

UB CRUCE LUM

The Compton amplitude and wards electromagnetic mass shifts and unis

K. Utku Can The University of Adela Ress Young University of Adelaide (QCDSF/UKQCD/CSSM Collaboration)

with QCDSF

Isospin-Breaking Effects on Precision **Observables in Lattice QCD**

July 22 – 26, 2024

https://indico.mitp.uni-mainz.de/event/360

Ross Young University of Adelaide

with QCDSF lakamura (RIKEN, Kobe), ig), P. Rakow (Liverpool),), K. Somfleth (Adelaide), Jrg), J. Zanotti (Adelaide)

CSSM/OCDSF/IKOCD Collaborations

Alex Chambers U.Adelaide PhD 2018

Kim Somfleth U.Adelaide PhD 2020

Mischa Batelaan U.Adelaide \rightarrow W&M PhD 2023

H. Perlt (Leipzig), P. Rakow (Liverpool), urg), R. Young (Adelaide), J. Zanotti (Adelaide)

Alec Hannaford Gunn U.Adelaide PhD 2023

Tomas Howson U.Adelaide PhD 2023

Rose Smail U.Adelaide PhD 2024 (?)

PhD ongoing

Motivation

- <u>Nucleon structure</u> (leading twist)
 - Parton distribution functions from first principles
 - Understanding the behaviour in the high- and low-x regions
- Parton model

$$F_2 \propto (q + \bar{q})$$

$$F_3^{\gamma Z} \propto (q - \bar{q})$$

$$F_2^{W-} \propto u + \bar{d} + \bar{s} + c \dots$$

$$F_3^{W-} \propto u - \bar{d} - \bar{s} + c \dots$$

Motivation

• <u>Scaling</u>

• Q^2 cuts of global QCD analyses

Power corrections / Higher twist effects

- Target mass corrections
- Twist-4 contributions

•

Motivation | EW Box

• Leading theoretical uncertainty in:

- Weak charge of the proton,
- $Q_W = (1 + \Delta_\rho + \Delta_e)(1 4\sin^2\theta_W(0) + \Delta'_e)$ $+ \Box_{AA}^{WW} + \Box_{AA}^{ZZ} + \Box_{VA}^{\gamma Z}$
- CKM matrix element extracted from superallowed β decays,

$$|V_{ud}|^2 = \frac{2984.432(3) \,\mathrm{s}}{\mathcal{F}t(1 + \Delta_R^V)} \propto [$$

Motivation | EW Box

 $\Box_A^{\gamma Z} = \nu_e \frac{3\alpha_{EM}}{2\pi} \int_0^\infty \frac{dQ^2}{Q^2} \frac{M_Z^2}{M_Z^2 + Q^2} \int_0^1 dx \, C_N(x, Q^2) \, F_3^{\gamma Z}(x, Q^2)$

First Nachtmann moment of F_3

$$\Box_{VA}^{\gamma W} = \frac{3\alpha_{EM}}{2\pi} \int_{0}^{\infty} \frac{dQ^2}{Q^2} \frac{M_W^2}{M_W^2 + Q^2} \int_{0}^{1} dx C_N(x) F_3^{(0)} = F_{3,p}^{\gamma Z} - F_{3,n}^{\gamma Z},$$

where $C_N(x, Q^2)$ is a known coefficient

Motivation | EW Box

Box diagrams proportional to an integral over the whole Q^2 range

$$\Box_A^{\gamma Z/W} \propto \int_0^\infty \frac{dQ^2}{Q^2} \, \mu_1^{(3)}(Q^2) \, (\dots)$$

- Low- Q^2 (non-perturbative) regime dominates the integral
- F_3 is experimentally poorly determined in low Q^2
- Lattice approach is ideal for a high-precision determination of $\mu_1^{(3)}(Q^2)$ Nachtmann moment
- $\square_{\Lambda}^{\gamma W}$ is ideal to study isospin breaking since $F_{3}^{(0)} = F_{3,p}^{\gamma Z} - F_{3,n}^{\gamma Z}$

Motivation | Subtraction term

• Cottingham formula:

 $\delta M^{\gamma} = \delta M^{\rm el} + \delta M^{\rm ine}$

• Subtraction term $T_1(0,Q^2)$

$$\mathcal{F}_{1}(\omega,Q^{2}) - \mathcal{F}_{1}(\omega=0,Q^{2}) = \frac{2\omega^{2}}{\pi} \int_{1}^{\infty} d\omega' \frac{\operatorname{Im} \mathcal{F}_{1}(\omega',Q^{2})}{\omega'\left(\omega'^{2} - \omega^{2} - i\epsilon\right)}$$

• dominant uncertainty

• not accessible via experiments

W.N. Cottingham, Annals Phys. 25, 424 (1963) J. C. Collins, Nucl. Phys., B149:90–100, (1979) [Erratum: Nucl. Phys.B915,392(2017)] A. Walker-Loud, C. E. Carlson, G. A. Miller, PRL108, 232301 (2012) A.W. Thomas, X.G. Wang, R.D. Young PRC91 (2015) 1, 015209

$$\frac{\partial^{2}}{\partial t} + \delta M_{\text{sub}}^{\text{el}} + \delta M_{\text{sub}}^{\text{inel}} + \delta \tilde{M}^{\text{c}}$$

$$\frac{\partial^{2}}{\partial t} \int dQ^{2} T_{1}^{p-n}(0, Q^{2})$$

EM self energy is related to the spin-avg. forward Compton amplitude

Highlights

Subtraction function

Outline

• Forward Compton Amplitude

• Parity-violating F_3

Credit: D Dominguez / CERN

• Summary & Outlook

• Feynman-Hellmann Theorem on the Lattice

• F_1 subtraction function

Forward Compton Amplitude

DIS and the Hadronic Tensor

Deep $(Q^2 \gg M^2)$ inelastic $(W^2 \gg M^2)$ scattering (DIS)

Forward Compton Amplitude

$$T_{\mu\nu}(p,q) = i \int d^{4}z \, e^{iq \cdot z} \rho_{ss'} \langle p, s' | \mathcal{T}\{J_{\mu}(z)J_{\mu}(z$$

 $W_{\mu\nu} \sim \left| d^4 x \langle p | [J_{\mu}(x), J_{\nu}(0)] | p \rangle \right.$ Structure Functions: $F_{1,2}(x, Q^2)$

Compton Structure Functions: $\mathcal{F}_{1,2}(p \cdot q, Q^2)$

Nucleon Structure Functions

• we can write down a dispersion relation and connect Compton SFs to DIS SFs:

 $\mathcal{F}_1(\omega,Q^2) = \mathcal{F}_1(0,Q^2)$ $+2\omega^2 \int_0^1 \frac{2xF_1(x,Q^2)}{1-x^2\omega^2-i\epsilon}$

 $\mathscr{F}_{2}(\omega, Q^{2}) = 4\omega \int_{0}^{1} dx \frac{F_{2}(x, Q^{2})}{1 - x^{2}\omega^{2}}$

Feynman-Hellmann Theorem on the Lattice

FH Theorem at 1st order

in Quantum Mechanics:

• expectation value of the perturbed system is related to the shift in the energy eigenvalue

in Lattice QCD: energy shifts in the presence of a weak external field

$$S \to S(\lambda) = S + \lambda \int d^4 x \, \mathcal{O}(x) \xrightarrow{\text{e.g. local bilinear operator}} \bar{q}(x) \Gamma_{\mu} q(x) \quad , \Gamma_{\mu} \in \{1, \gamma_{\mu}, \gamma_5 \gamma_{\mu}, ...\}$$
real parameter

ical parameter 1<u>st</u> order (\mathbf{O}) $\frac{\partial E_{\lambda}}{\partial \lambda}$ $= \frac{1}{2E_{\lambda}} \langle 0 | \mathcal{O} | 0 \rangle$

- perturbed Hamiltonian of the system
- nergy eigenvalue of the perturbed system
- eigenfunction of the perturbed system

- $E_{\lambda} \rightarrow$ spectroscopy, 2-pt function $\langle 0 | \mathcal{O} | 0 \rangle \rightarrow \text{determine 3-pt}$
- **Applications:**
- σ terms
- Form factors

Matrix elements on the lattice

• 3-pt functions

 $\frac{\langle C_3(t,t')\rangle}{\langle C_2(t)\rangle\langle C_2(t')\rangle} \propto \langle N'|J|N\rangle$

• Feynman—Hellmann

compton to namplitude

kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]

• 4-pt functions $t, t' \underbrace{\leq 1}_{\langle C_2(t) \rangle } \propto \langle N' | J(\tau_E) J | N \rangle$ $\frac{\langle C_4(t,\tau,\tau')\rangle}{\langle C_2(t)\rangle\langle C_2(t')\rangle} \not\ll N \langle N | N | N \langle \tau_E \rangle J | N \rangle$ $\int_{0}^{\infty} d\tau_{E} \rightarrow \langle N | JJ | N \rangle$ $\int_{0}^{0} \frac{1}{\Delta E}$ • Feynman Hellmann $\frac{\partial^{2} E}{\partial \lambda^{2}} \Big|_{\lambda \to 0} \frac{\partial^{2} E}{\partial \lambda^{2}} \Big|_{\lambda \to 0} \frac{\partial^{2} E}{\partial \lambda^{2}} \Big|_{\lambda \to 0} \propto \frac{\partial^{2} E}{\partial \lambda^{2}} \Big|_{\lambda \to 0} \otimes \frac{\partial^{2} E}{\partial \lambda$ $\propto \langle N | JJ | N \rangle$ $t \gg \lambda \rightarrow 0$

Feynman-Hellmann Theorem on the Lattice

QCDSF Applications of FH

► Can modify fermion action in 2 places:

• quark propagators

Connected

 $g_{A}, \Delta \Sigma$ [PRD90 (2014)] NPR [PLB740 (2015)] G_{E}, G_{M} [PRD96 (2017)] $F_{1,2}(\omega, Q^{2})$ [PRL118 (2017), PRD102 (2020), PRD107 (2023)] GPDs [PRD104 (2022), PRDXYZ (2024)] $\Sigma \rightarrow n$ [PRD108 (2023) 3, 034507] g_{A}, g_{T}, g_{S} [PRD108 (2023) 9, 094511]

• fermion determinant

Disconnected (Requires new gauge configurations) RD107 (2023)] $\langle x \rangle_g$ [PLB714 (2012)] NPR [PLB740 (2015)] Δs [PRD92 (2015)]

Subtraction function

 $\mathcal{F}_1(0,Q^2)$

Forward Compton Amplitude

$J_3 J_3$ and $q_3 = 0$, $\vec{p} = 0$

$T_{33}(\vec{0},q) = \mathcal{F}_1(\omega = 0, Q^2) = T_1(0, Q^2) \equiv S_1(Q^2)$

Simplest kinematics to directly isolate \mathcal{F}_1

Calculation Details

 $\frac{N_f}{2+1}$ $\frac{1}{32}$ QCDSF/UKQCD configurations 2+1 flavour (u/d+s) 2 + 1 4NP-improved Clover action 2 + 1 4PRD 79, 094507 (2009), arXiv:0901.3302 [hep-lat]

L^3	$\times T$	eta	κ	$a[{ m fm}]$	$m_{\pi}[{ m MeV}]$	Z
32^{3}	$\times 64$	5.50	0.120900	0.074	470	0.8
18^{3}	$\times 96$	5.65	0.122005	0.068	410	0.8
18^{3}	$\times 96$	5.80	0.122810	0.058	430	0.8

• Local EM current insertion, $J_{\mu}(x) = Z_V \bar{q}(x) \gamma_{\mu} q(x)$

- 4 Distinct field strengths, $\lambda = [\pm 0.0125, \pm 0.025]$
- Up to $\mathcal{O}(10^4)$ measurements for each pair of Q^2 and λ
- Connected diagrams only

Isolate the 2nd-order energy shift

$$\begin{aligned} G_{\lambda}^{(2)}(\mathbf{p};t) &\sim A_{\lambda}(\mathbf{p})e^{-E_{N_{\lambda}}(\mathbf{p})t} \\ E_{N_{\lambda}}(\mathbf{p}) &= E_{N}(\mathbf{p}) + \lambda \frac{\partial E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda} \bigg|_{\lambda=0} + \frac{\lambda^{2}}{2!} \frac{\partial^{2} E_{N_{\lambda}}(\mathbf{p})}{\partial^{2} \lambda} \bigg|_{\lambda=0} + \mathcal{O}(\lambda^{3}) \\ &= E_{N}(\mathbf{p}) + \Delta E_{N}^{o}(\mathbf{p}) + \Delta E_{\underline{N}}^{e}(\mathbf{p}) \end{aligned}$$

Ratio of perturbed to unperturbed **2-pt** functions

$$R_{\lambda}^{e}(\mathbf{p},t) \equiv \frac{G_{+\lambda}^{(2)}(\mathbf{p},t)G_{-\lambda}^{(2)}(\mathbf{p},t)}{\left(G^{(2)}(\mathbf{p},t)\right)^{2}}$$
$$\xrightarrow{t \gg 0} A_{\lambda}(\mathbf{p})e^{-2\Delta E_{N_{\lambda}}^{e}(\mathbf{p})t}$$

kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]

Extract energy shifts for each λ

work done by Dr Alec Hannaford-Gunn and Thomas Schar (MPhil ongoing)

S_1 | lattice artefacts

• tree-level mass-dependent lattice operator product expansion (LOPE)

$$\mathcal{T}_{\mu\nu} = \bar{\psi}\gamma_{\mu}S_{W}(p+q)\gamma_{\nu}\psi + \bar{\psi}\gamma_{\nu}S_{W}(p-q)$$

with the Wilson quark propagator,

$$S_W(k) = a \frac{M(k) - i\gamma_\mu \sin(ak_\mu)}{M(k)^2 + \sum_\mu \sin^2(ak_\mu)},$$

where $M(k) = am_0 + \sum_\rho \left[1 - \cos(ak_\rho)\right],$

• giving the correction $= \frac{4m_p a Z_V^2 g_S^{\text{bare}} \sum_{\rho} \left[\cos(aq_{\rho}) - 1 \right]}{\sum_{\rho} \sin^2(aq_{\rho}) + M^2(m_0, q)}$ $\Delta S_1 = -$

work done by Dr Alec Hannaford-Gunn and Thomas Schar (MPhil ongoing)

$\gamma \gamma _{\mu }\psi ,$

Subtraction function

work done by Dr Alec Hannaford-Gunn and Thomas Schar (MPhil ongoing)

•
$$S_1^{\text{imp}}(Q^2) = S_1^{\text{latt}}(Q^2) + \Delta S_1$$

$$\Delta S_1 = \frac{4m_p a Z_V^2 g_S^{\text{bare}} \sum_{\rho} \left[\cos(aq_{\rho}) - \sum_{\rho} \sin^2(aq_{\rho}) + M^2(m_0, q) \right]}{\sum_{\rho} \sin^2(aq_{\rho}) + M^2(m_0, q)}$$

• g_s^{bare} calculated on the same set of ensembles

• Good agreement with OPE

$$S_1^{\rm OPE}(Q^2) = \frac{4m_p^2}{Q^2} \sum_q e_q^2 \left(a_2^q - \frac{m_q}{m_p} g_S^q \right)$$

S_1 impact

- Low- and high- Q^2 regions are known
- Possible to constrain the mid- Q^2 region

work done by Dr Alec Hannaford-Gunn and Thomas Schar (MPhil ongoing)

Parity-violating F3 and the $\gamma - Z/W$ boxes

 $T_{\mu\nu}(p,q) = i \left[d^4 z \, e^{iq \cdot z} \rho_{ss'} \langle p, s' | \mathcal{T}\{J_{\mu}(z)J_{\nu}(0)\} | p, s \rangle \right], \text{ spin avg. } \rho_{ss'} = \frac{1}{2} \delta_{ss'}$

 $= -g_{\mu\nu}\mathcal{F}_{1}(\omega,Q^{2}) + \frac{p_{\mu}p_{\nu}}{p \cdot q}\mathcal{F}_{2}(\omega,Q^{2}) + \frac{i \varepsilon^{\mu\nu\alpha\beta}}{2p \cdot q}\frac{p_{\alpha}q_{\beta}}{2p \cdot q}\mathcal{F}_{3}(\omega,Q^{2})$

allowed terms $+ \frac{q_{\mu}q_{\nu}}{p \cdot q} \mathcal{F}_{4}(\omega, Q^{2}) + \frac{p_{\{\mu}q_{\nu\}}}{p \cdot q} \mathcal{F}_{5}(\omega, Q^{2}) + \frac{p_{[\mu}q_{\nu]}}{p \cdot q} \mathcal{F}_{6}(\omega, Q^{2})$ = 1because parity is violated

• for $\mu \neq \nu$ and $p_{\mu} = q_{\mu} = 0$, and $\beta \neq 0$, we isolate,

$$T_{\mu\nu}(p,q) = i \,\varepsilon^{\mu\nu\alpha\beta} \frac{p_{\alpha}q_{\beta}}{2p \cdot q} \mathcal{F}_{3}(\alpha)$$

• we can write down dispersion relations and connect Compton SFs to DIS SFs:

$$\mathcal{F}_3(\omega, Q^2) = 4\omega \int dx \frac{F_3(x, Q^2)}{1 - x^2 \omega^2}$$

The 1st moment

$$M_1^{(3)}(Q^2) = \int_0^1 dx F_3(x, Q^2) = \frac{\mathscr{F}_3(\omega, Q^2)}{4\omega} \bigg|_{\omega=0}$$

allows for a test of the Gross-Llewellyn-Smith sum rule

$$M_{1,uu}^{(3)}(Q^2) = \int_0^{1^-} dx F_3(x, Q^2) = 2\left(1 + \frac{1}{2}\right)$$

Also allows for a determination of the EW box diagram

$$\Box_{VA}^{\gamma W} = \frac{3\alpha_{EM}}{2\pi} \int_{0}^{\infty} \frac{dQ^2}{Q^2} \frac{M_W^2}{M_W^2 + Q^2}$$

Violating Forward Compton Amplitude

Calculation Details

QCDSF/UKQCD configurations $48^3 \times 96$, 2+1 flavour (u/d+s) $\beta = \begin{pmatrix} 5.65\\ 5.95 \end{pmatrix}$, NP-improved Clover action PRD 79, 094507 (2009), arXiv:0901.3302 [hep-lat]

$m_{\pi} \sim 410 \text{ MeV}, \sim \text{SU}(3) \text{ sym.}$ $m_{\pi}L \sim \begin{bmatrix} 6.9 \\ 5.3 \end{bmatrix}$ $a \sim \begin{bmatrix} 0.068 \\ 0.052 \end{bmatrix}$ fm

• Local EM and axial current insertion, $J^{V[A]}_{\mu}(x) = Z_{V[A]}\bar{q}(x)\gamma_{\mu}[\gamma_5]q(x)$ (valence only)

- 4 Distinct field strengths, $\lambda = [\pm 0.0125, \pm 0.025]$
- Current momenta $0.1 \leq Q^2 \leq 10 \text{ GeV}^2$
- Roughly 500 measurements
- Nucleon at rest: $\vec{p} = (0,0,0)$ thus $\omega = 0$, varying \vec{q}
- Connected 2-pt only, <u>no disconnected</u> since F_3 is non-singlet

Energy shifts

• Ratio of perturbed 2-pt functions

kuc, et al. (CSSM/QCDSF/UKQCD), PoS LATTICE2023 (2024) 311, arXiv:2402.00255 [hep-lat]

kuc, et al. (CSSM/QCDSF/UKQCD), PoS LATTICE2023 (2024) 311, arXiv:2402.00255 [hep-lat]

Syst. 1: LPT improvement

introduces discretisation error due to broken rotational symmetry

• Replace the kinematic factor by a lattice OPE motivated factor

$$\frac{Q^2}{q_2} \rightarrow \frac{\sum_i \sin^2 q_i + \left[\sum_i (1 - \cos q_i)\right]^2}{\sin q_2}$$

Syst. 2: Weighted averaging

• Red line (mean): $\bar{\mathcal{O}} = \sum w^f \mathcal{O}^f$ • Red band (total uncertainty): 0.20 $\delta_{\text{stat}} \bar{\mathcal{O}}^2 = \sum_{f} w^f (\delta \bar{\mathcal{O}}^f)^2$ $\delta_{\text{sys}} \bar{\mathcal{O}}^2 = \sum_{f} w^f (\mathcal{O}^f - \bar{\mathcal{O}})^2$ 0.15 studies 0.10 $\delta\bar{\mathcal{O}} = \sqrt{\delta_{\text{stat}}\bar{\mathcal{O}}^2 + \delta_{\text{sys}}\bar{\mathcal{O}}^2}$ Weights: $w^{f} = \frac{p_{f}(\delta \mathcal{O}^{f})^{-2}}{\sum_{f'} p_{f'}(\delta \mathcal{O}^{f'})^{-2}}$ -0.050.00 17where p_f is the one sided p-value of the ratio fits

First moment

 $a = 0.068, 0.052 \,\mathrm{fm}$ $m_{\pi} \sim 410 \,\mathrm{MeV}$ 48³x96, 2+1 flavour

First moment

 $a = 0.068, 0.052 \,\mathrm{fm}$ $m_{\pi} \sim 410 \,\mathrm{MeV}$ 48³x96, 2+1 flavour

Elastic contribution

- Peak is mostly elastic \leftarrow
- subtract elastic contribution:

$$F_3^{(el.)} = -G_M(Q^2)G_A(Q^2)x\delta(1-x)$$

• provides insights into higher twist contributions

low- Q^2 : 3-pt functions high-Q²: Feynman-Hellmann

low- Q^2 : 3-pt functions dipole parametrisation

determinir

ng
$$\alpha_s$$

results $(a = 0.068 \text{ fm})$ Φ Our results inel. $(a = 0.068 \text{ fm})$
results $(a = 0.052 \text{ fm})$ Φ Our results inel. $(a = 0.058 \text{ fm})$
results $(a = 0.052 \text{ fm})$ Φ Our results inel. $(a = 0.052 \text{ fm})$
 Q^2 dependence of moments to extract α_s
 $\frac{5}{6} \left[1 + \sum_{i=1}^4 c_i(n_f) \left(\frac{\alpha_s(Q^2)}{\pi} \right)^i \right] + \frac{\Delta_{HT}}{Q^2}$
 $\frac{1}{4} \frac{5}{5} \frac{6}{6} \right]$

our

EW box

Nachtmann moments

$$\Box_{VA}^{\gamma W} = \frac{3\alpha_{EM}}{2\pi} \int_0^\infty \frac{dQ^2}{Q^2} \frac{M_W^2}{M_W^2 + Q^2} \int_0^1 dx \, C_N(x, Q^2) \, dx \, Q^2 \, d$$

$\mathcal{F}_{2}^{\gamma W} \mid \text{EW box}$

• Electroweak box diagrams need

 $\Box_{VA}^{\gamma W} = \frac{3\alpha_{EM}}{2\pi} \int_{0}^{\infty} \frac{dQ^2}{Q^2} \frac{M_W^2}{M_W^2 + Q^2} \frac{M_W^2}{M_W^2 + Q$ where $F_3^{(0)} = F_{3,p}^{\gamma Z} - F_{3,n}^{\gamma Z} = \frac{1}{6} \left(F_{3,uu}^{\gamma Z} - F_{3,dd}^{\gamma Z} \right)$

- Notron moments
- of $\mathcal{F}_{3}^{\gamma W}$ to test isospin breaking effects

Nachtmann moments

$$\int_{0}^{1} dx C_{N}(x, Q^{2}) F_{3}^{(0)}(x, Q^{2})$$

$$Z = -F_{2}^{\gamma Z}$$

• Short-term: $C_N(x, Q^2)$ can be approximated which allows a precise approximation of Nachtmann moments from lowest 3 Cornwall-

• Mid/long-term: Working towards a direct calculation of the moments

Summary & Outlook 2.5

- $\mathfrak{O}(a)$ -improved results
- $\ensuremath{\ensuremath{\boxtimes}}\xspace{1.5}$ Good agreement with OPE/pQCD
- ☑ Clear indication of higher-twist and non-perturbative effects
- **D** Working towards:
 - □ Full control over lattice artefacts, e.g. a, $M_{\pi}, V \text{ dependence}$
 - \square Constraining the subtraction function over a wide range of Q^2
 - Estimating EW box contribution and effects of isospin breaking

Acknowledgements

- The numerical configuration generation (using the BQCD lattice QCD program)) and data analysis (using the Chroma software library) was carried on the
 - DiRAC Blue Gene Q and Extreme Scaling (EPCC, Edinburgh, UK) and Data Intensive (Cambridge, UK) services,
 - the GCS supercomputers JUQUEEN and JUWELS (NIC, Jülich, Germany) and
 - resources provided by HLRN (The North-German Supercomputer Alliance),
 - the NCI National Facility in Canberra, Australia (supported by the Australian Commonwealth Government) and
 - the Phoenix HPC service (University of Adelaide).
- ${\ensuremath{\, \circ }}$ RH is supported by STFC through grant ST/P000630/1.
- \bullet PELR is supported in part by the STFC under contract ST/G00062X/1.
- KUC, RDY and JMZ are supported by the Australian Research Council grants DP190100297 and DP220103098.

Backup

Compton amplitude via the FH relation at $2\underline{nd}$ order

unpolarised Compton Amplitude

$$T_{\mu\mu}(p,q) = \int d^4 z e^{i\mathbf{q}\cdot\mathbf{z}} \langle N(p) \,|\, \mathcal{T}\{J_{\mu}(z)J_{\mu}(0)\} \,|\, N(p)\rangle$$

N(p)

 $2\underline{nd}$ order derivatives of the 2-pt correlator, $G_{\lambda}^{(2)}(\mathbf{p};t)$, in the presence of the external field

$$\frac{\partial^2 G_{\lambda}^{(2)}(\mathbf{p};t)}{\partial \lambda^2} \bigg|_{\lambda=0} = \left(\frac{\partial^2 A_{\lambda}(\mathbf{p})}{\partial \lambda^2} - tA(\mathbf{p}) \frac{\partial^2 E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda^2} \right) e^{-E_N(\mathbf{p})t}$$
$$\frac{\partial^2 G_{\lambda}^{(2)}(\mathbf{p};t)}{\partial \lambda^2} \bigg|_{\lambda=0} = \frac{A(\mathbf{p})}{2E_N(\mathbf{p})} te^{-E_N(\mathbf{p})t} \int d^4 z (e^{iq \cdot z} + e^{-iq \cdot z}) d^4 z ($$

equate the time-enhanced terms:

$$\frac{\partial^2 E_{N_{\lambda}}(\mathbf{p})}{\partial \lambda^2} \bigg|_{\lambda=0} = -\frac{1}{2E_N(\mathbf{p})} \int d^4 z (e^{iq}) d^4$$

kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]

Action modification

$$S \to S(\lambda) = S + \lambda \int d^4 z \left(e^{i\mathbf{q}\cdot\mathbf{z}} + e^{-i\mathbf{q}\cdot\mathbf{z}} \right)$$

from spectral decomposition

 $\langle N(\mathbf{p}) | \mathcal{T} \{ \mathcal{J}(z) \mathcal{J}(0) \} | N(\mathbf{p}) \rangle$ from path integral

 $T_{\mu\mu}(p,q)$

 $(q \cdot z + e^{-iq \cdot z}) \langle N(\mathbf{p}) | \mathcal{J}(z) \mathcal{J}(0) | N(\mathbf{p}) \rangle + (q \to -q)$

<u>Compton amplitude is related to the second-order energy shift</u>

Compton amplitude via the FH relation at 2^{nd} order

kuc et al. (CSSM/QCDSF/UKQCD) PRD102, 114505 (2020), arXiv:2007.01523 [hep-lat]

 \boldsymbol{n}

Future lattices

Currently thermalising/generating

- ► $64^3 \times 96$, a = (0.068, 0.052) fm, $m_{\pi} = (220, 270)$ MeV
- ► $80^3 \times 114$, a = 0.068 fm, $m_{\pi} = 150$ MeV
- ► $96^3 \times 128$, a = 0.052 fm, $m_{\pi} = 140$ MeV

Using BQCD [EPJ Web Conf. 175 (2018) 14011] on

- ► JUWELS (Jülich, Germany)
- ► CSD3 (Cambridge, UK)
- ► Tursa (Edinburgh, UK)

