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Radiative Decays



Outline of Talk

1. Introductory Remarks

3.    at large  B̄s → μ+μ−γ q2

• Contributions which we are able to compete precisely 
(FV, FA, FTV, FTA)

• Contributions which we can only calculate 
approximately, but adequately ( )F̄T

2

• Contributions which we are not yet able to compute on the lattice, 
but are striving to do so (charming penguins)

2.  Radiative DecaysP → ℓνℓγ

4.  Radiative DecaysP → ℓνℓ ℓ′ +ℓ′ −



1. Introduction
• Our computations of radiative decays started with our major study of QED corrections to leptonic decays of 

pseudoscalar mesons.

Γ(ΔEγ) = Γ0(P → ℓν̄ℓ) + Γ1(P → ℓν̄ℓγ) = Γ0 + ∫
2ΔEγ/mP

0
dxγ

dΓ1

dxγ
(xγ =

2Eγ

mP
)

QED Corrections to Hadronic Processes in Lattice QCD,  
N.Carrasco, V.Lubicz, G.Martinelli, CTS, N.Tantalo, C.Tarantino and M.Testa, arXiv:1502.00257

= lim
L→∞

[Γ0(L) − Γpt
0 (μγ, L)] + lim

μγ→0
[Γpt

0 (μγ) + Γpt
1 (ΔEγ, μγ)] + ΓSD

1 (ΔEγ) + ΓINT
1 (ΔEγ)

• ”pointlike”, ”Structure Dependent”, ”Interference” pt = SD = INT =

• Initially we suggested  to be small ( ) so that  and  can be neglected.ΔEγ ≃ 20 MeV ΓSD
1 ΓINT
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• Applicable for  kaons and pions.

• Subsequently we have been computing  for larger values of  , including the SD and INT contributions.Γ1 ΔEγ

• This allows the evaluation of  corrections to leptonic decays for all stable pseudoscalar mesons. O(αem)
3

First lattice calculation of radiative leptonic decay rates of pseudoscalar mesons, A.Desiderio et al., arXiv:2006.05358



2.     radiative decays - the form factors.  P → ℓνℓγ

• Non-perturbative contribution to  is encoded in:

 

                 

                  

• For decays into a real photon,  and , only the decay constant  and the vector and axial form factors 
    and  are needed to specify the amplitude (  ).

• In phenomenology  are more natural combinations.

P → ℓν̄ℓγ

Hαr
W (k, p) = ϵr

μ(k) Hαμ
W (k, p) = ϵr

μ(k) ∫ d4y eik⋅y T ⟨0 | jα
W(0) jμ

em(y) |P(p) ⟩

= ϵr
μ(k){ H1

mK
[k2gμα − kμkα] +

H2

mK

[(p ⋅ k − k2)kμ − k2(p − k)μ](p − k)α

(p − k)2 − m2
K

−i
FV

mK
εμαγβkγ pβ +

FA

mK
[(p ⋅ k − k2)gμα − (p − k)μkα] + fP [gμα −

(2p − k)μ(p − k)α

(p − k)2 − m2
K ]}

k2 = 0 ε ⋅ k = 0 fP
FV(xγ) FA(xγ) xγ = 2p ⋅ k/m2

P , 0 < xγ < 1 − m2
ℓ /m2

P

F± ≡ FV ± FA 4

P−

!−

ν̄!

γ

P−

!−

ν̄!

γ



Minkowski   Euclidean Continuation →

• We assume that  is the lightest particle with quantum 
numbers .

P
q1q̄2

• The decay , where  also has quantum numbers 
, is therefore not possible.   

P → |n, γ⟩ |n⟩
q1q̄2

• The states propagating between  and   can therefore 
not be on-shell. 

Jem OW

• In this case the photon is real, and so there is also no on-shell state which can propagate between 
 and  where  OW(tW) Jem(tem) tem > tW .

!

ν̄!

γ($k )

P ($0)

OW

q̄2(−$l )

q1($l ) q1($! − $k )

Jem

• As expected, the Minkowski-Euclidean continuation is therefore straightforward. 

• This is not the case in general when the emitted photon is virtual. 
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Computing the Form Factors

Hαr
W (k, p) = ϵr

μ(k) Hαμ
W (k, p) = ϵr

μ(k) ∫ d4y eik⋅y T⟨0 | jα
W(0) jμ

em(y) |P(p)⟩

• Euclidean Correlation Functions:

Cαr
W (t; k, p) = − iϵr

μ(k)∫ d4y∫ d3x etyEγ−ik⋅y eip⋅x T⟨0 | jα
W(t, 0) jμ

em(y) ϕ†
P(0,x) |0⟩

•  can be obtained from the large  limit of the correlation function:Hαr
W (k, p) t

Rαr
W (t; k, p) ≡

2E
e−(E−Eγ)t⟨P(p) |ϕ†

P(0) |0⟩
Cαr

W (t; k, p) + ⋯

where  E = m2
P + p2 .
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Choice of Kinematics 

jem

φ†
P

jW

2π
L θ0

2π
L θt

2π
L θs

• We use twisted boundary conditions to introduce momenta,

p =
2π
L

(θ0 − θs) ; k =
2π
L

(θ0 − θt) ,

with both  and  in the  directionp k z

p = (0, 0, |p | ) ; k = (0, 0, Eγ) .

• For the polarisation vectors we choose, ϵ1
μ = (0, −

1

2
, −

1

2
,0) , ϵ2

μ = (0,
1

2
, −

1

2
,0) , ϵ3

μ = ϵ0
μ = 0 .

• With these choices 

RA(t) ≡
1

2mP ∑
r=1,2

∑
j=1,2

Rjr(t; k, p)
ϵr

j
→ xγ FA(xγ) +

2fP
mP

RV(t) ≡
mP

4 ∑
r=1,2

∑
j=1,2

Rjr
V (t; k, p)

i(Eγ ϵr × p − E ϵr × k)j → FV(xγ) .

• Thus in principle the two form factors,  and  can be determined.FV FA
7



  radiative decays - the form factorsP → ℓνℓγ

• We have computed  and  for  mesons.                              A.Desiderio et al. arXiv:2006.05358FV(xγ) FA(xγ) π, K, D(s)

•The computations were performed on 11 ETMC  ensembles with 
    0.062 fm < a <0.089 fm and 227 MeV< <441 MeV and a range of volumes. 
• Computations are performed in the electroquenched approximation.

Nf = 2 + 1 + 1
mπ

• Our data is fully consistent with a parametrisation of the form : 
 

• Other parametrisation were also tried and presented. 

• Values of the parameters are presented in the paper.

FP
A,V(xγ) = CP

A,V + DP
A,Vxγ .
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• Below we compare our results to the experimental data and also to LO ChPT:

FA(xγ) =
8mP

fP
(Lr

9 + Lr
10) ≃

8mP

fP
(0.0017) , FV(xγ) =

mP

4π2fp
.



Non-perturbative subtractions of IR divergent discretisation effects
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• The combination  is dominated by , 

particularly at small 
FA(xγ) + 2fp/(mPxγ) 2fp/(mPxγ)

xγ .

• We rewrite the behaviour of the axial estimator to  include 
discretisation effects

RA(t)
xγ

→ [FA(xγ) + a2ΔFA(xγ)] +
2

mPxγ
(fP + a2ΔfP) + ⋯

•  obtained from two-point functions 
incomplete cancelation of the infrared divergent term.
fP ≠ ( fP + a2ΔfP) ⇒

• We introduce the modified estimator

R̄A(t) = e−tEγ

∑r=1,2 ∑j=1,2
Rjr(t; k, p)

ϵr
j

∑r=1,2 ∑j=1,2
Rjr(t; 0,p)

ϵr
j

− 1

2fP
mPxγ

R̄A(t) → FNPsub
A (xγ) = FA(xγ) + O(a2) .
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Non-perturbative subtractions of IR divergent discretisation effects (cont.)

0
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• Blue points -  obtained by performing the 
subtraction using the value of  obtained from two-point 
correlation functions.

FA(xγ)
fP

• Red Points - Discretisation effects in  fitted and subtracted.fP

• Black Points - FNPsub
A (xγ)

• Illustrative example:  for the  meson.FA(xγ) Ds
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Comparison with Experimental Data

•      KLOE, arXiv:0907.3594 
                            J-PARC E36, arXiv:2107.03583 
                             NA62, arXiv:2???.?????  

•      E787@BNL AGS, hep-ex/0003019 
                             ISTRA+ @U-79 Protvino, arXiv:1005.3517  
                             OKA@U-79 Protvino, arXiv:1904.10078 

•        PIBETA@ E1 beam line PSI, arXiv:0804.1815

K → eνeγ

K → μνμγ

π → eνeγ π

• The different experiments  introduce different cuts on  and  , resulting in  
     sensitivities to different form factors.

Eγ , Eℓ cos θℓγ

11

R.Frezzotti, M.Garofalo, V.Lubicz, G.Martinelli, CTS, F.Sanfilippo, S.Simula and N.Tantalo, arXiv:2012.02120



Comparison with Experimental Data — Kaon Decays
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• Good Agreement with KLOE 
• Significant tensions with  experiments 
• Unable to find a set of phenomenological form factors 

to account for all the data. 
• NA62 will soon have the most precise results for 

 decay rates. 
• Is it conceivable that we have LFU-violation here?

K → μνμγ

K → eνeγ
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Comparing JPARC and KLOE’s Results 

KLOE 

O 

36 combined 

sed E36 CsI 

E36 G 

Q NL 

V0 +A0 

0.1 0.12 0.13 0.14 0.15 

 
1 1.2 1.4 1.6 1.8 2 2.2 2.4 

Ry x 105 

ChPT O (p4) 

KLOE 

ChPT O (p6) 

NLx QM 
 
Lattice QCD 
 

E36 GSC 

Revised E36 CsI(Tl) 

E 6 combined 

!! (MeV) "" (MeV) KLOE [10] J-PARC E36 [11] lattice [9] ChPT 
10 - 250 > 200 1.483 ± 0.066 ± 0.013 1.85 ± 0.11 ± 0.07 1.743 ± 0.212 1.279 ± 0.324 

 
S.Simula et al., PoS Lattice 2021 (2022) 631

J-PARC E36 Collaboration, A.Kobayashi et al., arXiv:2212.10702

• E36 Result was subsequently updated to 
 (as in the figure above).(1.98 ± 0.11) × 10−5
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(Units of )10−5



Comparison with Experimental Data — Pion Decays
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8

kinematical region

 π+      e+ ν γ

A B C O

<latexit sha1_base64="b/lNkzOi5D1w0L4wpOI/Tiv1+G4=">AAACAnicbVDLSgNBEJz1bXxFPYmXxSB4CrsS1JMEvXhUMA/IxtA76SSDM7vLTK8QluDFX/HiQRGvfoU3/8bJ46CJBQ1FVTfdXWEihSHP+3bm5hcWl5ZXVnNr6xubW/ntnaqJU82xwmMZ63oIBqWIsEKCJNYTjaBCibXw/nLo1x5QGxFHt9RPsKmgG4mO4EBWauX3AuohQSvDoAtKweC85N0FXGjeyhe8ojeCO0v8CSmwCa5b+a+gHfNUYURcgjEN30uomYEmwSUOckFqMAF+D11sWBqBQtPMRi8M3EOrtN1OrG1F5I7U3xMZKGP6KrSdCqhnpr2h+J/XSKlz1sxElKSEER8v6qTSpdgd5uG2hUZOsm8JcC3srS7vgQZONrWcDcGffnmWVI+L/kmxdFMqlC8mcaywfXbAjpjPTlmZXbFrVmGcPbJn9srenCfnxXl3Psatc85kZpf9gfP5Aw/Mlzg=</latexit>

✓e� > 40�
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• A:  and  

• B:  and  

• C:  and  

• D:  and 

Eγ > 50 MeV Ee > 50 MeV

Eγ > 50 MeV Ee > 10 MeV

Eγ > 10 MeV Ee > 50 MeV

Eγ > 10 MeV Ee > me

• It is also difficult to understand the PIBETA data in some kinematical regions. 



 DecaysDs

• In the paper discussed above, we have also computed the form factors for the  meson but only for Ds Eγ < 0.4 GeV .

• In a subsequent paper we have computed them over the full kinematic range.

R.Frezzotti, G.Gagliardi, V.Lubicz,  G.Martinelli, F.Mazzetti, CTS, F.Sanfilippo, S.Simula, and N.Tantalo, arXiv:2306.05904 

• The calculations were performed using four ETMC ensembles with three of 
which have approximately physical pion masses and the coarsest has  

a ∈ [0.058,0.09] fm ,
mπ = 174.5 MeV .

• Sea Quarks - Wilson Clover TM Fermions and maximal twist 
• Valence Quarks - Osterwalder-Seiler Fermions 
• Physical  and .ms mc
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 - Results for the Form FactorsDs → ℓνℓγ
xγ FA ∆FA FV ∆FV 
0.1 0.0813 0.0054 -0.1048 0.0097 
0.2 0.0715 0.0041 -0.0819 0.0028 
0.3 0.0641 0.0033 -0.0643 0.0013 
0.4 0.0582 0.0028 -0.0519 0.0008 
0.5 0.0534 0.0021 -0.0431 0.0008 
0.6 0.0495 0.0024 -0.0363 0.0008 
0.7 0.0463 0.0031 -0.0316 0.0007 
0.8 0.0432 0.0032 -0.0291 0.0010 
0.9 0.0433 0.0083 -0.0297 0.0056 
1.0 0.0489 0.0229 -0.0315 0.0152 

 

<latexit sha1_base64="0o8QdqFt+p0U8Jx7pMyJPZoQijo="></latexit>

FW (x�) =
CWq

R2
W + x2

�/4
⇣q

R2
W + x2

�/4 + x�/2� 1
⌘ +BW

• Our Results for the form factors are well represented by the following 
VMD-inspired ansatz: 

where  and   and  are fit parameters.W = A, V RW, BW CW

• For single pole dominance  and . RW = mres/mDs
BW = 0

• For  we obtain stable results for , and hence deduce the coupling  
 using

FV CV
gD*s Dsγ

CV = −
mD*S fD*S gD*S Dsγ

2mDs

and .fD*s = 268.6(6.6) MeV
ETM Collaboration , V.Lubicz et al., arXiv 1707.04529

• Appendix A for an explanation of why 
the errors grow at large .xγ

• Discussion of method to reduce such 
errors studied in

Davide Giusti’s Talk 
D.Giusti et al., arXiv:2302.01298 16



Cancellation in FV = F(c)
V + F(s)

V
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• There is a significant partial cancellation in  between the 
contributions from the emission of the photon from the 
strange and charm quarks.

FV

• This had been observed previously by the HPQCD 
collaboration in their computation of the  decay 
amplitude.

D*s → Dsγ
HPQCD Collaboration , arXiv:1312.5264 

•  in gD*s Dsγ GeV−1

LCSR = B.Pullin and R.Zwicky, arXiv:2106.13617

<latexit sha1_base64="AdMdtN1Qvn3otctGwKF7bmXQ2M0="></latexit>

LCSR HPQCD This work

gD⇤
sDs� 0.60(19) 0.10(2) 0.118(13)

g(s)D⇤
sDs�

1.0 0.50(3) 0.532(15)

g(c)D⇤
sDs�

-0.4 -0.40(2) -0.415(16)

g(s)D⇤
sDs�

/g(c)D⇤
sDs�

-2.5 -1.25(10) -1.282(61)



 — ConclusionsDs → ℓνℓγ

• We find  for  in the rest frame of the  meson. This is consistent with the 
corresponding bound  at 90% confidence level from BESIII (quoted in PDG).

B(Ds → eνeγ) = 4.4(3) × 10−6 Eγ > 10 MeV Ds

B(Ds → eνeγ) < 1.3 × 10−4

• Even for photon energies as low as , we find that the Structure Dependent contribution dominates the branching 
fraction because of the strong helicity suppression of the point-like term by a factor of .

10 MeV
(me/mDs

)2
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• Such radiative decays therefore provide excellent test of the SM and Beyond.

• We use our results to test the validity and applicability of model dependent calculations.

• LCSR calculations at NLO fail to reproduce our results for the form factors.
B.Pullin and R.Zwicky, arXiv:2106.13617,  J.Lyon and R.Zwicky, arXiv:1210.6546

• Pure VMD parametrisation does not always reproduce the momentum dependence of the form factors.

• There are also quark model predictions for the branching ratio in the range . 10−3 − 10−5



3. The   Decay Rate at Large Bs → μ+μ−γ q2

19

• I use this interesting FCNC process to illustrate the elements which we are able to compute and to highlight the 
important theoretical issues which we are still working to resolve.

• Preview: We can compute the dominant contribution, but are working to solve the 
problems which will enable an improved precision.

R.Frezzotti, G.Gagliardi, V.Lubicz, G.Martinelli, CTS, F.Sanfilippo, S.Simula, N.Tantalo, arXiv:2402.03262

q

k
Bs

µ+

µ−

γ

,     is the energy of the real photon in rest frame of the  meson. xγ =
2Eγ

mBs

Eγ Bs

q2 = m2
Bs

(1 − xγ), 0 ≤ xγ ≤ 1 −
4m2

μ

m2
Bs

• LHCb: ,    arXiv:2108.09283/4B(Bs → μ+μ−γ) | q2 >4.9 GeV < 2.0 × 10−9



From the May/June 2024 issue of the Cern Courier
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The Effective  Hamiltonianb → s

 ℋb→s
eff = 2 2GF VtbV*ts [ ∑

i=1,2

CiOc
i +

6

∑
i=3

CiOi +
αem

4π

10

∑
i=7

CiOi]
Oc

1 = (s̄i γμ PL cj) (c̄j γμ PL bi) Oc
2 = (s̄ γμ PL c) (c̄ γμ PL b)

 are QCD Penguins with small Wilson CoefficientsO3−6

O7 = −
mb

e
(s̄σμν Fμν PR b) O8 = −

gsmb

4παem
(s̄σμν Gμν PR b)

O9 = (s̄ γμ PLb) (μ̄ γμ μ) O10 = (s̄ γμ PLb) (μ̄ γμ γ5 μ)

(PL,R =
1
2

(1 ∓ γ5))

 are the QED and  
QCD Field Strength Tensors
Fμν and Gμν

The amplitude is given by: 𝒜 = ⟨ γ(k, ϵ) μ+(p1) μ−(p2) | − ℋb→s
eff | Bs(p) ⟩QCD+QED

= − e
αem

2π
Vtb V*ts ϵ*μ [

9

∑
i=1

Ci Hμν
i LV ν + C10(Hμν

10 LA ν − i
fBs

2
Lμν

A pν)]
21

The are hadronic and  
leptonic tensors respectively

Hμν and L



Contribution from “Semileptonic” Operators - FV and FA

22

Hμν
9 (p . k) = Hμν

10 (p . k) = i∫ d4y⟨ 0 |T[ s̄ γν PL b (0) Jμ
em(y)] | B̄s(p) ⟩

= − i(gμν (k ⋅ q) − qμkν)
FA(q2)
2mBs

+ ϵμνρσ kρ qσ
FV(q2)
2mBs

• These form factors can be computed from Euclidean correlation functions (at accessible values of ).mb

• We choose  and   and use twisted boundary conditions for .p = 0 k = (0,0,kz) kz

• With such a choice of kinematics:      and  .
1

2kz
(H12

V (p, k) − H21
V (p, k)) → FV(xγ)

i
2Eγ

(H11
A (p, k) + H22

A (p, k)) → FA(xγ)



The form factors FTV and FTA

• In a similar way the following contributions can be computed:

Hμν
7A(p . k) =

2mb

q2 ∫ d4y⟨ 0 |T[ s̄ σνρ PR b (0) Jμ
em(y)] | B̄s(p) ⟩

= − i(gμν (k ⋅ q) − qμkν)
mbFTA(q2)

q2
+ ϵμνρσ kρ qσ

mbFTV(q2)
q2

• With our choice of kinematics:      and  .
1

2kz
(H12

TV(p, k) − H21
TV(p, k)) → FTV(xγ)

−i
2Eγ

(H11
A (p, k) + H22

A (p, k)) → FTA(xγ)

• Here, for now, we are isolating the contribution in which it is the virtual photon which is emitted from O7 .

• There is also the useful kinematical constraint that FTV(1) = FTA(1) .
23



Numerical Results for FV , FA , FTV , FTA

24

• These four form-factors can be computed using “standard” methods at the available heavy quark masses.

• We use gauge field configurations generated by the European Twisted Mass Collaboration (ETMC), with 
the Iwasaki gluon action and  flavours of Wilson-Clover light quarks at maximal twist (four 
ensembles with ).

Nf = 2 + 1 + 1
0.057 fm < a < 0.091 fm

• We perform the calculations at 5 values of the heavy quark mass corresponding to  

                                                                                    

     and at 4 values of .

mh

mc
= 1, 1.5, 2, 2.5 and 3 ,

xγ = 0.1, 0.2, 0.3, 0.4

• Much effort is then devoted to the  and  limit, guided by the heavy-quark scaling laws and 
models for possible resonant contributions.

mh → mb a → 0

•  is determined from .mc mηc
= 2.984(4) GeV



Continuum Extrapolation
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• The continuum extrapolation is 
performed separately at each value of 

 and  .mHs
xγ

• The illustration plots are for  .xγ = 0.4



Extrapolation of the results to mBs
= 5 . 367 GeV

• Having performed the continuum extrapolation, we need to extrapolate the results to the physical value of  .mBs

• In the heavy-quark and large  limits, scaling laws were derived up to :Eγ O(1/mHs
,1/Eγ)

M.Beneke and J.Rohrwild, arXiv:1110.3228;  M. Beneke, C. Bobeth and Y.-M. Wang, arXiv:2008.12494

FV/A

fHs

=
|qs |
xγ (

R(Eγ, μ)
λB(μ)

+ ξ(xγ, mHs
) ± 1

mHs
xγ

± |qb |
|qs |

1
mh ) FTV/TA

fHs

=
|qs |
xγ (

RT(Eγ, μ)
λB(μ)

+ ξ(xγ, mHs
) ±

1 − xγ

mHs
xγ

+
|qb |
|qs |

1
mHs

);

•   are radiative correction factors ;  is the first inverse moment of the -meson 
LCDA,  are power corrections.
R(Eγ, μ) , RT(Eγ, μ) = 1 + O(αs) λB Bs

ξ(xγ, mHs
)

• Photon emission from the -quark suppressed relative to the emission from the -quark.b s

• Tensor form-factors are presented in the  scheme at .MS μ = 5 GeV

• However, useful though these scaling laws are, they apply at large  (as well as large ), are there are significant 
corrections at our lightest values of  and smaller values of  . We therefore us an ansatz which includes the 
above scaling laws at large  as well as VDM behaviour.

Eγ mh

mh Eγ

Eγ
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Extrapolation of the results to mBs
= 5 . 367 GeV
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Comparison with Previous Determinations of the Form Factors
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Ref. [4]

Ref. [3]
Ref. [5]

F
T
V

x�

F
A

F
T
A

• Ref.[3] = T.Janowski, B.Pullin and R.Zwicky, arXiv:2106.13616, LCSR
•  Ref.[4]= A.Kozachuk, D.Melikhov and N.Nikitin, arXiv:1712.07926, relativistic dispersion relations
• Ref.[5]= D.Guadagnoli, C.Normand, S.Simula and L.Vittorio, arXiv:2303.02174, VMD+quark model+lattice at charm
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• In general our results for the form factors differ significantly from earlier estimates.



Other Contributions - F̄T

29

  whereHμν
T̄

(p, k) = i∫ d4y ei(p−k)⋅y ⟨ 0 |T[ Jν
T̄(0) Jμ

em(y)] | B̄s(0) ⟩ ≡ − ϵμνρσ kρ pσ
F̄T

mbs

  .Jν
T̄ = − i ZT(μ) s̄σνρb

kρ

mBs

• The difficulty arises from the first diagram above when .  
• In that case we potentially have a hadronic intermediate state (e.g. an  state) with smaller mass than 

, leading to an imaginary part and problems with the continuation to Euclidean space. 

ty > 0
ss̄ 1−

(p − k)2

m2
V + E2

γ + Eγ < mBs
⇒ xγ < 1 −

m2
V

m2
Bs

≃ 1 −
4m2

K

m2
Bs

≃ 0.96 .



 (cont.)F̄T

O7

Jem

0

t

b

s̄

s

γ

µ+

µ−
γ∗ • Large amount of effort is being devoted to developing techniques 

based on the spectral density representation, 
M.Hansen, A.Lupo and N.Tantalo, arXiv:1903.06476 

R.Frezzotti et al., arXiv:2306.07228

• For  define   t > 0 Cs(t, k) = ⟨ 0 |Jμ
em,s(t, − k) Jν

T̄(0) |Bs(0)⟩ = ∫
∞

−∞
dt′ δ(t′ − t) Cs(t′ , − k)

= ∫
∞

−∞
dt′ ∫

∞

−∞

dE′ 

2π
eiE′ (t′ −t) Cs(t′ , − k) = ∫

∞

−∞

dE′ 

2π
e−iE′ t ∫ d4x′ eik′ ⋅x′ ⟨0 |Jμ

em,s(x′ ) Jν
T̄(0) |B(0)⟩

= ∫
∞

−∞

dE′ 

2π
e−iE′ t ∫ d4x′ ⟨0 |Jμ

em,s(0) e−i( ̂P−k′ )⋅x′ JT̄Tν(0) |B(0)⟩= ∫
∞

−∞

dE′ 

2π
e−iE′ t ⟨0 |Jμ

em,s(0) (2π)4 δ( ̂P − k′ ) Jν
T̄(0) |B(0)⟩

≡ ∫
∞

−∞

dE′ 

2π
e−iE′ t ρμν

s (E′ , k)
ρs(E′ , k)

(k′ = (E′ , − k))

• In Euclidean space  Cs(t, k) = ∫
∞

E*

dE′ 

2π
e−E′ t ρμν

s (E′ , k) .
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 (cont.)F̄T
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• For  define   t > 0 Cs(t, k) = ⟨ 0 |Jμ
em,s(t, − k) Jν

T(0) |Bs(0)⟩ = ∫
∞

E*

dE′ 

2π
e−iE′ t ρμν

s (E′ , k) .

• In Euclidean space  Cs(t, k) = ∫
∞

E*

dE′ 

2π
e−E′ t ρμν

s (E′ , k) .

• For the amplitude we require

                Hμν
T̄s

(mB, k) = i∫
∞

0
dt ei(mB−ω)t Cμν

s (t, k) = lim
ϵ→0 ∫

∞

E*

dE′ 

2π
ρμν

s (E′ , k)
E′ − (mB − ω) − iϵ

. (ω = |k |)

• The question is how (best) to extract the information about the spectral density, , contained in the 
Euclidean correlation function in order to determine the amplitude (both the real and imaginary parts).

ρμν
s (E, k)

• We use the HLT method, in which computations are performed at several values of , and the kernel 
 is approximated by a series of exponentials in time.

ϵ
1

E′ − (mB − ω) − iϵ

O7

Jem

0

t

b

s̄

s

γ

µ+

µ−
γ∗

1
E′ − E − iϵ

≃
nmax

∑
n=1

gn(E, ϵ) e−anE′ where the  are complex coefficients.gn

• Finally   Hμν
T̄s

(mB, k) = lim
ϵ→0 ∫

∞

E*

dE′ 

2π
ρμν

s (E′ , k)
E′ − (mB − ω) − iϵ

= lim
ϵ→0

nmax

∑
n=1

gn(mB − ω, ϵ) Cs(an, k)



• Resulting error is  but  No clear  dependence is observed in our data and we quote:O(100%) F̄T ≪ FTV, FTA . xγ

 (cont.)F̄T
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• Determining the  requires a balance between the systematic error due to the approximation of   by a 
finite number of exponentials (in which the coefficients are large with alternating signs) and the statistical errors in the 
correlation functions .

gn 1/(E′ − E − iϵ)

Cs(an, k)

• We have computed  at all four values of  at three of the five values of  and on two of the 
gauge-field ensembles (  and ). 

F̄T xγ , mh (mh/mc = 1, 1.5, 2.5)
a = 0.0796(1) fm 0.0569(1) fm

i)    only gives a very small contribution to the rate and is therefore not needed with great precision. 
ii)  The spectral density method is computationally expensive.

F̄T

• An extrapolation in  is required, as well as those in  and  .ϵ a mh

Re F̄ s
T(xγ) = − 0.019(19) and Im F̄ s

T(xγ) = 0.018(18) .



 - Illustrative PlotsF̄s
T
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Other Contributions - Charming Penguins

• Of the contributions we have not computed directly , the most significant one at large  is expected to be that 
from the operators  (charming penguins) and we are working on developing methods to overcome this. 

              There are a number of new theoretical issues to be understood.

q2

Oc
1,2

• In the meantime we follow previous ideas and estimate the contribution based on VMD inserting all  resonances 
from the  to the  It can be viewed as a shift in 

cc̄
J/Ψ Ψ(4660) . C9 → Ceff

9 (q2) = C9 + ΔC9(q2) :

ΔC9(q2) = −
9π
α2

em (C1 +
C2

3 ) ∑
V

|kV |eiδV
mVΓV B(V → μ+μ−)

q2 − m2
V + imVΓV

.

34

•  and  parametrise the deviation from the factorisation approximation (in which ). We allow  
to vary over  and  to vary in the range  
kV δV δV = kV − 1 = 0 δV

(0,2π) |kV | 1.75 ± 0.75 .
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• Structure Dependent (SD) contribution dominated by FV .

• The error from the charming penguins increases with  (at  it is about ).xγ xγ = 0.4 30 %

• Our Result - ;       LHCb -  . ℬSD(0.166) = 6.9(9) × 10−11 ℬSD(0.166) < 2 × 10−9



Comparisons
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• Ref.[3] = T.Janowski, B.Pullin and R.Zwicky, arXiv:2106.13616, LCSR

•  Ref.[4]= A.Kozachuk, D.Melikhov and N.Nikitin, arXiv:1712.07926, 
relativistic dispersion relations

• Ref.[5]= D.Guadagnoli, C.Normand, S.Simula and L.Vittorio, 
arXiv:2303.02174, VMD+quark model+lattice at charm
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• Discrepancy persists since rate dominated by FV

• New LHCb update with direct detection of 
final state photon. I.Bachiller, La Thuile 2024 

LHCb, 2404.07648

• For  the bound is about an 
order of magnitude higher than before.

q2 > 15 GeV2



  —  ConclusionsB̄s → μ+μ−γ
• We have computed the form factors  which contribute to the amplitude. The amplitude is 

dominated by  . 
    There are significant discrepancies with earlier estimates of the form factors obtained using other methods.

FV , FA , FTV and FTA
FV

37

• As  is decreased towards the region of charmonium resonances, the uncertainties grow, from with 
 to about for  , largely due to the charming penguins for which we have 

included a phenomenological parametrisation.

q2 15 %
q2

cut = 4.9 GeV 30 % q2
cut = 4.2 GeV

Outlook

• Continue developing methods to evaluate the disconnected diagrams.

• Develop methods which would allow the evaluation of the charming penguin contributions, also for 
 decays etc..                 This is one of our top priorities!B → K(*)μ+μ−

• Continue performing simulations on finer lattices so that the uncertainties due to the  extrapolation are 
reduced.

mh → mb



• Non-perturbative contribution to  is encoded in:

 

                 

                  

P → ℓν̄ℓγ

Hαr
W (k, p) = ϵr

μ(k) Hαμ
W (k, p) = ϵr

μ(k) ∫ d4y eik⋅y T ⟨0 | jα
W(0) jμ

em(y) |P(p) ⟩

= ϵr
μ(k){ H1

mK
[k2gμα − kμkα] +

H2

mK

[(p ⋅ k − k2)kμ − k2(p − k)μ](p − k)α

(p − k)2 − m2
K

−i
FV

mK
εμαγβkγ pβ +

FA

mK
[(p ⋅ k − k2)gμα − (p − k)μkα] + fP [gμα −

(2p − k)μ(p − k)α

(p − k)2 − m2
K ]}
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4.   DecaysP → ℓν̄ℓ ℓ′ +ℓ′ −

P−

!−

ν̄!

γ∗

!′+

!′−

• Now all four Structure-Dependent form factors have to be determined.



  Decays (Cont,)P → ℓν̄ℓ ℓ′ +ℓ′ −

• We have performed an exploratory calculation with  at unphysical quark masses in order to develop a strategy to 
extract the four form factors and to check whether they can be determined with good precision.

P = K

39

G.Gagliardi et al., arXiv:2202.03833

• The computations were performed on a single ETMC ensemble, with  dynamical quark flavours, a space-
time volume ,  and with quark masses such that  and .

Nf = 2 + 1 + 1
323 × 64 a = 0.0885(36) fm mπ ≃ 320 MeV mK ≃ 530 MeV

• With  we have the unphysical simplification that there is no difficulty in the 
Minkowski  Euclidean continuation.

mK < 2mπ
→

• There had also been a similar exploratory computation of these decays (calculating the rates without determining the 
form factors) on a  lattice, , and with quark masses corresponding to  and 243 × 48 a ≃ 0.093 fm mπ ≃ 352 MeV
mK ≃ 506 MeV . X.-Y.Tuo, X.Feng, L.-C.Jin and T.Wang, arXiv:2103.11331



Results from the Exploratory Computations

Decay this work Point-like Tuo et al. ChPT(f⇡) ChPT(fK) Experiment

K+ ! e+⌫e µ+µ� 0.762(49)⇥ 10�8 3.0⇥ 10�13 0.94(8)⇥ 10�8 1.19⇥ 10�8 0.62⇥ 10�8 1.72(45)⇥ 10�8

K+ ! µ+⌫µ e+e� 8.26(13)⇥ 10�8 4.8⇥ 10�8 11.08(39)⇥ 10�8 9.82⇥ 10�8 8.25⇥ 10�8 7.93(33)⇥ 10�8

xk > 0.284

K+ ! µ+⌫µ µ+µ� 1.178(35)⇥10�8 3.7⇥ 10�9 1.52(7)⇥ 10�8 1.51(7)⇥ 10�8 1.10⇥ 10�8 -

K+ ! e+⌫e e+e� 1.95(11)⇥ 10�8 2.0⇥ 10�12 3.29(35)⇥ 10�8 3.34⇥ 10�8 1.75⇥ 10�8 2.91(23)⇥ 10�8

xk > 0.284

1

•  .xk = k2/m2
K where k2 = (pℓ′ + + pℓ′ −)2

• At NLO ChPT, ,  ,   .  FV =
mK

4 2π2F
FA =

4 2mK

F
(Lr

9 + Lr
10) H1(k2) = 2fKmK

FV(k2) − 1
k2

= H2(k2)

• Since the lattice results presented above are at unphysical quark masses, the comparison with the experimental results 
should not be taken very seriously, nevertheless they are encouraging.

• Experiment = E  at BNL, HMa et al., hep-ex/0505011 and R.Aaij et al., arXiv:1812.06004865
40



  Decays — Status and Prospects K → ℓν̄ℓ ℓ′ +ℓ′ −

• At physical quark masses, the issue of the Minkowski  Euclidean 
continuation arises for sufficiently large photon virtualities.

→

JW

Jem

s

ū

u

!′+

!′−
γ∗

!−

ν̄!
K−
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• Frezzotti et al. have performed an exploratory and instructive study of 
the corresponding  decay using the spectral density method and HLT. Ds

R.Frezzotti et al.,  arXiv:2306.07228

• Computation was performed on a single ETMC ensemble, , 
, , .

V = 643 × 128
a = 0.07957(13) fm mπ = 140.2(2) MeV mDs

= 1.990(3) GeV

• Necessary condition for a controlled  extrapolation:    , where  is an energy scale over which 

the amplitude varies significantly. 

ϵ → 0
1
L

≪ ϵ ≪ Δ(E) Δ(E)

• Results below the threshold agree with the standard method.  
• Difficulty arises around the sharp  resonance where the  limit cannot be taken  
• Above the resonance there appears to be a mild dependence on 

ϕ ϵ → 0 (Γ(ϕ) ≃ 4.2 MeV , ϵ ≳ 100 MeV) .
ϵ .

• R. Di Palma will present first results for  decays using the spectral density method + HLT at Latt2024. 
The -resonance is broader, making this a good channel to study (and compare with experimental results.

K → ℓν̄ℓ ℓ′ +ℓ′ −

ρ


