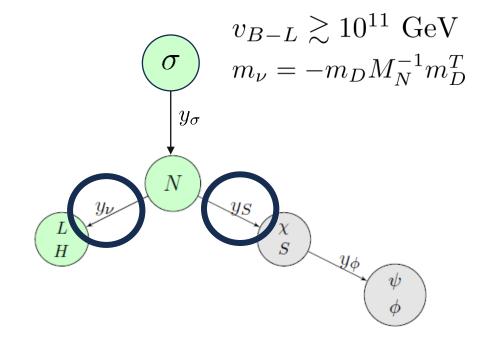
$$\mathcal{L}_{\rm int} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.}.$$

Dark gauge group $U(1)_D \otimes U(1)_X$

Assure DM stability and Dirac nature of dark fermions (necessary to have an asymmetry)

Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
N_R^i	1/2	-1	0	0
σ	0	+2	0	0
χ_0	1/2	-1	1	0
ψ_0	1/2	0	0	+1
S	0	0	-1	0
ϕ	0	+1	-1	+1

$$M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$$



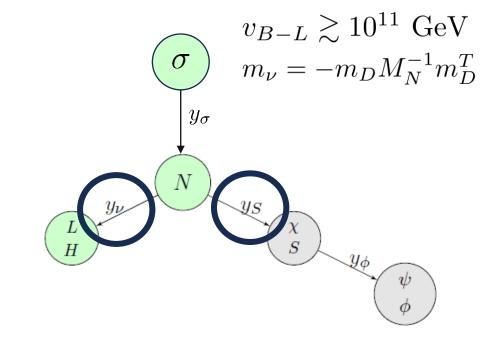
$$\mathcal{L}_{\rm int} = -\underline{y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i} - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - \underline{y_S^i S \bar{N}_R^i \chi_0} - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.}.$$

Gauge invariance allows for Yukawa operators

Generation baryon and dark asymmetries $\eta_{\chi} = \eta_S \sim \eta_B$

Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
N_R^i	1/2	-1	0	0
σ	0	+2	0	0
χ_0	1/2	-1	1	0
ψ_0	1/2	0	0	+1
S	0	0	-1	0
ϕ	0	+1	-1	+1

$$M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$$



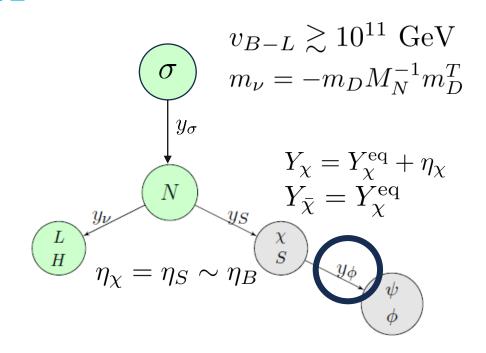
$$\mathcal{L}_{\rm int} = -\underline{y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_{R}^{i}} - y_{\sigma}^{ij} \sigma \overline{N_{R}^{ic}} N_{R}^{j} - \underline{y_{S}^{i} S \bar{N}_{R}^{i} \chi_{0}} - y_{\phi} \phi \bar{\psi}_{0} \chi_{0} + \text{H.c.}.$$

 χ and S get in thermal equilibrium with the SM through gauge and scalar interactions

$$Y_{\chi} = Y_{\chi}^{\text{eq}} + \eta_{\chi}$$
 $Y_{\bar{\chi}} = Y_{\chi}^{\text{eq}}$ $\eta_{\chi} = \eta_{S} \sim \eta_{B}$

Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
N_R^i	1/2	-1	0	0
σ	0	+2	0	0
χ ₀	1/2	-1	1	0
ψ_0	1/2	0	0	+1
S	0	0	-1	0
ϕ	0	+1	-1	+1

$$M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$$

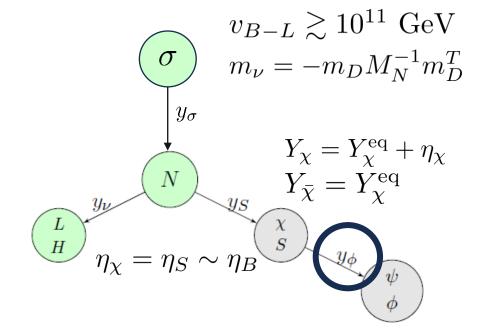


$$\mathcal{L}_{\rm int} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - \underline{y_{\phi} \phi \bar{\psi}_0 \chi_0} + \text{H.c.}.$$

We assume $\begin{cases} y_\phi \ll 1 \\ g_X \ll 1 \end{cases}$ so that ψ is never in thermal equilibrium

Field	Spin	$U(1)_{B-L}$	$U(1)_D$	$U(1)_X$
N_R^i	1/2	-1	0	0
σ	0	+2	0	0
χ_0	1/2	-1	1	0
ψ_0	1/2	0	0	+1
S	0	0	-1	0
ϕ	0	+1	-1	+1

$$M_{N_3}, M_{N_2} \gg M_{N_1} \gg m_{\chi}^0 \gg m_{\psi}^0, m_S > m_{\phi}$$



$$\mathcal{L}_{\text{int}} = -y_{\nu}^{\alpha i} \bar{L}^{\alpha} \tilde{H} N_R^i - y_{\sigma}^{ij} \sigma \overline{N_R^{ic}} N_R^j - y_S^i S \bar{N}_R^i \chi_0 - y_{\phi} \phi \bar{\psi}_0 \chi_0 + \text{H.c.}.$$

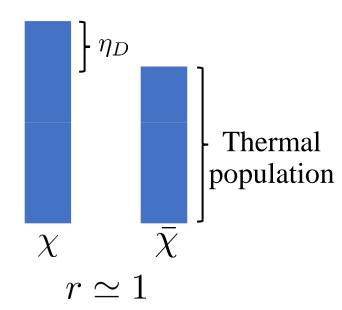
The χ asymmetry is transferred to ψ through late decays $\chi \to \psi + \phi$

Asymmetric freeze-out

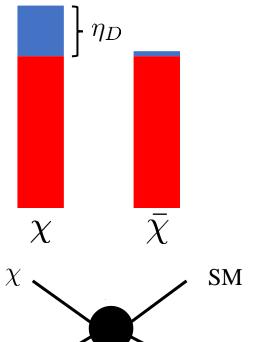
Asymmetry and Fractional asymmetry

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_{\chi}$$

Asymmetry generation

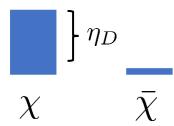


Annihilation of the symmetric component



SM

Only asymmetric component survives



$$r_{\infty} \propto \exp\left[-\frac{\pi g_*}{45x_f}M_{\rm Pl}\sigma v\eta_D m\right]$$

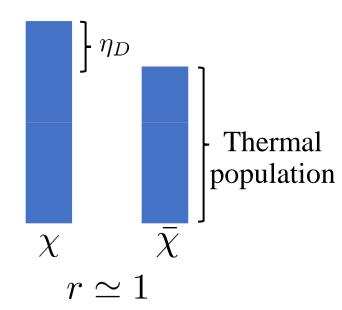
Graesser, Shoemaker, Vecchi [1103.2771]

Asymmetric freeze-out

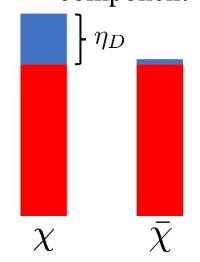
Asymmetry and Fractional asymmetry

$$\eta_D = Y_\chi - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_\chi$$

Asymmetry generation



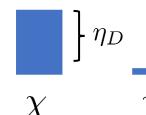
Annihilation of the symmetric component



Only asymmetric component survives

Large cross sections are needed!

$$\sigma v > \sigma v_{\text{WIMP}}$$



$$r_{\infty} \propto \exp\left[-rac{\pi g_{*}}{45x_{f}}M_{ ext{P}}\sigma v\eta_{D}m
ight]$$
 SM Graesser, Shoemaker, Vecchi

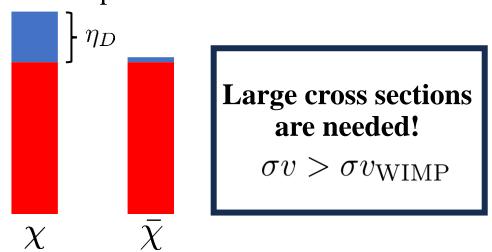
Graesser, Shoemaker, Vecchi [1103.2771]

Asymmetric freeze-out

Asymmetry and Fractional asymmetry

$$\eta_D = Y_{\chi} - Y_{\bar{\chi}} \qquad r = Y_{\bar{\chi}}/Y_{\chi}$$

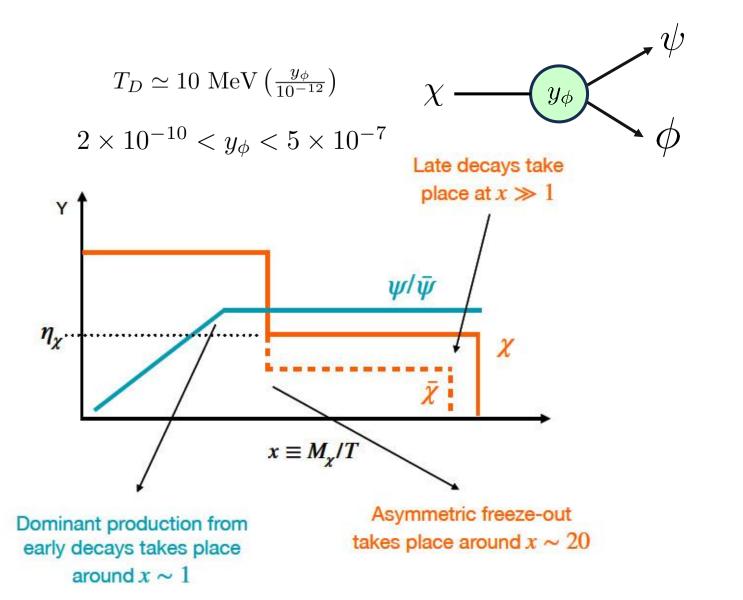
Annihilation of the symmetric component

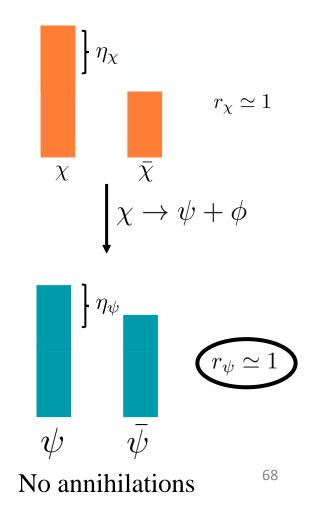


Asymmetric DM out of equilibrium (tiny couplings, freeze-in)?

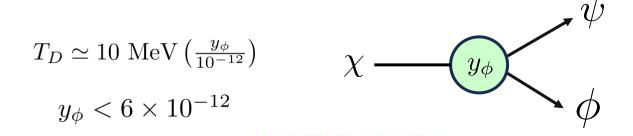
(How to erase the symmetric component?)

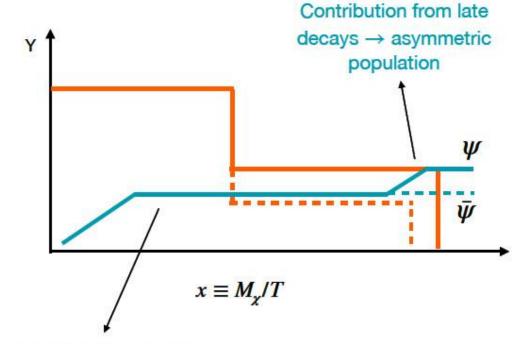
Early vs Late decays





Early vs Late decays





Production from early decays: symmetric population

