Electromagnetic finite-size effects in the hadronic vacuum polarisation

Nils Hermansson-Truedsson

Higgs Centre for Theoretical Physics, University of Edinburgh

July 23, 2024

Mainz

- Hadronic vacuum polarisation (HVP) in lattice QCD+QED
- Finite-volume effects (FVEs)
- QED long-range force: FVEs potentially much larger than QCD
- Analytically in [Bijnens, Harrision, Hermansson-Truedsson, Janowski, Jüttner, Portelli 19]
- Today: Review what is known and extensions

I. Some preliminaries about FVEs

QED in a finite volume

- What is difficult about QED?
- Gauss' law: Difficult to define charged states in finite volume with periodic boundary conditions

$$Q = \int_V d^3 \mathbf{x} \,
abla \cdot \mathbf{E}(t, \mathbf{x}) = \int_{\partial V} d\mathbf{S} \, \cdot \mathbf{E} = 0$$

• Related to the photon propagator:

$$D_{\mu
u}(k) = rac{\delta_{\mu
u}}{k^2}$$

• Problem: Photon zero-momentum modes and absence of mass gap

Need to define QED in a finite volume

QED in a finite volume

Several prescriptions

1 QED_M: Photon mass m_{γ}

[Endres, Shindler, Tiburzi, Walker-Loud 2016; Bussone, Della Morte, Janowski 2018]

2 QED_{∞} : Do the QED part in infinite volume

[Feng, Jin 2018; Christ, Feng, Jin, Sachrajda, Wang 2023]

- QED_C: Charge-conjugated boundary conditions [Kronfeld, Wiese 1991–1993; RC* 2019]
- QED^{IR}_L: Exclude/redistribute photon zero-mode [Davoudi, Harrison, Jüttner, Portelli, Savage 2019]
 - QED_L: Exclude photon zero-mode [Hayakawa, Uno 2008]
 - $\bullet \ \ QED_r: \ \ Redistribute \ photon \ \ zero-mode \ \ [Di \ Carlo, \ Hansen, \ NHT, \ Portelli \ in \ prep.]$
- Each has advantages/challenges

Finite-size effects

- Massless photon + no zero-mode (QED_L , QED_r , QED_C)
- $V = \mathbb{R} \times L^3$: \implies Finite-size effects in observable $\mathcal{O}(L)$:

$$\Delta \mathcal{O}(L) = \mathcal{O}(L) - \mathcal{O}(\infty) = \kappa_0 + \kappa_{\log} \log m_P L + \kappa_1 \frac{1}{m_P L} + \kappa_2 \frac{1}{(m_P L)^2} + \dots$$

- QCD only: $e^{-m_P L}$ [Lüscher 86] \implies QED potentially bigger FVEs
- Derive using EFT methods
- Scaling in L is observable-dependent: e.g. HVP $\kappa_0 = \kappa_{\log} = 0$
- Coefficients depend on: masses, charges, structure
- NB: Coefficients are prescription dependent!

[Davoudi, Savage 14; BMW 15; RM-123/Soton 17; Davoudi, Harrison, Jüttner, Portelli, Savage 19; Bijnens, Harrison, NHT, Janowski, Jüttner, Portelli 19; Di Carlo, Hansen, NHT, Portelli 22]

QED prescriptions

- Photon momentum $k = (k_0, \mathbf{k})$
- 3-momentum discretised by finite volume extent $\mathbf{k} = \frac{2\pi \mathbf{n}}{L} \neq \mathbf{0}$
- QED_L : Propagator (Feynman gauge)

$$D_{\mu
u}(k) = \delta_{\mu
u} \, rac{1}{k^2} \left(1 - \delta_{\mathbf{k},\mathbf{0}}
ight)$$

• QED_L^{IR} : Weights $w_{|\mathbf{n}|^2}$ to tame FVEs [Davoudi, Harrison, Jüttner, Portelli, Savage 19]

$$D_{\mu\nu}(\mathbf{k}) = \delta_{\mu\nu} \frac{1 + w_{|\mathbf{n}|^2}}{k^2} \left(1 - \delta_{\mathbf{k},\mathbf{0}}\right)$$

- ${
 m QED}_{
 m r}~w_{|{f n}|^2}=\delta_{|{f n}|,1}/6$ [Di Carlo, Hansen, NHT, Portelli In prep.]
- QED_L $w_{|\mathbf{n}|^2} = 0$

 $\bullet~\ensuremath{\mathsf{We}}$ focus on $\ensuremath{\mathrm{QED}}_L$ and make comments about other formulations

Determining the volume effects

- Once a QED prescription is fixed, we look at the correlation function
- Example: Pion self-energy

• Cottingham formula: Related to Compton tensor $C_{\mu
u}(p,k,q)$

$$-\underbrace{C}_{\mu\nu}(\boldsymbol{p},\boldsymbol{k},\boldsymbol{q}) = e^2 \int \mathrm{d}^4 x \, e^{-i\boldsymbol{k}\cdot\boldsymbol{x}} \, \langle \boldsymbol{\pi}, \mathbf{p} | \, \mathcal{T} \left\{ J_{\mu}(\boldsymbol{x}) J_{\nu}(0) \right\} | \boldsymbol{\pi}, \mathbf{p} \rangle$$

This is the object that has to be understood (also for HVP)

Skeleton expansion

• Can insert complete set of states and decompose

- Irreducible vertex functions $\Gamma_1 = \Gamma_\mu(p,k)$ and $\Gamma_2 = \Gamma_{\mu\nu}(p,k,q)$
- Contain structure dependence through form factors, e.g. [Fearing, Scherer 94]

$$\begin{split} &\Gamma_{\mu}(p,k) = (2p+k)_{\mu} \, F(k^2) + k_{\mu} \, G(k^2,(p+k)^2,p^2) \\ &F'(0) = \frac{\langle r_{\pi}^2 \rangle}{6} \end{split}$$

- Vertex form governed by Ward identities
- FVEs: Structure for mass and leptonic decays [Di Carlo, Hansen, NHT, Portelli 22]

Feynman diagrams

- Consider observable \mathcal{O} at order α , with photon momentum $k = (k_0, \mathbf{k})$
- Example diagrams

• Finite-size effects in $\mathcal{O}(L)$ given by:

$$\Delta \mathcal{O}(L) = \left(\frac{1}{L^3} \sum_{\mathbf{k} \neq \mathbf{0}} - \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3}\right) \int \frac{dk_0}{2\pi} \frac{f_{\mathcal{O}}\left(k_0, |\mathbf{k}|, \mathbf{p} \cdot \mathbf{k}\right)}{\left[(p-k)^2 + m^2\right]} \frac{1}{k^2}$$

• Do k_0 integral + expand in L ($\mathbf{k} = 2\pi \mathbf{n}/L$)

$$\Delta \mathcal{O}(L) = \left(\frac{1}{L^3} \sum_{\mathbf{k} \neq \mathbf{0}} - \int \frac{\mathrm{d}^3 \mathbf{k}}{(2\pi)^3}\right) g_{\mathcal{O}}(|\mathbf{k}|, \mathbf{p} \cdot \mathbf{k})$$

• Example: moving frame mass [Di Carlo, Hansen, NHT, Portelli In prep.]

$$\begin{split} \Delta m_P^2(L) &= e^2 m_P^2 \Biggl\{ \frac{1}{\gamma(|\mathbf{v}|)} \, \frac{c_2(\mathbf{v})}{4\pi^2 \, m_P L} + \frac{c_1}{2\pi (m_P L)^2} \\ &+ \frac{c_0}{(m_P L)^3} \Biggl[\frac{(\gamma(|\mathbf{v}|)^2 - 1) \, \left(1 - \frac{2 \, \langle r_P^2 \rangle m_P^2 \, \gamma(|\mathbf{v}|)^2}{3}\right)^2}{2\gamma(|\mathbf{v}|)^3} - \frac{2 \, \langle r_P^2 \rangle m_P^2}{3} \, \gamma(|\mathbf{v}|) + \mathcal{C} \Biggr] \Biggr\} \end{split}$$

- Structure dependence: $\langle r_P^2 \rangle$ known, C unknown (cut)
- Finite-volume coefficients: Prescription dependent

$$c_{j}(\mathbf{v}) = \left(\sum_{\mathbf{n}\neq\mathbf{0}} - \int d^{3}\mathbf{n}\right) \frac{1}{|\mathbf{n}|^{j} (1 - \mathbf{v} \cdot \hat{\mathbf{n}})}$$

II. Hadronic vacuum polarisation

Hadronic vacuum polarisation

• Recall central object is vector 2-point function

$$egin{aligned} \Pi_{\mu
u}(q) &= \int d^4x \, e^{iq\cdot x} \langle 0 | \ \mathcal{T}ig[J_\mu(x) J_
u^\dagger(0) ig] \, | 0
angle \end{aligned}$$

• Virtuality:
$$q^2 > 0$$
: $q = (q_0, \mathbf{0})$

• Ward identity
$$q_{\mu}\Pi_{\mu
u}=0$$

$$\Pi_{\mu
u}(q^2) = \left(q_\mu q_
u - q^2 \delta_{\mu
u}
ight) \Pi(q^2)$$

• We want the subtracted quantity

$$\hat{\Pi}(q^2) = \Pi(q^2) - \Pi(0) = \frac{1}{3q_0^2} \sum_{j=1}^3 \left(\Pi_{jj}(q^2) - \Pi_{jj}(0) \right)$$

• Finite-volume effects:

$$\Delta\hat{\Pi}(q^2,L) = \hat{\Pi}(q^2,L) - \hat{\Pi}(q^2,\infty)$$

• In QCD only:

- FVEs studied by [Aubin et al. 16/20; Bijnens, Relefors 17; Hansen, Patella 20]
- Exponentially suppressed $e^{-m_{\pi}L}$
- Related to Compton amplitude

HVP including QED

• This is now our object, related to HLbL tensor

$$\Pi^{\mu_1\mu_2\mu_3\mu_4}(q_1,q_2,q_3,q_4)\longrightarrow \frac{\Pi^{\mu\mu\nu\nu}(q,q,k,-k)}{k^2}$$

- Can calculate QED corrections to HVP this way [Biloshytskyi et al. 23] \rightarrow Can avoid powerlike FVEs
- $\bullet~\mbox{In QED}_L$ and $\rm QED_C$ there will be powerlike FVEs
- \bullet We are interested in $QED_L :$ Saturate bubble with $\pi^\pm \text{, } \gamma$

Diagrams including QED

• 7 independent diagrams: A, B, E, C, T, S, X

• 2-loop diagrams: 2 momenta in finite volume

Pointlike scalar QED

• Same 2 vertices appearing from before:

$$-\overbrace{\Gamma_1}^{\varsigma} - = \Gamma_{\mu}(p,k), \qquad -\overbrace{\Gamma_2}^{\varsigma} - = \Gamma_{\mu\nu}(p,k,q)$$

• Pointlike scalar QED: $\Gamma_{\mu}(p,k) = (2p+k)_{\mu}$, $\Gamma_{\mu\nu}(p,k,q) = -2\delta_{\mu\nu}$

• A and B independent of q: $\hat{\Pi}_{A,B}(q^2) = \Pi_{A,B}(q^2) - \Pi_{A,B}(0) = 0$

Diagrams

• 2-loop sum-integral differences for each diagram

$$\hat{\Pi} = 2 \hat{\Pi}_{E} + 2 \hat{\Pi}_{T} + \hat{\Pi}_{S} + \hat{\Pi}_{X} + 4 \hat{\Pi}_{C}$$

$$\Delta \hat{\Pi}_{U} = \left(\frac{1}{L^{3}} \sum_{\mathbf{k} \neq \mathbf{0}} \frac{1}{L^{3}} \sum_{\ell} -\int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}} \frac{d^{3}\ell}{(2\pi)^{3}}\right) \int \frac{dk_{0}}{2\pi} \frac{d\ell_{0}}{2\pi} \hat{\pi}_{U} \left(q_{0}^{2}, k, \ell\right)$$

- Integrand $\hat{\pi}_U\left(q_0^2,k,\ell
 ight)$ contains propagator poles
- We let pions be in IV

Poisson:
$$\sum_{\ell} = \int \frac{d^3\ell}{(2\pi)^3} + \mathcal{O}\left(e^{-m_{\pi}L}\right)$$

$$\Delta \hat{\Pi}_{U} = \left(\frac{1}{L^{3}} \sum_{\mathbf{k} \neq \mathbf{0}} - \int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}}\right) \int \frac{d^{3}\ell}{(2\pi)^{3}} \int \frac{dk_{0}}{2\pi} \frac{d\ell_{0}}{2\pi} \hat{\pi}_{U} \left(q_{0}^{2}, k, \ell\right)$$

• Do energy integrals analytically

$$\hat{\rho}_U(\mathbf{k}, \boldsymbol{\ell}, \boldsymbol{q}_0) = \int \frac{dk_0}{2\pi} \frac{d\ell_0}{2\pi} \,\hat{\pi}_U\left(\boldsymbol{q}_0^2, \boldsymbol{k}, \boldsymbol{\ell}\right)$$

• Finally gives

$$\Delta \hat{\Pi}_{U} = \left(\frac{1}{L^{3}}\sum_{\mathbf{k}\neq\mathbf{0}} -\int \frac{d^{3}\mathbf{k}}{(2\pi)^{3}}\right) \int \frac{d^{3}\boldsymbol{\ell}}{(2\pi)^{3}} \hat{\rho}_{U}(\mathbf{k},\boldsymbol{\ell},q_{0})$$

- Photon FVEs give rise to coefficients c_j as before
- Pion integrals:

$$\Omega_{i,j}(z=q_0^2/m^2) = \int dx \, x^2 \frac{1}{(1+x^2)^{i/2}[z+4(x^2+1)]^j}$$

Finite volume corrections

• Diagram by diagram:

$$\begin{split} \Delta \hat{\Pi}_{E}(z) &= \frac{c_{1}}{\pi (mL)^{2}} \left(-\frac{4}{3} \Omega_{-1,3} + \frac{1}{2} \Omega_{1,2} + \frac{4}{3} \Omega_{1,3} - \frac{1}{4} \Omega_{3,1} \right) \\ &- \frac{c_{0}}{(mL)^{3}} \left(-\frac{8}{3} \Omega_{0,3} + \frac{32}{3} \Omega_{0,4} + \frac{1}{16} \Omega_{2,2} + \frac{10}{3} \Omega_{2,3} \right) \\ &- \frac{32}{3} \Omega_{2,4} - \frac{23}{128} \Omega_{4,1} + \frac{5}{16} \Omega_{4,2} - \frac{2}{3} \Omega_{4,3} \right) \\ \Delta \hat{\Pi}_{C}(z) &= \frac{c_{1}}{\pi (mL)^{2}} \frac{1}{8} \Omega_{3,1} \\ &- \frac{c_{0}}{(mL)^{3}} \left(\frac{8}{3} \Omega_{0,3} + \frac{1}{6} \Omega_{2,2} - \frac{8}{3} \Omega_{2,3} + \frac{1}{8} \Omega_{4,1} - \frac{1}{6} \Omega_{4,2} \right) \\ \Delta \hat{\Pi}_{T}(z) &= \frac{c_{1}}{\pi (mL)^{2}} \frac{1}{4} \Omega_{3,1} \end{split}$$

Finite volume corrections

$$\begin{split} \Delta \hat{\Pi}_{S}(z) &= -\frac{c_{1}}{\pi (mL)^{2}} \frac{1}{4} \Omega_{3,1} + \frac{c_{0}}{(mL)^{3}} \left(2 \Omega_{2,2} + \frac{1}{4} \Omega_{4,1} \right) \\ \Delta \hat{\Pi}_{X}(z) &= \frac{c_{1}}{\pi (mL)^{2}} \left(\frac{8}{3} \Omega_{-1,3} - \Omega_{1,2} - \frac{8}{3} \Omega_{1,3} - \frac{1}{4} \Omega_{3,1} \right) \\ &- \frac{c_{0}}{(mL)^{3}} \left(-\frac{128}{3} \Omega_{-2,4} - \frac{16}{3} \Omega_{0,3} + 64 \Omega_{0,4} - \frac{11}{24} \Omega_{2,2} + \frac{20}{3} \Omega_{2,3} \right) \\ &- \frac{64}{3} \Omega_{2,4} - \frac{17}{64} \Omega_{4,1} + \frac{29}{24} \Omega_{4,2} - \frac{4}{3} \Omega_{4,3} \right) \end{split}$$

• We thus see that each diagram contributes starting from $1/L^2$

• Compare pion mass FVEs: 1/L

Finite volume corrections

• However, in total:

$$\begin{aligned} \Delta \hat{\Pi}(q^2) &= \frac{c_0}{(mL)^3} \left(-\frac{16}{3} \Omega_{0,3} - \frac{5}{3} \Omega_{2,2} + \frac{40}{9} \Omega_{2,3} - \frac{3}{8} \Omega_{4,1} + \frac{7}{6} \Omega_{4,2} + \frac{8}{9} \Omega_{4,3} \right) \\ &+ \mathcal{O}\left(\frac{1}{L^4}, e^{-m_\pi L} \right) \end{aligned}$$

• Suppression: Leading order is $1/L^3$

- Physics: Neutral current and photon far away sees no charge
- Also argued by [ETMC 17]
- Check: We find for charged currents it starts at order $1/L^2$

Pointlike vs. structure

- This was obtained in a pointlike approximation
- Universality: arguing from HLbL tensor the $1/L^2$ also cancels
- \bullet Recall QED effects to HVP \approx HLbL in forward kinematics

$$\hat{\Pi}(q^2) = \int rac{d^4k}{(2\pi)^4} \, rac{\hat{\Pi}_{\mu\mu
u
u}(q,q,k,-k)}{k^2}$$

• From [Colangelo et al. 15] we know

$$\Pi^{\mu_1\mu_2\mu_3\mu_4}(q_1, q_2, q_3, q_4) = \sum_{i=1}^{54} T_i^{\mu_1\mu_2\mu_3\mu_4} \prod_i$$

- Structure-dependence in form factors Π_i
- $1/L^2$ cancels regardless of structure

Other QED prescriptions

• QED_L : Starts at $1/L^3$ with structure dependence

$$\Delta \hat{\Pi}(q^2) \stackrel{
m QED_L}{\propto} rac{c_0}{(m_\pi L)^3}\,, \qquad c_0=-1$$

• QED_C:

$$\Delta \hat{\Pi}(q^2) \stackrel{\text{QED}_{C}}{\propto} \frac{c_0^{\star}}{(m_{\pi}L)^3}, \qquad c_0^{\star} = 0$$

- $\bullet~{\rm So}~{\rm QED}_{\rm C}$ expected to have smaller FVEs than ${\rm QED}_{\rm L}$ here
- $\mathrm{QED}_{\mathrm{r}}$ [Di Carlo, Hansen, NHT, Portelli In prep.]: Designed to remove c_{0}

$$\Delta \hat{\Pi}(q^2) \stackrel{\text{QED}_r}{\propto} \frac{\bar{c}_0}{(m_\pi L)^3}, \qquad \bar{c}_0 = 0$$

- \bullet Leading scaling the same in ${\rm QED}_r$ as ${\rm QED}_C$
- Approach of [Biloshytskyi et al. 23]: Exponentially suppressed

IIa. Numerical validation in scalar QED

Numerical validation

Lattice scalar QED simulations:

• Eight different volumes with L/a between 16 and 64; Time extent T/a = 128

•
$$z = q^2/m^2 = 0.964$$
, $am = 0.2$

Lattice perturbation theory (LPT): k_{μ} , $\ell_{\mu} \in (-\pi/a, \pi/a)$

• Cuba VEGAS Monte Carlo integration for both FV and IV pions

$$\left(\frac{1}{L^3}\sum_{\mathbf{k}\neq\mathbf{0}}\frac{1}{L^3}\sum_{\ell}-\int\frac{d^3\mathbf{k}}{(2\pi)^3}\frac{d^3\ell}{(2\pi)^3}\right)\int\frac{dk_0}{2\pi}\frac{d\ell_0}{2\pi}$$

• We do this for several lattice spacings and then make a continuum extrapolation

Numerical validation

- For $m_{\pi}L\gtrsim$ 4 agreement with our scalar QED expectation: $1/L^3$
- \bullet One has $1/4^3 \sim 1.6\%$ and $e^{-4} \sim 1.8\%,$ so naively similar size
- $1/(m_\pi L)^3 \lesssim 1.6\%$ on $\mathcal{O}(lpha) \sim 1\%$ corrections to the HVP
- This was for pointlike scalar QED
- In QCD+QED_L: [RBC/UKQCD 18; ETMC 19; BMW 21; Mainz 22]
- $\bullet~$ More work expected in future in also non- $QED_L~\mbox{[Biloshytskyi~et al.; RC*]}$
- What about determining the leading structure dependence?

IIb. Leading structure dependence

Diagrams including QED

• What about determining the leading structure dependence in QED_L ?

- Should see $1/L^2$ cancellation and get estimate of $1/L^3$ coefficient
- NB: Preliminary

Structure dependence

• Structure-dependent vertex functions:

$$-(\Gamma_1) - = \Gamma_{\mu}(p,k), \qquad -(\Gamma_2) - = \Gamma_{\mu\nu}(p,k,q)$$

• Now we need form factor decompositions [Fearing, Scherer 94/96]:

$$\Gamma_{\mu}(p,k) = (2p+k)_{\mu} F(k^2) + k_{\mu} \frac{(p+k)^2 - p^2}{k^2} [1 - F(k^2)]$$

$$egin{split} \Gamma_{\mu
u}(p,k,q) &= 2\delta_{\mu
u}[1-F(k^2)-F(q^2)]-2\,k_\mu k_
u\,rac{1-F(k^2)}{k^2} \ &-2\,q_\mu q_
u\,rac{1-F(q^2)}{q^2}+\Gamma^{
m T}_{\mu
u}(p,k,q) \end{split}$$

Γ^T_{µν}(p, k, q) depends on 5 form-factors: C
₁, D
_k, E
_k, F
_k, G
Physically: EM polarisabilities α, β + ...

Structure dependence

• Now we have 7 diagram topologies:

• A and B depend on q: $\hat{\Pi}_{A,B}(q^2) = \Pi_{A,B}(q^2) - \Pi_{A,B}(0) \neq 0$

$$\begin{split} \Gamma_{\mu\nu}(p,k,q) &= 2\delta_{\mu\nu}[1-F(k^2)-F(q^2)] - 2\,k_{\mu}k_{\nu}\,\frac{1-F(k^2)}{k^2} \\ &- 2\,q_{\mu}q_{\nu}\,\frac{1-F(q^2)}{q^2} + \Gamma_{\mu\nu}^{\rm T}(p,k,q) \end{split}$$

Structure dependence

$$\Delta \hat{\Pi}_B = \left(\frac{1}{L^3} \sum_{\mathbf{k} \neq \mathbf{0}} - \int \frac{d^3 \mathbf{k}}{(2\pi)^3}\right) \int \frac{d^3 \ell}{(2\pi)^3} \int \frac{dk_0}{2\pi} \frac{d\ell_0}{2\pi} \,\hat{\pi}_B\left(q_0^2, k, \ell\right)$$

• Example: Diagram B

$$\hat{\pi}_{B}\left(q_{0}^{2},k,\ell\right) = \frac{\Gamma_{\mu}(\ell,k)\Gamma_{\mu}(k+\ell,-\ell)}{3q_{0}^{2}k^{2}\left[\ell^{2}+m^{2}\right]^{2}\left[(k+\ell)^{2}+m^{2}\right]}\left[\Gamma_{jj}(\ell,q,q)-\Gamma_{jj}(\ell,0,0)\right]$$

• Not only poles from propagators in k_0 , ℓ_0 : Cuts in form factors

• Let us go back to the HLbL tensor

$$\Delta\hat{\Pi}(q_0^2) = \left(rac{1}{L^3}\sum_{\mathbf{k}
eq \mathbf{0}} -\int rac{d^3\mathbf{k}}{(2\pi)^3}
ight)\int rac{dk_0}{2\pi}rac{\hat{\Pi}^{\mu\mu
u
u}(q,q,k,-k)}{k^2}$$

• Analytical structure: Dispersion relations [Colangelo et al. 2015; Biloshytskyi et al. 23]

- Relation between 2π intermediate state and Feynman diagrams
- Need to figure out cut contributions from dispersive representation

- Structure dependent vertex functions
- Separate

$$\Delta\hat{\Pi}(q_0^2)=\Delta_{
m poles}\hat{\Pi}(q_0^2)+\Delta_{
m cuts}\hat{\Pi}(q_0^2)$$

- Should analytically see universality of $1/L^2$ cancellation
- Should estimate $1/L^3$
- For now focus on $\Delta_{
 m poles}\hat{\Pi}(q_0^2)$

• Old integrals:

$$\Omega_{i,j}(z=q_0^2/m^2) = \int dx \, x^2 \frac{1}{(1+x^2)^{i/2}[z+4(x^2+1)]^j}$$

• New integrals for $1/L^3$:

$$\begin{split} \bar{\Omega}_{i,j}(z = q_0^2/m^2) &= \int dx \, x^2 \frac{A_1\left(\frac{x}{\sqrt{1+x^2}}\right)}{(1+x^2)^{i/2}[z+4(x^2+1)]^j} \\ A_1(x) &= \frac{\arctan(x)}{x} \end{split}$$

• Can do whole calculation now: Preliminary

Preliminary results

$$\begin{split} \Delta_{\rm poles} \hat{\Pi}_{AB}(q_0^2) &= \frac{c_1}{16\pi z \, (mL)^2} \left\{ 8 \, \widetilde{C}_1 \, m^4 z \, (2 \, \Omega_{3,0} - \Omega_{5,0}) + 12 \, \Omega_{5,0} \, F \left(m^2 z \right) \right. \\ &+ 3 \, \Omega_{5,0} \left(\overline{G}_0 \, m^2 z - 4 \right) \left. \right\} + \mathcal{O} \Big[1/(mL)^3, e^{-mL} \Big] \end{split}$$

• Form factors

• Pointlike limit gives zero again

Preliminary results

$$\begin{split} \Delta_{\text{poles}} \hat{\Pi}_{TSC}(q_0^2) &= \frac{c_1}{12\pi z \, (mL)^2} \Biggl\{ 3 \Bigl[8 (3z-8) \, \Omega_{1,2} + z (3z-32) \, \Omega_{3,2} \\ &- 4z^2 \Omega_{5,2} + 48 \Omega_{-1,2} \Bigr] - 4 \Bigl[(z-48) \Omega_{1,2} - 4z \, \Omega_{3,2} \\ &+ 36 \, \Omega_{-1,2} \Bigr] F \left(m^2 z \right)^2 \Biggr\} + \mathcal{O} \Bigl[1/(mL)^3, e^{-mL} \Bigr] \end{split}$$

Form factors

• Pointlike limit gives back old result

Preliminary results

$$\begin{split} \Delta_{\text{poles}} \hat{\Pi}_{EX}(q_0^2) &= \frac{c_1}{24\pi z \, (mL)^2} \left\{ 4 \Big[4z^2 \,\Omega_{1,3} - 7z^2 \,\Omega_{3,3} + 3z^2 \,\Omega_{5,3} - 96z \,\Omega_{1,3} \right. \\ &+ 40z \,\Omega_{3,3} + 8(7z - 66) \,\Omega_{-1,3} + 288\Omega_{-3,3} + 240 \,\Omega_{1,3} \Big] F \left(\frac{m^2 z}{2} \right)^2 \\ &- 3 \Big[6z^3 \,\Omega_{3,3} - 11z^3 \,\Omega_{5,3} + 5z^3 \,\Omega_{7,3} + 72z^2 \,\Omega_{1,3} - 132z^2 \,\Omega_{3,3} \\ &+ 60z^2 \,\Omega_{5,3} - 528z \,\Omega_{1,3} + 240z \,\Omega_{3,3} + 32(9z - 22) \,\Omega_{-1,3} \\ &+ 384 \,\Omega_{-3,3} + 320 \,\Omega_{1,3} \Big] \right\} + \mathcal{O} \Big[1/(mL)^3, e^{-mL} \Big] \end{split}$$

Form factors

- Pointlike limit gives back old result
- $1/L^3$ depends on charge radius $\langle r_{\pi}^2 \rangle$ as well, and $\bar{\Omega}_{i,j}$

• Have done pole part $\Delta_{
m poles}\hat{\Pi}(q_0^2)$

Recall

$$\Delta\hat{\Pi}(q_0^2) = \Delta_{
m poles}\hat{\Pi}(q_0^2) + \Delta_{
m cuts}\hat{\Pi}(q_0^2)$$

- Can be cancellations between $\Delta_{
 m poles}\hat{\Pi}(q_0^2)$ and $\Delta_{
 m cuts}\hat{\Pi}(q_0^2)$
- Very intricate cancellations between diagrams in $\Delta_{
 m poles}\hat{\Pi}(q_0^2)$

- $\mathrm{QED}_{\mathrm{L}}$: HVP starts at order $c_0/(mL)^3$
- Proven in [Bijnens, Harrision, Hermansson-Truedsson, Janowski, Jüttner, Portelli 19]
- Physics: Photon far away does not see charge of $\pi\pi$ pair
- New steps towards evaluating structure-dependent $c_0/(mL)^3$
- Should see cancellation and estimate $1/L^3$
- Finite-volume scaling depends on QED formulation
- $\rm QED_r/QED_C$: Starts at order $1/(mL)^4$

Backup slides

• Action $S[\phi, A] = S_{\phi}[\phi, A] + S_{A}[A]$

$$\begin{split} S_{\phi}\left[\phi,A\right] &= \frac{a^4}{2}\sum_{x}\phi^*(x)\Delta\phi(x),\\ S_A[A] &= -\frac{a^4}{2}\sum_{x,\mu}A_{\mu}(x)\delta^2A_{\mu}(x),\\ \Delta &= m^2 - \sum_{\mu}D_{\mu}^*D_{\mu} \end{split}$$

Numerical validation

Numerical validation

$$\begin{split} \Delta \hat{\Pi}_{\text{charged}} \left(q^2 \right) = & \frac{1}{m^3 L^3} \left(-\frac{13}{24} \Omega_{2,2} + \frac{20}{9} \Omega_{2,3} - \frac{15}{64} \Omega_{4,1} + \frac{7}{24} \Omega_{4,2} + \frac{4}{9} \Omega_{4,3} \right) \\ & + \frac{c_1}{m^2 L^2 \pi} \left(-\frac{8}{3} \Omega_{-1,3} + \Omega_{1,2} + \frac{8}{3} \Omega_{1,3} + \frac{1}{8} \Omega_{3,1} \right) \\ & + \mathcal{O} \left(\frac{1}{L^4}, e^{-mL} \right) \end{split}$$

Minimal choice: QED_r

• Want $c_0^w = 0$

$$c_0^w = \underbrace{c_0}_{=-1} + \sum_{|\mathbf{n}|} w_{|\mathbf{n}|^2}$$

• Solution:
$$w_{|\mathbf{n}|^2} = \delta_{|\mathbf{n}|,1}/6$$

 $\overline{c}_0 = 0$

- Why it works: $|{\bf k}| \propto 1/L$
- Generally:

$$\overline{c}_{j}(\mathbf{v}) = \underbrace{c_{j}(\mathbf{v})}_{\text{QED}_{L}} + \frac{1}{6} \sum_{|\mathbf{n}|=1} \frac{1}{(1 - \mathbf{v} \cdot \hat{\mathbf{n}})}$$

