Chris Sachrajda University of Southampton

Isospin -Breaking Effects on Precision Observable in Lattice QCD MITP - Mainz - 26th July 2024

Outline of Talk

- 1. Introductory Remarks
- 2. *P* → *ℓν*_{*eγ*} Radiative Decays
- 3. $\bar{B}_s \to \mu^+ \mu^- \gamma$ at large q^2
	- Contributions which we are able to compete precisely
	- Contributions which we can only calculate approximately, but adequately (\bar{F}_T)
	- Contributions which we are not yet able to compute on the lattice, but are striving to do so (charming penguins)
-

 $(\mathbf{F_V}, F_A, F_{TV}, F_{TA})$

4. $P \to \ell \nu_{\ell} \ell^{'+} \ell^{-}$ Radiative Decays

1. Introduction

• Our computations of radiative decays started with our major study of QED corrections to leptonic decays of pseudoscalar mesons.

$$
\Gamma(\Delta E_{\gamma}) = \Gamma_0(P \to \ell \bar{\nu}_{\ell}) + \Gamma_1(P \to \ell \bar{\nu}_{\ell} \gamma) = \Gamma_0 + \int_0^{2\Delta E_{\gamma}/m_p} dx_{\gamma} \frac{d\Gamma_1}{dx_{\gamma}} \qquad \left(x_{\gamma} = \frac{2E_{\gamma}}{m_p}\right)
$$

QED Corrections to Hadronic Processes in Lattice QCD, N.Carrasco, V.Lubicz, G.Martinelli, CTS, N.Tantalo, C.Tarantino and M.Testa, arXiv:1502.00257

$$
= \lim_{L \to \infty} \left[\Gamma_0(L) - \Gamma_0^{\text{pt}}(\mu_\gamma, L) \right] + \lim_{\mu_\gamma \to 0} \left[\Gamma_0^{\text{pt}}(\mu_\gamma) + \Gamma_1^{\text{pt}}(\Delta E_\gamma, \mu_\gamma) \right] + \Gamma_1^{\text{SD}}(\Delta E_\gamma) + \Gamma_1^{\text{INT}}(\Delta E_\gamma)
$$

• pt $=$ "pointlike", $SD =$ "Structure Dependent", $INT =$ "Interference"

- Initially we suggested ΔE_{γ} to be small ($\simeq 20\,\text{MeV}$) so that Γ_{1}^{SD} and Γ_{1}^{INT} can be neglected.
	- Applicable for kaons and pions.
- Subsequently we have been computing Γ_1 for larger values of ΔE_γ , including the SD and INT contributions. First lattice calculation of radiative leptonic decay rates of pseudoscalar mesons, A.Desiderio et al., arXiv:2006.05358
	- This allows the evaluation of $O(\alpha_{em})$ corrections to leptonic decays for all stable pseudoscalar mesons.

$$
H_W^{ar}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) H_W^{a\mu}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \int d^4 y e^{ik \cdot y} \mathbf{T} \langle 0 | j_W^a(n) \rangle
$$

$$
= \epsilon_{\mu}^{r}(k) \left\{ \frac{H_{1}}{m_{K}} \left[k^{2}g^{\mu\alpha} - k^{\mu}k^{\alpha} \right] + \frac{H_{2}}{m_{K}} \frac{\left[(p \cdot k - k^{2})k^{\mu} - k^{2}(p - k)^{\mu} \right] (p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right. \\ \left. - i \frac{F_{V}}{m_{K}} \epsilon^{\mu\alpha\gamma\beta} k_{\gamma} p_{\beta} + \frac{F_{A}}{m_{K}} \left[(p \cdot k - k^{2})g^{\mu\alpha} - (p - k)^{\mu}k^{\alpha} \right] + f_{P} \left[g^{\mu\alpha} - \frac{(2p - k)^{\mu}(p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right] \right\}
$$

$$
= \epsilon_{\mu}^{r}(k) \left\{ \frac{H_{1}}{m_{K}} \left[k^{2} g^{\mu\alpha} - k^{\mu} k^{\alpha} \right] + \frac{H_{2}}{m_{K}} \frac{\left[(p \cdot k - k^{2}) k^{\mu} - k^{2} (p - k)^{\mu} \right] (p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right.- i \frac{F_{V}}{m_{K}} \epsilon^{\mu\alpha\gamma\beta} k_{\gamma} p_{\beta} + \frac{F_{A}}{m_{K}} \left[(p \cdot k - k^{2}) g^{\mu\alpha} - (p - k)^{\mu} k^{\alpha} \right] + f_{P} \left[g^{\mu\alpha} - \frac{(2p - k)^{\mu} (p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right] \right\}
$$

- For decays into a real photon, $k^2 = 0$ and $\varepsilon \cdot k = 0$, only the decay constant f_P and the vector and axial form factors $F_V(x_\gamma)$ and $F_A(x_\gamma)$ are needed to specify the amplitude $(x_\gamma=2p\cdot k/m_P^2,~0< x_\gamma< 1-m_e^2/m_P^2)$.
- In phenomenology $F^{\pm} \equiv F_V \pm F_A$ are more natural combinations.

2. $P \rightarrow \ell \nu_{\ell} \gamma$ radiative decays - the form factors.

• Non-perturbative contribution to $P \to \ell \bar{\nu}_\ell \gamma$ is encoded in:

 $W_W^{\alpha}(0) j_{em}^{\mu}(y) | P(\mathbf{p}) \rangle$

Minkowski → **Euclidean Continuation**

- In this case the photon is real, and so there is also no on-shell state which can propagate between $O_W(t_W)$ and $J_{em}(t_{em})$ where $t_{em} > t_W$.
- As expected, the Minkowski-Euclidean continuation is therefore straightforward.
- This is not the case in general when the emitted photon is virtual.
- We assume that P is the lightest particle with quantum numbers $q_1\bar{q}_2$.
- The decay $P \rightarrow |n, \gamma\rangle$, where $|n\rangle$ also has quantum numbers $q_1\bar{q}_2$, is therefore not possible.
- The states propagating between J_{em} and O_W can therefore not be on-shell. $J_{\rm em}$ and O_W

Computing the Form Factors

$$
H_W^{\alpha r}(k, \mathbf{p}) = \epsilon_{\mu}^{r}(k) H_W^{\alpha \mu}(k, \mathbf{p}) = \epsilon_{\mu}^{r}(k) \int d^4 y \, e^{ik \cdot y} \, T \langle 0 | j_W^{\alpha}(0) j_{em}^{\mu}(y) | P(\mathbf{p}) \rangle
$$

• Euclidean Correlation Functions:

$$
C_W^{ar}(t; \mathbf{k}, \mathbf{p}) = -ie_{\mu}^{r}(k) \int d^4y \int d^3x \ \epsilon
$$

• $H_W^{ar}(k, \mathbf{p})$ can be obtained from the large *t* limit of the correlation function: $W^{ar}(k, \mathbf{p})$ can be obtained from the large to

> 2*E* $e^{-(E-E_{\gamma})t}$ $\langle P(\mathbf{p}) | \phi_{P}^{\dagger}(0) | 0 \rangle$ $C_W^{\alpha r}(t; k, \mathbf{p}) + \cdots$

$$
R_W^{ar}(t; k, \mathbf{p}) \equiv \frac{e^{-(E - E_\gamma)t}}{e^{-(E - E_\gamma)t}}
$$

where
$$
E = \sqrt{m_P^2 + \mathbf{p}^2}
$$
.

 $x e^{t_y E_y - i \mathbf{k} \cdot \mathbf{y}} e^{i \mathbf{p} \cdot \mathbf{x}} T \langle 0 | j_W^{\alpha}(t, 0) j_{em}^{\mu}(y) \phi_p^{\dagger}(0, \mathbf{x}) | 0 \rangle$

Choice of Kinematics

• For the polarisation vectors we choose,

• With these choices

• We use twisted boundary conditions to introduce momenta,

$$
\mathbf{p} = \frac{2\pi}{L} (\theta_0 - \theta_s) ; \qquad \mathbf{k} = \frac{2\pi}{L} (\theta_0 - \theta_t) ,
$$

with both **p** and **k** in the *z* direction

$$
\mathbf{p} = (0, 0, |\mathbf{p}|); \qquad \mathbf{k} = (0, 0, E_{\gamma}).
$$

$$
e_{\mu}^{1} = (0, -\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0), \quad e_{\mu}^{2} = (0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0), \quad e_{\mu}^{3} = e_{\mu}^{0} =
$$

$$
R_A(t) \equiv \frac{1}{2m_P} \sum_{r=1,2} \sum_{j=1,2} \frac{R^{jr}(t; k, \mathbf{p})}{\epsilon_j^r} \to x_{\gamma} F_A(x_{\gamma}) + \frac{2f_P}{m_P}
$$

• Thus in principle the two form factors, F_V and F_A can be determined.

$$
R_V(t) \equiv \frac{m_P}{4} \sum_{r=1,2} \sum_{j=1,2} \frac{R_V^{jr}(t; k, \mathbf{p})}{i(E_\gamma \epsilon^{\mathbf{r}} \times \mathbf{p} - E \epsilon^{\mathbf{r}} \times \mathbf{k})^j} \rightarrow F_V(t; k)
$$

7

P → *ℓν* **radiative decays - the form factors** *ℓγ*

- We have computed $F_V(x_v)$ and $F_A(x_v)$ for π , K , $D_{(s)}$ mesons. A.Desiderio et al. arXiv:2006.05358
	- The computations were performed on 11 ETMC $N_f = 2 + 1 + 1$ ensembles with 0.062 fm < a <0.089 fm and 227 MeV< m_{π} <441 MeV and a range of volumes.
	- Computations are performed in the electroquenched approximation.
- Our data is fully consistent with a parametrisation of the form : $F_{A,V}^P(x_\gamma) = C_{A,V}^P + D_{A,V}^P x_\gamma$.
- Other parametrisation were also tried and presented.
- Values of the parameters are presented in the paper.
- Below we compare our results to the experimental data and also to LO ChPT:

 (0.0017) , $F_V(x_\gamma) =$ *mP* $4\pi^2\!f_p$.

$$
F_A(x_\gamma) = \frac{8m_P}{f_P}(L_9^r + L_{10}^r) \simeq \frac{8m_P}{f_P} (0.00)
$$

Non-perturbative subtractions of IR divergent discretisation effects

• The combination $F_A(x_\gamma) + 2f_p/(m_px_\gamma)$ is dominated by $2f_p/(m_px_\gamma)$, particularly at small *xγ* .

• We rewrite the behaviour of the axial estimator to include discretisation effects

 $m_{D_s} \sim 2027 \text{ MeV}, a = 0.0619 \text{ fm}$

• f_P obtained from two-point functions $\neq (f_P + a^2 \Delta f_P) \Rightarrow$ incomplete cancelation of the infrared divergent term.

• We introduce the modified estimator

 $\frac{2f_P}{\rho} \cdot \bar{R}_A(t) \to F_A^{\text{NPsub}}(x_\gamma) = F_A(x_\gamma) + O(a^2).$ *mPx^γ*

$$
\frac{A^{(t)}}{x_{\gamma}} \rightarrow \left[F_A(x_{\gamma}) + a^2 \Delta F_A(x_{\gamma}) \right] + \frac{2}{m_P x_{\gamma}} \left(f_P + a^2 \Delta f_P \right) + \cdots
$$

$$
\bar{R}_A(t) = e^{-tE_\gamma} \frac{\sum_{r=1,2} \sum_{j=1,2} \frac{R^{jr}(t;k,\mathbf{p})}{\epsilon_j^r}}{\sum_{r=1,2} \sum_{j=1,2} \frac{R^{jr}(t;0,\mathbf{p})}{\epsilon_j^r}} - 1
$$

9

Non-perturbative subtractions of IR divergent discretisation effects (cont.)

a = 0*.*0815*fm*

• Illustrative example: $F_A(x_\gamma)$ for the D_s meson.

- Blue points $-F_A(x_\gamma)$ obtained by performing the subtraction using the value of f_P obtained from two-point correlation functions.
- Red Points Discretisation effects in f_P fitted and subtracted.
- Black Points F_A^{NPsub} \mathcal{A}^{\prime} ^{NPSUD} (x_{γ})

Comparison with Experimental Data

 J-PARC E36, arXiv:2107.03583 NA62, arXiv:2???.??????

 \bullet $K \rightarrow \mu \nu_{\mu} \gamma$ E787@BNL AGS, hep-ex/0003019 ISTRA+ @U-79 Protvino, arXiv:1005.3517 OKA@U-79 Protvino, arXiv:1904.10078

• $\pi \rightarrow e\nu_e \gamma$ PIBETA@ π E1 beam line PSI, arXiv:0804.1815

- $K \rightarrow e \nu_e \gamma$ KLOE, arXiv:0907.3594 $K \rightarrow e \nu_e \gamma$
-
- $\pi \rightarrow e\nu_e\gamma$ **PIBETA**@ π
- The different experiments introduce different cuts on E_{γ} , E_{ℓ} and $\cos \theta_{\ell \gamma}$, resulting in sensitivities to different form factors.

R.Frezzotti, M.Garofalo, V.Lubicz, G.Martinelli, CTS, F.Sanfilippo, S.Simula and N.Tantalo, arXiv:2012.02120

Comparison with Experimental Data — Kaon Decays

- Good Agreement with KLOE
- Significant tensions with $K \to \mu \nu_{\mu} \gamma$ experiments
- Unable to find a set of phenomenological form factors to account for all the data.
- NA62 will soon have the most precise results for $K \to e \nu_e \gamma$ decay rates.
- Is it conceivable that we have LFU-violation here?

12

Comparing JPARC and KLOE's Results

• E36 Result was subsequently updated to $(1.98 \pm 0.11) \times 10^{-5}$ (as in the figure above).

(Units of 10^{-5})

S.Simula et al., PoS Lattice 2021 (2022) 631

J-PARC E36 Collaboration, A.Kobayashi et al., arXiv:2212.10702

Comparison with Experimental Data — Pion Decays

• It is also difficult to understand the PIBETA data in some kinematical regions.

 $\theta_{e\gamma} > 40^{\circ}$

- A: E_{γ} > 50 MeV and E_{e} > 50 MeV
- B: $E_{\gamma} > 50$ MeV and $E_{e} > 10$ MeV
- C: E_{γ} > 10 MeV and E_{e} > 50 MeV
- D: E_{γ} > 10 MeV and E_{e} > m_{e}

- In the paper discussed above, we have also computed the form factors for the D_s meson but only for $E_\gamma < 0.4$ GeV.
- In a subsequent paper we have computed them over the full kinematic range. R.Frezzotti, G.Gagliardi, V.Lubicz, G.Martinelli, F.Mazzetti, CTS, F.Sanfilippo, S.Simula, and N.Tantalo, arXiv:2306.05904

- The calculations were performed using four ETMC ensembles with $a \in [0.058, 0.09]$ fm, three of which have approximately physical pion masses and the coarsest has $m_\pi=174.5$ MeV .
	-
	- Sea Quarks Wilson Clover TM Fermions and maximal twist • Valence Quarks - Osterwalder-Seiler Fermions
	- Physical m_s and m_c .

D_s *Decays*

• For F_V we obtain stable results for C_V , and hence deduce the coupling using *gDs* **Dsγ* F_V we obtain stable results for C_V *S f D** *^S gD**

$$
(x_{\gamma}) = \frac{C_W}{\sqrt{R_W^2 + x_{\gamma}^2/4} \left(\sqrt{R_W^2 + x_{\gamma}^2/4} + x_{\gamma}/2 - 1\right)} + B_W
$$

where $W = A$, *V* and R_W , B_W and C_W are fit parameters.

• For single pole dominance $R_W = m_{\text{res}}/m_{D_s}$ and $B_W = 0$.

Davide Giusti's Talk D.Giusti et al., arXiv:2302.01298 16

$\mathbf{D}_s \to \ell \nu_\ell \gamma$ - Results for the Form Factors

• Our Results for the form factors are well represented by the following VMD-inspired ansatz:

 F_W

-
-

$$
C_V = -\frac{m_{D_S^*} f_{D_S^*} g_{D_S^* D_{S'}}}{2 m_{D_s}}
$$

and $f_{D_s^*} = 268.6(6.6)$ MeV.

ETM Collaboration , V.Lubicz et al., arXiv 1707.04529

- Appendix A for an explanation of why the errors grow at large x_{γ} .
- Discussion of method to reduce such errors studied in

$\textbf{Cancellation in } \mathbf{F_V} = \mathbf{F_V^{(c)}} + \mathbf{F_V^{(s)}}$

- There is a significant partial cancellation in F_V between the contributions from the emission of the photon from the strange and charm quarks. F_{V}
- This had been observed previously by the HPQCD collaboration in their computation of the $D_s^* \to D_s \gamma$ decay amplitude. HPQCD Collaboration, arXiv:1312.5264

• $g_{D_s^*D_{sY}}$ in GeV^{-1}

 $LCSR = B.$ Pullin and R. Zwicky, arXiv:2106.13617

$D_s \rightarrow \ell \nu_\ell \gamma$ – Conclusions

- We find $B(D_s \to e\nu_e \gamma) = 4.4(3) \times 10^{-6}$ for $E_\gamma > 10$ MeV in the rest frame of the D_s meson. This is consistent with the μ corresponding bound $B(D_s \to e\nu_e \gamma) < 1.3 \times 10^{-4}$ at 90% confidence level from BESIII (quoted in PDG).
- Even for photon energies as low as 10 MeV, we find that the Structure Dependent contribution dominates the branching fraction because of the strong helicity suppression of the point-like term by a factor of $(m_e/m_{D_s})^2$. • Such radiative decays therefore provide excellent test of the SM and Beyond.
- We use our results to test the validity and applicability of model dependent calculations.
	- LCSR calculations at NLO fail to reproduce our results for the form factors.
	- Pure VMD parametrisation does not always reproduce the momentum dependence of the form factors.
	- There are also quark model predictions for the branching ratio in the range $10^{-3} 10^{-5}$.
- B.Pullin and R.Zwicky, arXiv:2106.13617, J.Lyon and R.Zwicky, arXiv:1210.6546

$3.$ The $B_s \to \mu^+\mu^-\gamma$ Decay Rate at Large q^2

- I use this interesting FCNC process to illustrate the elements which we are able to compute and to highlight the important theoretical issues which we are still working to resolve.
	- Preview: We can compute the dominant contribution, but are working to solve the problems which will enable an improved precision.

R.Frezzotti, **G.Gagliardi,** V.Lubicz, G.Martinelli, CTS, F.Sanfilippo, S.Simula, N.Tantalo, arXiv:2402.03262

 $x_{\gamma} = \frac{1}{m}$, E_{γ} is the energy of the real photon in rest frame of the B_{s} meson. E_{γ} is the energy of the real photon in rest frame of the $B_{\rm s}$

$$
\frac{2}{B_s}(1 - x_\gamma), \qquad 0 \le x_\gamma \le 1 - \frac{4m_\mu^2}{m_{B_s}^2}
$$

• LHCb: $B(B_s \to \mu^+ \mu^- \gamma) |_{\sqrt{q^2} > 4.9 \text{ GeV}} < 2.0 \times 10^{-9}$, arXiv:2108.09283/4

From the May/June 2024 issue of the Cern Courier

LHCb targets rare radiative decay

Rare radiative b-hadron decays are powerful probes of the Standard Model (SM) sensitive to small deviations caused by potential new physics in virtual loops. One such process is the decay of $B_s^o \rightarrow \mu^+\mu^ \gamma$. The dimuon decay of the B^o meson is known to be extremely rare and has been measured with unprecedented precision by LHCb and CMS. While performing this measurement, LHCb also studied the $B_s^0 \rightarrow \mu^+\mu^-\gamma$ decay, partially reconstructed due to the missing photon, as a background component of the $B_s^o \rightarrow \mu^+\mu^$ process and set the first upper limit on its branching fraction to 2.0 × 10⁻⁹ at 95% CL (red arrow in figure 1). However, this search was limited to the high-dimuonmass region, whereas several theoretical extensions of the SM could manifest

Fig. 1. 95% confidence limits on differential branching fractions for $B_s^0 \rightarrow \mu^+\mu^-\gamma$ in intervals of dimuon mass squared (q²). The shaded boxes illustrate SM predictions for the process,

themselves in lower regions of the dimuon-mass spectrum. Reconstruct- $\frac{1}{9}$ ing the photon is therefore essential to explore the spectrum thoroughly and probe a wide range of physics scenarios.

The LHCb collaboration now reports the first search for the $B_s^0 \rightarrow \mu^+\mu^-\gamma$ decay with a reconstructed photon, exploring the full dimuon mass spectrum. Photon reconstruction poses additional experimental challenges, such as degrading the mass resolution of the B_s candidate and introducing additional background contributions. To cope with this ambitious search, machine-learning algorithms and new variables have been specifically designed with the aim of discriminating the signal among background processes with similar signatures. The analysis \triangleright

The Effective $\mathbf{b} \rightarrow \mathbf{s}$ Hamiltonian

$$
\mathcal{H}_{\text{eff}}^{b \to s} = 2\sqrt{2}G_F V_{tb} V_{ts}^* \left[\sum_{i=1,2} C_i O_i^c + \sum_{i=3}^6 C_i O_i + \frac{\alpha_{\text{em}}}{4\pi} \sum_{i=7}^{10} C_i O_i \right]
$$

$$
O_1^c = (\bar{s}_i \gamma^\mu P_L c_j) (\bar{c}_j \gamma_\mu P_L b_i) \qquad O_2^c = (\bar{s}_i
$$

*O*_{3−6} are QCD Penguins with small Wilson Coefficients

$$
O_7 = -\frac{m_b}{e} \left(\bar{s} \sigma^{\mu \nu} F_{\mu \nu} P_R b \right) \qquad O_8 = -\frac{g_s m_b}{4 \pi \alpha_{em}} \left(\bar{s} \sigma^{\mu \nu} G_{\mu \nu} P_R b \right)
$$

The amplitude is given by: $\mathscr{A} = \langle \gamma(k,\epsilon) \mu^+(p_1) \mu^-(p_2) \rangle - \mathscr{H}_{\text{eff}}^{b\rightarrow s} \vert B_s(p) \rangle_{\text{QCD+QED}}$ $=$ $-e$ *α*em 2*π* V_{tb} V_{ts}^* ϵ_{μ}^* l <u>9</u> ∑ *i*=1 $C_i H_i^{\mu\nu} L_{V\nu} + C_{10} (H_{10}^{\mu\nu} L_{A\nu} - i$ *f Bs* 2

 $\overline{s}\gamma^{\mu}P_{L}c)(\overline{c}\gamma_{\mu}P_{L}b)$

$$
O_9 = (\bar{s} \gamma^{\mu} P_L b) (\bar{\mu} \gamma_{\mu} \mu) \qquad O_{10} = (\bar{s} \gamma^{\mu} P_L b) (\bar{\mu} \gamma_{\mu} \gamma^5 \mu)
$$

 $L_A^{\mu\nu} p_\nu$ and *L* are hadronic and *L* are hadronic and leptonic tensors respectively *Hμν* and *L*

$$
\left(P_{L,R} = \frac{1}{2} \left(1 \mp \gamma^5\right)\right)
$$

 are the QED and *Fμν* and *Gμν* QCD Field Strength Tensors

$$
H_9^{\mu\nu}(p\ldotp k) = H_{10}^{\mu\nu}(p\ldotp k) = i \int d
$$

 $= -i(g)$

- These form factors can be computed from Euclidean correlation functions (at accessible values of m_h).
- We choose $\mathbf{p} = \mathbf{0}$ and $\mathbf{k} = (0,0,k_z)$ and use twisted boundary conditions for k_z .
- With such a choice of kinematics:

$$
g^{\mu\nu}(k \cdot q) - q^{\mu}k^{\nu}\frac{F_A(q^2)}{2m_{B_s}} + \epsilon^{\mu\nu\rho\sigma}k_{\rho}q_{\sigma}\frac{F_V(q^2)}{2m_{B_s}}
$$

$$
\frac{1}{2k_z} \left(H_V^{12}(p,k) - H_V^{21}(p,k) \right) \to F_V(x_\gamma) \text{ and } \frac{i}{2E_\gamma} \left(H_A^{11}(p,k) + H_A^{22}(p,k) \right) \to F_A
$$

Contribution from "Semileptonic" Operators - F_V **and** F_A

 $d^4y\langle 0|T[\bar{s}\gamma^\nu P_L b(0) J_{\text{em}}^\mu(y)]|\bar{B}_s(p)\rangle$

• In a similar way the following contributions can be computed:

- Here, for now, we are isolating the contribution in which it is the virtual photon which is emitted from O_7 .
-

$$
-q^{\mu}k^{\nu}\frac{m_bF_{TA}(q^2)}{q^2} + \epsilon^{\mu\nu\rho\sigma}k_{\rho}q_{\sigma}\frac{m_bF_{TV}(q^2)}{q^2}
$$

We write the function
$$
\frac{1}{2k_z} \left(H_{TV}^{12}(p,k) - H_{TV}^{21}(p,k) \right) \to F_{TV}(x_\gamma)
$$
 and $\frac{-i}{2E_\gamma} \left(H_A^{11}(p,k) + H_A^{22}(p,k) \right) \to F_{TA}(x_\gamma)$.

• There is also the useful kinematical constraint that $F_{TV}(1) = F_{TA}(1)$.

The form factors F_{TV} **and** F_{TA}

23

Numerical Results for $\mathbf{F_V}$, $\mathbf{F_A}$, $\mathbf{F_{TV}}$, $\mathbf{F_{TA}}$

- These four form-factors can be computed using "standard" methods at the available heavy quark masses.
- We use gauge field configurations generated by the European Twisted Mass Collaboration (ETMC), with the Iwasaki gluon action and $N_{\!f}$ $= 2 + 1 + 1$ flavours of Wilson-Clover light quarks at maximal twist (four ensembles with 0.057 fm $\lt a \lt 0.091$ fm).
- We perform the calculations at 5 values of the heavy quark mass corresponding to

$$
\frac{m_h}{m_c} = 1, 1
$$

and at 4 values of $x_{\gamma} = 0.1, 0.2, 0.3, 0.4$.

- m_c is determined from $m_{\eta_c} = 2.984(4) \text{ GeV}.$ $= 2.984(4)$ GeV
- Much effort is then devoted to the $m_h \to m_h$ and $a \to 0$ limit, guided by the heavy-quark scaling laws and models for possible resonant contributions. $m_h \to m_b$ and $a \to 0$

= 1, 1.5, 2, 2.5 and 3 ,

Continuum Extrapolation

- The continuum extrapolation is performed separately at each value of m_{H_s} and x_{γ} .
- The illustration plots are for $x_{\gamma} = 0.4$.

Extrapolation of the results to $m_{B_s} = 5$ **. 367 GeV**

-
- In the heavy-quark and large E_{γ} limits, scaling laws were derived up to $O(1/m_{H_s}, 1/E_{\gamma})$:

M.Beneke and J.Rohrwild, arXiv:1110.3228; M. Beneke, C. Bobeth and Y.-M. Wang, arXiv:2008.12494

• However, useful though these scaling laws are, they apply at large E_γ (as well as large m_h), are there are significant corrections at our lightest values of m_h and smaller values of E_γ . We therefore us an ansatz which includes the

$$
\frac{F_{V/A}}{f_{H_s}} = \frac{|q_s|}{x_{\gamma}} \left(\frac{R(E_{\gamma}, \mu)}{\lambda_B(\mu)} + \xi(x_{\gamma}, m_{H_s}) \pm \frac{1}{m_{H_s}x_{\gamma}} \pm \frac{|q_b|}{|q_s|} \frac{1}{m_h} \right) \; ; \; \; \frac{F_{TVITA}}{f_{H_s}} = \frac{|q_s|}{x_{\gamma}} \left(\frac{R_T(E_{\gamma}, \mu)}{\lambda_B(\mu)} + \xi(x_{\gamma}, m_{H_s}) \pm \frac{1 - x_{\gamma}}{m_{H_s}x_{\gamma}} + \frac{|q_b|}{|q_s|} \frac{1}{m_{H_s}} \right)
$$

- $R(E_\gamma, \mu)$, $R_T(E_\gamma, \mu)$ are radiative correction factors $= 1 + O(\alpha_s)$; λ_B is the first inverse moment of the B_s -meson LCDA, $\xi(x_\gamma, m_{H_s})$ are power corrections.
- Photon emission from the *b*-quark suppressed relative to the emission from the *s*-quark.
- Tensor form-factors are presented in the $\overline{\text{MS}}$ scheme at $\mu = 5$ GeV.
- above scaling laws at large E_{γ} as well as VDM behaviour.

• Having performed the continuum extrapolation, we need to extrapolate the results to the physical value of m_{B_s} .

Extrapolation of the results to $m_{B_s} = 5$ **. 367 GeV**

 $x_{\gamma} = 0.1$ *x* $x_{\gamma} = 0.2$ *x* $x_{\gamma} = 0.3$ *x* $x_{\gamma} = 0.4$ *x*

Comparison with Previous Determinations of the Form Factors

- Ref.[3] = T.Janowski, B.Pullin and R.Zwicky, arXiv:2106.13616, LCSR
- Ref.[4]= A.Kozachuk, D.Melikhov and N.Nikitin, arXiv:1712.07926, relativistic dispersion relations
- Ref.[5]= D.Guadagnoli, C.Normand, S.Simula and L.Vittorio, arXiv:2303.02174, VMD+quark model+lattice at charm

• In general our results for the form factors differ significantly from earlier estimates.

28

Other Contributions - \bar{F}_T

$$
H_{\overline{T}}^{\mu\nu}(p,k) = i \int d^4 y \ e^{i(p-k)\cdot y} \langle 0 | T \big[J_{\overline{T}}^{\nu}(0) J_{\text{em}}^{\mu}(y) \big] | \overline{B}_s(0) \rangle \equiv -\ e^{\mu\nu\rho\sigma} k_{\rho} p_{\sigma} \frac{\overline{F}_T}{m_{b_s}} \text{ where}
$$

$$
J_{\overline{T}}^{\nu} = -i Z_T(\mu) \ \overline{s} \sigma^{\nu\rho} b \frac{k^{\rho}}{m_{B_s}}.
$$

- The difficulty arises from the first diagram above when $t_y > 0$.
- In that case we potentially have a hadronic intermediate state (e.g. an ss ¹ atate) with smaller mass than $(p - k)^2$, leading to an imaginary part and problems with the continuation to Euclidean space.

$$
\sqrt{m_V^2 + E_\gamma^2} + E_\gamma < m_{B_s} \Rightarrow x_\gamma < 1 - \frac{m_V^2}{m_{B_s}^2} \simeq 1 - \frac{4m_K^2}{m_{B_s}^2} \simeq 0.96 \, .
$$

• For $t > 0$ define $C_s(t, \mathbf{k}) = \langle 0 | J_{em,s}^{\mu}(t, -\mathbf{k}) J_{\bar{T}}^{\nu}(0) | B_s(\mathbf{0}) \rangle = \int dt' \delta(t'-t) C_s(t', -\mathbf{k})$

• Large amount of effort is being devoted to developing techniques based on the spectral density representation,

> M.Hansen, A.Lupo and N.Tantalo, arXiv:1903.06476 R.Frezzotti et al., arXiv:2306.07228

$$
=\int_{-\infty}^{\infty} dt' \int_{-\infty}^{\infty} \frac{dE'}{2\pi} e^{iE'(t'-t)} C_s(t', -\mathbf{k}) = \int_{-\infty}^{\infty} \frac{dE'}{2\pi} e^{-iE't} \int dt'
$$

• In Euclidean space $C_s(t, \mathbf{k}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ∞ *E** *dE*′ 2*π* $e^{-E't} \rho_s^{\mu\nu}(E')$, **k**) . 30

$\mathbf{F}_{\mathbf{T}}$ (cont.)

$$
\begin{aligned} \n\text{(b)} \quad &= \int_{-\infty}^{\infty} dt' \, \delta(t'-t) \, C_s(t', -\mathbf{k}) \\ \n\text{(c)} \quad &= d^4 x' \, e^{ik' \cdot x'} \langle 0 \, | \, J_{\text{em},s}^{\mu}(x') \, J_{\bar{T}}^{\nu}(0) \, | \, B(\mathbf{0}) \rangle \n\end{aligned}
$$
\n
$$
\text{(k'} = (E', -\mathbf{k}))
$$

$$
= \int_{-\infty}^{\infty} \frac{dE'}{2\pi} e^{-iE't} \int d^4x' \langle 0 | J_{\text{em},s}^{\mu}(0) e^{-i(\hat{P}-k')\cdot x'} J_{\bar{T}} T^{\nu}(0) | B(\mathbf{0}) \rangle = \int_{-\infty}^{\infty} \frac{dE'}{2\pi} e^{-iE't} \langle 0 | J_{\text{em},s}^{\mu}(0) (2\pi)^4 \delta(\hat{P}-k') J_{\bar{T}}^{\nu}(0) | B(\mathbf{0}) \rangle
$$

$$
\equiv \int_{-\infty}^{\infty} \frac{dE'}{2\pi} e^{-iE't} \rho_{s}^{\mu\nu}(E', \mathbf{k})
$$

≡ ∫

−∞ 2*π*

31

$$
(t, \mathbf{k}) = \langle 0 | J_{\text{em},s}^{\mu}(t, -\mathbf{k}) J_{T}^{\nu}(0) | B_{s}(0) \rangle = \int_{E^{*}}^{\infty} \frac{dE'}{2\pi} e^{-iE't} \rho_{s}^{\mu\nu}(E)
$$

$$
C_s(t, \mathbf{k}) = \int_{E^*}^{\infty} \frac{dE'}{2\pi} e^{-E't} \rho_s^{\mu\nu}(E', k) .
$$

$$
\frac{\partial}{\partial E'} \frac{\partial E'}{\partial E'} = \frac{\rho_s^{\mu\nu}(E', \mathbf{k})}{(m_B - \omega) - i\epsilon}.
$$
 (0 = |**k**|)

 $\epsilon \rightarrow 0$

- $\text{For } t > 0 \text{ define } C_s(t)$
- **In Euclidean space**
- For the amplitude we require $H_{\bar{T}}^{\mu\nu}(m_B, \mathbf{k}) = i \int dt \; e^{i(m_B - \omega)t} C_s^{\mu\nu}(t, \mathbf{k}) = \lim_{\Delta t \to 0} \left[\frac{\omega L}{2} \frac{\rho_s(\mathbf{k})}{\sqrt{2\pi}} \frac{\rho_s(\mathbf{k})}{\sqrt{2\pi}} \right].$ \bar{T}_s $(m_B, \mathbf{k}) = i$ ∫ ∞ 0 dt $e^{i(m_B - \omega)t} C_s^{\mu\nu}(t, \mathbf{k}) = \lim_{\epsilon \to 0}$ $\lim_{\epsilon \to 0}$ ∫ ∞ *E**
- The question is how (best) to extract the information about the spectral density, $\rho_s^{\mu\nu}(E,k)$, contained in the Euclidean correlation function in order to determine the amplitude (both the real and imaginary parts).
- We use the HLT method, in which computations are performed at several values of ϵ , and the kernel is approximated by a series of exponentials in time. 1 $E' - (m_B - \omega) - i\epsilon$ 1 $E'-E-i\epsilon$ ≃
- Finally $H_{\overline{T}_s}^{\mu\nu}(m_B, \mathbf{k}) = \lim_{\epsilon \to 0} \int_{F^*} \frac{dE}{2\pi} \frac{P_s(\mathbf{E}, \mathbf{h})}{E' (m_B \omega) i\epsilon} = \lim_{\epsilon \to 0} \sum g_n(m_B \omega, \epsilon) C_s(an, \mathbf{k})$ $(m_B, \mathbf{k}) = \lim_{\epsilon \to 0}$ $\lim_{\epsilon \to 0}$ ∞ *E** *dE*′ 2*π* $\rho_{_S}^{\mu\nu}(E',\mathbf{k})$ $E' - (m_B - \omega) - i\epsilon$

$\mathbf{F}_{\mathbf{T}}$ (cont.)

n=1

 n_{\max} ∑ *n*=1 $g_n(E, \epsilon) e^{-anE'}$ where the g_n are complex coefficients. $=$ \lim n_{\max} ∑ $g_n(m_B - \omega, \epsilon) C_s(an, \mathbf{k})$

- correlation functions $C_s(an, \mathbf{k})$.
- gauge-field ensembles ($a = 0.0796(1)$ fm and $0.0569(1)$ fm).

 \bar{P}_I only gives a very small contribution to the rate and is therefore not needed with great precision. ii) The spectral density method is computationally expensive.

- An extrapolation in ϵ is required, as well as those in a and m_h .
- Resulting error is $O(100\%)$ but $\bar{F}_T \ll F_{TV}, F_{TA}$. No clear x_γ dependence is observed in our data and we quote:

$\mathbf{F}_{\mathbf{T}}$ (cont.)

• Determining the g_n requires a balance between the systematic error due to the approximation of $1/(E'-E-i\epsilon)$ by a finite number of exponentials (in which the coefficients are large with alternating signs) and the statistical errors in the g_n requires a balance between the systematic error due to the approximation of $1/(E'-E-i\epsilon)$

• We have computed \bar{F}_T at all four values of x_γ , at three of the five values of m_h ($m_h/m_c = 1, 1.5, 2.5$) and on two of the

 $\text{Re } \bar{F}_T^s(x_\gamma) = -0.019(19) \text{ and } \text{Im } \bar{F}_T^s(x_\gamma) = 0.018(18).$

\bar{F}_T^s -Illustrative Plots

33

Other Contributions - Charming Penguins

- Of the contributions we have not computed directly, the most significant one at large q^2 is expected to be that from the operators $O_{1,2}^c$ (charming penguins) and we are working on developing methods to overcome this. There are a number of new theoretical issues to be understood. 1,2
- In the meantime we follow previous ideas and estimate the contribution based on VMD inserting all $c\bar{c}$ resonances from the J/Ψ to the Ψ(4660). It can be viewed as a shift in $C_9 \to C_9^{\text{eff}}(q^2) = C_9 + \Delta C_9(q^2)$:

$$
\Delta C_9(q^2) = -\frac{9\pi}{\alpha_{\rm em}^2} \left(C_1 + \frac{C_2}{3} \right) \sum_V |k_V| e^{i\delta_V} \frac{m_V \Gamma_V B(V \to \mu^+ \mu^-)}{q^2 - m_V^2 + i m_V \Gamma_V}
$$

to vary over $(0,2\pi)$ and $|k_V|$ to vary in the range 1.75 ± 0.75 .

• k_V and δ_V parametrise the deviation from the factorisation approximation (in which $\delta_V = k_V - 1 = 0$). We allow k_V and δ_V parametrise the deviation from the factorisation approximation (in which $\delta_V=k_V-1=0$). We allow δ_V

.

34

Branching Fractions

- Structure Dependent *(SD)* contribution dominated by F_V .
- The error from the charming penguins increases with x_{γ} (at $x_{\gamma} = 0.4$ it is about 30 %).
- Our Result $\mathcal{B}_{SD}(0.166) = 6.9(9) \times 10^{-11}$; LHCb $\mathcal{B}_{SD}(0.166) < 2 \times 10^{-9}$.

35

Comparisons

- Ref.[3] = T.Janowski, B.Pullin and R.Zwicky, arXiv:2106.13616, LCSR
- Ref.[4]= A.Kozachuk, D.Melikhov and N.Nikitin, arXiv:1712.07926, relativistic dispersion relations
- Ref.[5]= D.Guadagnoli, C.Normand, S.Simula and L.Vittorio, arXiv:2303.02174, VMD+quark model+lattice at charm
- Discrepancy persists since rate dominated by F_V

36

- New LHCb update with direct detection of final state photon. I.Bachiller, La Thuile 2024 LHCb, 2404.07648
- For $q^2 > 15$ GeV² the bound is about an order of magnitude higher than before.

$\mathbf{B}_{s} \rightarrow \mu^{+}\mu^{-}\gamma$ – Conclusions

- We have computed the form factors F_V , F_A , F_{TV} and F_{TA} which contribute to the amplitude. The amplitude is dominated by F_V . *There are significant discrepancies with earlier estimates of the form factors obtained using other methods.* $F_V, \, F_A, \, F_{TV}$ and F_{TA}
- As q^2 is decreased towards the region of charmonium resonances, the uncertainties grow, from 15 % with $q_{\text{cut}}^2 = 4.9$ GeV to about 30 % for $\sqrt{q_{\text{cut}}^2} = 4.2$ GeV , largely due to the charming penguins for which we have included a phenomenological parametrisation.

- Develop methods which would allow the evaluation of the charming penguin contributions, also for *<i>This is one of our top priorities!* $B \to K^{(*)} \mu^+ \mu^-$ decays etc..
- Continue developing methods to evaluate the disconnected diagrams.
- Continue performing simulations on finer lattices so that the uncertainties due to the $m_h \to m_b$ extrapolation are reduced. $m_h \rightarrow m_b$

Outlook

$$
= \epsilon_{\mu}^{r}(k) \left\{ \frac{H_{1}}{m_{K}} \left[k^{2}g^{\mu\alpha} - k^{\mu}k^{\alpha} \right] + \frac{H_{2}}{m_{K}} \frac{\left[(p \cdot k - k^{2})k^{\mu} - k^{2}(p - k)^{\mu} \right] (p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right. \\ \left. - i \frac{F_{V}}{m_{K}} \epsilon^{\mu\alpha\gamma\beta} k_{\gamma} p_{\beta} + \frac{F_{A}}{m_{K}} \left[(p \cdot k - k^{2})g^{\mu\alpha} - (p - k)^{\mu}k^{\alpha} \right] + f_{P} \left[g^{\mu\alpha} - \frac{(2p - k)^{\mu}(p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right] \right\}
$$

$$
= \epsilon_{\mu}^{r}(k) \left\{ \frac{H_{1}}{m_{K}} \left[k^{2}g^{\mu\alpha} - k^{\mu}k^{\alpha} \right] + \frac{H_{2}}{m_{K}} \frac{\left[(p \cdot k - k^{2})k^{\mu} - k^{2}(p - k)^{\mu} \right] (p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}}
$$

$$
-i \frac{F_{V}}{m_{K}} \epsilon^{\mu\alpha\gamma\beta} k_{\gamma} p_{\beta} + \frac{F_{A}}{m_{K}} \left[(p \cdot k - k^{2})g^{\mu\alpha} - (p - k)^{\mu}k^{\alpha} \right] + f_{P} \left[g^{\mu\alpha} - \frac{(2p - k)^{\mu}(p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right] \right\}
$$

• Now all four Structure-Dependent form factors have to be determined.

38

• Non-perturbative contribution to $P \to \ell \bar{\nu}_\ell \gamma$ is encoded in:

 $H_W^{\alpha r}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) H_W^{\alpha \mu}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \int d^4y e^{ik \cdot y} T \langle 0 | j_W^{\alpha}(0) j_{em}^{\mu}(y) | P(\mathbf{p}) \rangle$

G.Gagliardi et al., arXiv:2202.03833

• The computations were performed on a single ETMC ensemble, with $N_f = 2 + 1 + 1$ dynamical quark flavours, a spacetime volume 32³ \times 64, a = 0.0885(36) fm and with quark masses such that m_π \simeq 320 MeV and m_K \simeq 530 MeV.

• With $m_K < 2m_\pi$ we have the unphysical simplification that there is no difficulty in the

• There had also been a similar exploratory computation of these decays (calculating the rates without determining the form factors) on a 24³ \times 48 lattice, $a\simeq 0.093$ fm, and with quark masses corresponding to $m_\pi \simeq 352$ MeV and $m_K \simeq 506 \,\text{MeV}$. $\qquad \qquad$ X.-Y.Tuo, X.Feng, L.-C.Jin and T.Wang, arXiv:2103.11331

$$
P \to \ell \bar{\nu}_{\ell} \ell^{\prime +} \bar{\ell}
$$

- extract the four form factors and to check whether they can be determined with good precision.
- - $Minkowski \rightarrow Euclidean$ continuation. *mK* < 2*m^π*
-

l^2 *[−] Decays (Cont,)*

• We have performed an exploratory calculation with $P = K$ at unphysical quark masses in order to develop a strategy to

Results from the Exploratory Computations

•
$$
x_k = \sqrt{k^2/m_K^2}
$$
 where $k^2 = (p_{e^{i_+}} + p_{e^{i_-}})^2$.

• At NLO ChPT,
$$
F_V = \frac{m_K}{4\sqrt{2\pi^2 F}}
$$
, $F_A = \frac{4\sqrt{2m_K}}{F}(L_9^r + L_{10}^r)$, $H_1(k^2) = 2f_K m_K \frac{F_V(k^2) - 1}{k^2} = H_2(k^2)$.

• Since the lattice results presented above are at unphysical quark masses, the comparison with the experimental results

• Experiment = E865 at BNL, HMa et al., hep-ex/0505011 and R.Aaij et al., arXiv:1812.06004

- should not be taken very seriously, nevertheless they are encouraging.
	-

• At physical quark masses, the issue of the Minkowski \rightarrow Euclidean continuation arises for sufficiently large photon virtualities.

• Frezzotti et al. have performed an exploratory and instructive study of the corresponding D_s decay using the spectral density method and HLT. R.Frezzotti et al., arXiv:2306.07228

- the amplitude varies significantly.
- Results below the threshold agree with the standard method.
- Difficulty arises around the sharp ϕ resonance where the $\epsilon \to 0$ limit cannot be taken ($\Gamma(\phi) \simeq 4.2 \text{ MeV}$, $\epsilon \gtrsim 100 \text{ MeV}$).
- Above the resonance there appears to be a mild dependence on ϵ .
- The ρ -resonance is broader, making this a good channel to study (and compare with experimental results.

• Computation was performed on a single ETMC ensemble, $V = 64^3 \times 128$, $a = 0.07957(13)$ fm, $m_{\pi} = 140.2(2)$ MeV, $m_{D_s} = 1.990(3)$ GeV.

$\mathbf{K} \to \ell \bar{\nu}_{\ell} \ell^{'+} \ell^{-}$ Decays – Status and Prospects

• Necessary condition for a controlled $\epsilon \to 0$ extrapolation: $\frac{1}{I} \ll \epsilon \ll \Delta(E)$, where $\Delta(E)$ is an energy scale over which 1 *L* $\ll \epsilon \ll \Delta(E)$, where $\Delta(E)$

• R. Di Palma will present first results for $K \to \ell \bar{\nu}_e e^{\ell +} e^{\ell}$ decays using the spectral density method + HLT at Latt2024.

