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Collider Physics

Theory Experiment
Observable

2

Examples of observables:

  thrust, C-parameter, energy-energy correlator,…

this workshop

Probing microscopic physics from high-energy collision, through measurement at “infinity”.



AdS/CFT correspondence

3

Holography
Various theoretical interest in understanding bulk physics from the boundary of spacetime.
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]
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1Z
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dt lim
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n
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for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z

�N=4
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flat space

AdS scattering = CFT correlation functions less clear about operators(?) on the flat space boundary 

Also see Sruthi’s talk
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Correlators on the Celestial Sphere
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a point on the celestial sphere a light-ray at null infinity

The experiment observables can serve as correlators on the boundary of flat space.

Example: energy-energy correlator (EEC) d⌃
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[Basham, Brown, Ellis and Love, 1978]

calorimeter light-ray operator



Energy Flow Operator

“Perturbative”  vs  “Non-perturbative”

E(~n)
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A calorimeter only detects particles flowing along direction    , and weight with its 
energy    , e.g. 
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• Integrate    to get the total received energy


• Detector is effectively located at infinity

t
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[Sveshnikov, Tkachov, 1996; Hofman, Maldacena, 2008]

Non-perturbative definition via energy-
momentum tensor

5

• Building block of EEC, with which we can immediately 
generalize 2-point EEC to multi-point EECs.

Amplitude Method

Correlator 
Method



Amplitudes v.s. Correlation Functions

NNLO [Henn, Sokatchev, Yan, Zhiboedov, 2019]

LO and NLO
[Belitsky, Hohenegger, Korchemsky, Sokatchev, Zhiboedov, 2014]

EEC in QCD:

[Dixon, Luo, Shtabovenko, Yang, Zhu, 2018]NLO

[Basham, Brown, Ellis, Love, 1978]LO

NNLO (numerically)
[Del Duca, Duhr, Kardos, Somogyi,Trócsányi, 2016]
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in weakly coupled QCD and N=4 SYM 

Energy Correlators

• Just beginning to scratch the surface of the potential of these
techniques.
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We present the full form of a four-point correlation function of large BPS operators in planar
N = 4 Super Yang-Mills to any loop order. We do this by following a bootstrap philosophy based
on three simple axioms pertaining to (i) the space of functions arising at each loop order, (ii) the
behaviour in the OPE in a double-trace dominated channel and (iii) the behaviour under a double
null limit. We discuss how these bootstrap axioms are in turn strongly motivated by empirical
observations up to nine loops unveiled through integrability methods in our previous work [9] on
this simplest correlation function.

I. INTRODUCTION

Integrability methods have shaped a new path for the
explicit evaluation of correlators of local operators in pla-
nar N = 4 SYM [1–5] and also non-planar [6–8], specially
for four-point functions of large protected single-trace op-
erators. In [9] we used integrability-based methods to
find the loop corrections to the polarized four-point func-
tion we named as the simplest. This correlator consists
of four external protected operators with R-charge po-
larizations chosen as shown in figure 1. In the limit of
long operators1 (K � 1), we argued this four-point func-
tion admits a factorization into the tree level part which
carries all the dependence on the external scaling dimen-
sion K and the loop corrections which are given by the
squared of the function O (the octagon)
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In this paper we present some of the analytic properties
of the octagon O which follow from the explicit nine-loop
results in [9]. These properties include a restriction on
the space of functions that appear at any loop order and
the remarkable simplicity of the octagon in two di�erent
kinematical limits: the OPE limit (z � 1, z̄ � 1) and
the double light-cone limit (z � 0, z̄ � �).

We also state that these three analytic properties can
be used to uniquely define the octagon and with that

1 The rank of the gauge group Nc � � is the largest parameter
followed by K. Then the planar correlator is expanded in powers
of the ’t Hooft coupling g2.
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FIG. 1. The simplest four-point function with external opera-

tors O1(0, 0) = Tr(Z
K
2 X̄

K
2 )+cyclic permutations, O2(z, z̄) =

Tr(XK ), O3(1, 1) = Tr(Z̄K) and O4(�, �) = Tr(Z
K
2 X̄

K
2 )+

cyclic permutations. The Wick contractions form a perime-
ter with four bridges of width K

2 . According to Hexagonal-
izaiton [3] in the limit K � 1 the loop corrections are ob-
tained by summing over 2D intermediate multiparticle states
�in and �out on mirror cuts 1-4 and 2-3 respectively, with
both sums evaluating to O. Alternatively the octagon O rep-
resents the resummation of planar Feynman diagrams draw
inside(outside) the perimeter.

also the simplest correlator (1). We show how to solve
this bootstrap problem by first introducing a Steinmann
basis of Ladders which resolve two of the aforementioned
analytic properties. Then using the third property to
completely fix the coe�cients in an Ansatz constructed
with the Steinmann basis.

This bootstrap approach reproduces the explicit re-
sults obtained from perturbation theory and integrabil-
ity and allows us to easily extend them to arbitrary loop
order. We accompany this letter with an ancillary file
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analytic properties. Then using the third property to
completely fix the coe�cients in an Ansatz constructed
with the Steinmann basis.

This bootstrap approach reproduces the explicit re-
sults obtained from perturbation theory and integrabil-
ity and allows us to easily extend them to arbitrary loop
order. We accompany this letter with an ancillary file
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• The intersection of techniques from both amplitudes and CFTs in the
physical context of Energy Correlators suggests much interesting
progress can be made.
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Summary
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• Energy correlators are field-theoretically elegant observables, where 
we can apply sophisticated amplitude/correlation function techniques


• For collinear EEEC, we study
its relation to dual Feynman diagrams

its conformal block decomposition as a correlator on the celestial sphere

EEC in N=4 SYM:

Multi-point Energy Correlators in QCD and N=4 SYM:
[HC, Luo, Moult, Yang, Zhang, Zhu, 2019; 

Yan, Zhang, 2022;Yang, Zhang, 2022 & 2024; 

Chicherin, Moult, Sokatchev, Yan, Zhu, 2024]

Charge-Charge Correlator in QCD:
[Chicherin, Henn, Sokatchev, Yan, 2020]

Also see Ian’s and Kai’s talks



End-point Regions in EEC
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NLO Analytic Result
[Dixon, Luo, Shtabovenko, Yang, Zhu, 2018]Collinear Factorization 

and Resummation TMD Factorization and 
Resummation[Dixon, Moult, Zhu, 2019]
[Moult, Zhu, 2018]

Recently achieved 
N4LL accuracy
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[Duhr, Mistlberger, Vita, 2022]

A lot of collinear stories 
in this workshop…

Thankfully, Dingyu gave a 
back-to-back story!
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Collinear Limit Result from CMS
[Meng Xiao et al, 2023]

[Komiske, Moult, Thaler, Zhu, 2022]

Previous exploration from CMS Open Data See illustration on 
https://cms.cern/news/jets-elucidate-how-partons-evolve-hadrons

Log-Log Plot
Log-Linear Plot

Enables precision measurement of  in jet substructureαs

https://cms.cern/news/jets-elucidate-how-partons-evolve-hadrons
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Common interest on collinear limit from different perspectives (May 3, 2019):

CFT Perspective

QCD Perspective

Light-ray OPE

QCD Factorization

Mellin Representation



Universality in the Collinear Limit

10
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Q
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[Dixon, Moult, Zhu, 2019]

EEC exhibits collinear universality in pQCD, described by the factorization formula

convolution in momentum fraction  x

Hard functionJet function

As a correlation function of light-ray operators, 
collinear limit has the interpretation of light-ray OPE.

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=

X

i,j

Z
d�

EiEj

Q2
�

✓
z �

1 � cos �ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

1Z

0

dt lim
r!1

r
2
n
i
T0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†
i

hOO†i
, (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z

�N=4
J (↵s) , (1.4)
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E(~n1)
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E(~n2)
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Light-ray

OPE

X

i
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[Hofman, Maldacena, 2008; Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov, 2019]

[this talk]



Light-ray Operators and OPE



Light-ray Operators

E(~n) = lim
r!1

r2
Z 1

0
dt ~niT

0i(t, r~n)
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Energy flow operator

light transform of local operators 

Energy radiation obeys inverse square law, 
r2
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Generalization to other local operators
twist

O(~n) = lim
r!1

r
��J

Z 1

0
dt O

µ1...µJ (t, r~n)n̄µ1 . . . n̄µJ
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In other contexts of physics, light-ray operators are not 
necessarily at null infinity—they can live on any light-ray.

[Kravchuk, Simmons-Duffin, 2018]

L[O](x, n) =

Z 1

�1
d↵(�↵)���J

O

⇣
x�

n

↵
, n

⌘
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direction 

starting point 
12

Examples of more general light-ray operators,

see [Chang, Kologlu, Kravchuk, Simmons-
Duffin, Zhiboedov, 2020; Caron-Huot, Kologlu, 
Kravchuk, Meltzer, Simmons-Duffin, 2022;…]
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Spacetime Symmetry

• Dimension = J � 1
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• Transverse Spin = transverse spin of the local operator

Little group that fixes a light-ray in future null infinity consists of
translations, collinear boost, transverse rotations, dilatation

Poincare group part

• Momentum = 0  (invariant under translations)
13



Interesting Aspects of Light-ray Operators
• Analyticity in spin

• Level crossing near Regge intercept 

• ANEC and new perspective on -theorem and -anomaly a c

• Applications in collider physics 

[Caron-Huot, 2017; Kravchuk, Simmons-Duffin, 2018]

[Caron-Huot, Kologlu, Kravchuk, Meltzer , Simmons-Duffin, 2022] ϕ2
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Light-ray OPE

Local Operator OPE

O1(x1)
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=
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i,j

Z
d�

EiEj

Q2
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

1Z

0

dt lim
r!1

r
2
n
i
T0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†
i

hOO†i
, (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law

⌃(z) =
1

2
C(↵s) z

�N=4
J (↵s) , (1.4)
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]
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for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]

E(~n) =

1Z

0

dt lim
r!1

r
2
n
i
T0i(t, r~n) , (1.2)

where it is given by

d�

dz
=

hOE(~n1)E(~n2)O†
i

hOO†i
, (1.3)

for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law
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Short distance scaling behavior is determined 
by local Operator Product Expansion (OPE).

Small angle behavior is controlled by the OPE of these light-ray operators. 

“local OPE on the celestial sphere” [Komiske, Moult, Thaler, Zhu, 2022]

liquid helium critical behavior

EEC collinear limit
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[Hofman, Maldacena, 2008]



Light-ray OPE in CFT

I +

One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]

d�

dz
=

X

i,j

Z
d�

EiEj

Q2
�

✓
z �

1 � cos �ij

2

◆
. (1.1)

Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,
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� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at
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There has also been progress in understanding the singularities of the EEC, which occur as
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,
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One of the simplest observables from the theoretical perspective is the Energy-Energy

Correlator (EEC), defined as [2, 3]
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Here Ei and Ej are the energies of final-state partons i and j in the center-of-mass frame,

and their angular separation is �ij . d� is the product of the squared matrix element and the

phase-space measure. The EEC can also be defined in terms of correlation function of ANEC

operators [4–7]
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for some source operator O. This provides a connection between event shape observables and

correlation functions of ANEC operators allowing the study of event shapes to profit from

recent developments in the study of ANEC operators, and conversely, the EEC provide a

concrete situation for studying the behavior of ANEC operators.

There has recently been significant progress in the understanding of the EEC from a

number of di↵erent directions. For generic angles, the EEC has been computed at next-to-

leading order (NLO) in QCD [8, 9] for both an e
+
e
� source, and Higgs decaying to gluons,

and up to NNLO in N = 4 SYM [7, 10]. It has also been computed numerically in QCD at

NNLO [11, 12].

There has also been progress in understanding the singularities of the EEC, which occur as

z ! 0 (the collinear limit) and z ! 1 (the back-to-back limit). In the back-to-back limit, the

EEC exhibits Sudakov double logarithms, whose all orders logarithmic structure is described

by a factorization formula [13, 14]. In the z ! 0 limit, which will be studied in this paper,

the EEC exhibits single collinear logarithms, originally studied at leading logarithmic order

in [15–19]. Formulas describing the behavior of the EEC in the collinear limit were recently

derived in [20] for a generic field theory, and in [21–24] for the particular case of a CFT. This

limit is of theoretical interest for studying the OPE structure of non-local operators, and of

phenomenological interest as a jet substructure observable.

The two-point correlator is particularly simple since it depends on a single variable, z.

Indeed, in a conformal field theory (CFT), its behavior in the collinear limit is fixed to be a

power law
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Light-ray OPE

Small angle scaling is dominated by the leading twist operators. 

Light-ray OPE in CFT is rigorous and convergent.  [Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov, 2019]
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[Hofman, Maldacena, 2008]

Spin-3 light-ray operators

Conformal symmetry constrains the operators to have spin=3. 

still true in pQCD

broken by running coupling

See HuaXing’s talk for details



Leading Twist Operators in QCD
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For unpolarized cases, there are only two kinds of twist-2 operators in QCD
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Physics Interpretation

[in free theory]

Measuring
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Not IR-safe measurement
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Local Operators
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Light-ray Operators

Light Transform

The analytic continuation of even spin branch is

See HuaXing’s talk for polarized case



LP Light-ray OPE in QCD at LO
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OPE coefficient matrix

Apply light-ray OPE to the (2-point) EEC with unpolarized/scalar source, 
it is equivalent to the factorization approach in the collinear limit
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[Dixon, Moult, Zhu, 2019]
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QCD in 4d is classically conformal [HC, Moult, Zhu, 2020]

at LL accuracy



“Bootstrapping” Factorization Formula

[2311.00350]



Beyond Conformal Symmetry
Renormalization of Light-ray Operators

20

In perturbation theory,  the light-ray operators have divergences. 

[IR behaviors of detectors]

require renormalization [Caron-Huot, Kologlu, Kravchuk, Meltzer, Simmons-Duffin, 2022]
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bare twist-2 local operators
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Introducing a renormalization factor and define renormalized light-ray operators

contains scale dependence

RG equation: 
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ab(J ;↵s(µ))O
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Time-like anomalous dimension different from the space-like 
anomalous dimension for the 
local operators. But they are 
related by reciprocity relation.



Generalizing Conformal Light-ray OPE
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[J=3]
i (n)Recall the conformal case: 

To balance the dimension

In non-conformal theories, dimension is not a good quantum number. 


However, QCD in 4d is classically conformal and the running coupling effect is 
a higher order effect —> We expect the breaking is a small perturbation
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assume analyticity in perturbation theory 
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Goal: constrain the ansatz from general principles



Lorentz Symmetry
<latexit sha1_base64="ztPl8m/gfOflG4dyQi0p+B8SAUo="></latexit>

E(n)E(n0) =
1X

k=0

C(k)
a (z;µ)

h
@k
JO

[J]
a;ren(n;µ)

i ����
J=3

+ higher twists

Act boost generator on both sides of the ansatz

choose a frame
<latexit sha1_base64="2s4pcYP7ti4BNnus0Veusu4muvs=">AAACNHicbZDLSgMxFIYzXmu9jbp0EyxChVJmRK3LohuXFewFOqVk0rQNzWSG5IxYSh/F1/AF3OoDCO5Elz6DmWkXvXgg8PP953BOfj8SXIPjfFgrq2vrG5uZrez2zu7evn1wWNNhrCir0lCEquETzQSXrAocBGtEipHAF6zuD24Tv/7IlOahfIBhxFoB6Une5ZSAQW27lHcL2NNcetBnQLBHQ+1FfV6YZYlMWWKm7Kxt55yikxZeFu5U5NC0Km37x+uENA6YBCqI1k3XiaA1Igo4FWyc9WLNIkIHpMeaRkoSMN0apR8c41NDOrgbKvMk4JTOToxIoPUw8E1nQKCvF70E/uc1Y+het0ZcRjEwSSeLurHAEOIkLdzhilEQQyMIVdzcimmfKELBZDq35WlyatYE4y7GsCxq50X3qnh5f5Er30wjyqBjdILyyEUlVEZ3qIKqiKJn9Ire0Lv1Yn1aX9b3pHXFms4cobmyfv8A2yCriw==</latexit>

(1, sin ✓ cos�, sin ✓ sin�, cos ✓)
<latexit sha1_base64="+B7YtHgLfBmWB/1PAibayOaBDqQ=">AAACBHicbVDLTgIxFL2DL8QX6tJNIzHBxJAZ42tJdOMSE3kYmJBOKdDQdiZtx0gmbP0Bt/oH7oxb/8Mf8DssMAsBb9Pk5Jx7c889QcSZNq777WSWlldW17LruY3Nre2d/O5eTYexIrRKQh6qRoA15UzSqmGG00akKBYBp/VgcDPW649UaRbKezOMqC9wT7IuI9hY6qHonbj2ecftfMEtuZNCi8BLQQHSqrTzP61OSGJBpSEca9303Mj4CVaGEU5HuVasaYTJAPdo00KJBdV+MjE8QkeW6aBuqOyXBk3YvxMJFloPRWA7BTZ9Pa+Nyf+0Zmy6V37CZBQbKsl0UTfmyIRofD3qMEWJ4UMLMFHMekWkjxUmxmY0s+VpajVng/HmY1gEtdOSd1E6vzsrlK/TiLJwAIdQBA8uoQy3UIEqEBDwAq/w5jw7786H8zltzTjpzD7MlPP1CwfAlvs=</latexit>

(1, 0, 0, 1)

<latexit sha1_base64="JqUcOFwu+/MGGYBvIlr++aMCjTw=">AAADwXicnVLratswFFbsXbrslm4/90csbNhrbOLdWSmUlUHJBssu6WWWY2RFaYSvSHJpEH66PcVeYM8xxU4hTfej2wHBdy6fzncOJyoSJmS//6tlmNeu37i5cat9+87de/c7mw8ORF5yQkckT3J+FGFBE5bRkWQyoUcFpziNEnoYxXuL/OEp5YLl2Xc5L2iQ4pOMTRnBUofCzdZPqO0pkvRMqk/uvvvNhe9gBR3mo1NKVFYhMsklrB2UYjmLpupjVfVg7RCcqA+VpcvsNX+MCs5SaiE5oxL3UDFjth3AHWg5LyxvC5FcNCnbQYJlDYaowFwynITL3H91gajXQ6i9MtjXfxrsXMNgHDf9o0h9rsbKHwRVqPB28yenWVVr2EZpaQc7jjXY8uxz8jgOB1cmQyde7apix6uuTNbDhp1u3+3XBi8Dbwm6YGnDsPMbTXJSpjSTJMFC+F6/kIFaKCAJrdqoFLTAJMYn1NcwwykVgaqvrYJPdGQCpznXL5Owjq4yFE6FmKeRrlyMINZzi+Dfcn4pp28DxbKilDQjTaNpmUCZw8XpwgnjlMhkrgEmnGmtkMwwx0TqA7/Q5ayR2taL8dbXcBkcPHe91+6rLy+7u++XK9oAj8BjYAEPvAG7YB8MwQgQ45kxNI6NH+aeyczC5E2p0VpyHoILZqo/51g2iA==</latexit>

L.H.S. : � i[~n · ~K, E(n)E(n0
(✓,�))] = (�3(1 + cos ✓)� sin ✓@✓)E(n)E(n0

(✓,�)) ,

R.H.S. : � i[~n · ~K, @k
JO

[J]
a;ren(n;µ)] = �(J + 1)@k

JO
[J]
a;ren(n;µ)� k@k�1

J O
[J]
a;ren(n;µ) ,

<latexit sha1_base64="oO6eNGGegfHf33ud184cjx5aqNc=">AAACDnicbVBLTsMwFHTKr5RfCks2FhVSEaJKyndZwYZlkehHaqPIcZ3WquNEtgO0Ue/ABdjCDdghtlyBC3AOnLYL2jKSpdHMe36j8SJGpbKsbyOztLyyupZdz21sbm3vmPndugxjgUkNhywUTQ9JwignNUUVI81IEBR4jDS8/k3qNx6IkDTk92oQESdAXU59ipHSkmvmT8rF0+NhO0JCUcTc4ZFrFqySNQZcJPaUFMAUVdf8aXdCHAeEK8yQlC3bipSTpB9iRka5dixJhHAfdUlLU44CIp1kHH0ED7XSgX4o9OMKjtW/GwkKpBwEnp4MkOrJeS8V//NasfKvnITyKFaE48khP2ZQhTDtAXaoIFixgSYIC6qzQtxDAmGl25q58jSJmtPF2PM1LJJ6uWRflM7vzgqV62lFWbAPDkAR2OASVMAtqIIawOARvIBX8GY8G+/Gh/E5Gc0Y0509MAPj6xdLOZuP</latexit>

�2(3 + z@z)collinear approx

<latexit sha1_base64="v7hjETdeY9aHeZApHIAs97PfnmQ="></latexit>✓
@

@ ln z
+ 1

◆
C(k)

a (z;µ) =
k + 1

2
C(k+1)

a (z;µ)Recursion Relation:
<latexit sha1_base64="AUydDnXt8wFbvY0CX+RLaIqUe5A="></latexit>

C(k)
a (z;µ) =

1

z

2k

k!

✓
@

@ ln z

◆k

eCa(z;µ)Solution:
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• Only single undetermined function

• Contains logarithms in perturbation theory

classical scaling behavior
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RG invariance
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+ higher twists
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RG invariant (vanishing anom. dim.) known RG behavior
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Impose RG consistency 
condition on coefficients
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The RG evolution of coefficients are determined by the RG of operators

They are compatible with the Lorentz symmetry constraint
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Constraint from Physical Observables
Consider EEC with the center of mass energy . Q

<latexit sha1_base64="7SjKrj95Dxeb5DryyGtTpRMEHNg=">AAACX3icbZBLaxsxEMflTfNyXtv0FHoRNQEbgtkN6eMSCCmBHGOok4DlLLPyrC0iaRdJW+ou/n75Cjn20mOvzTHy41AnHRD66z8zzOiXFlJYF0WPtWDlzera+sZmfWt7Z3cvfLt/bfPScOzyXObmNgWLUmjsOuEk3hYGQaUSb9L7r9P8zXc0VuT6mxsX2Fcw1CITHJy3kjBlEvRQIlPgRhxkdTFp6tbS644VRihsMTOrTDr0lHbujmnW/HnEpKYsM8Ar70wqpkp/HTGQxQgS2/TvVisJG1E7mgV9LeKFaJBFXCXhbzbIealQOy7B2l4cFa5fgXGCS5zUWWmxAH4PQ+x5qUGh7VczFhN66J0BzXLjj3Z05v7bUYGydqxSXzn9pH2Zm5r/y/VKl33pV0IXpUPN54OyUlKX0ylYOhAGuZNjL4Ab4XelfAQejfP4l6b8mK9a92Dilxhei+vjdvyp/bFz0jg7XyDaIO/JB9IkMflMzsgluSJdwskD+UP+kqfar2A92A3CeWlQW/S8I0sRHDwDqVe4WQ==</latexit>

hE(n)E(n0)iQ = Q2f(z, ln
Q2

µ2
,↵s(µ))

But the light-ray OPE does not manifest this property
<latexit sha1_base64="Ux+g3qdUgPNzOskKgAvG3CE4GY0=">AAADEnicbVLdbtMwFHbC3yh/HXDHjaFCam+qZPxKU6VpExLqDZtEt0l1Gjmu01pxnMhxYK3xW/AC3MIbcIe45QV4AZ4D5wdEN45k6/P5zjn+zrGjnLNCed5Px710+crVa1vXOzdu3rp9p7t997jISknohGQ8k6cRLihngk4UU5ye5pLiNOL0JEoOKv7kHZUFy8RbtcppkOKFYDEjWFlXuO3cRxyLBacoxWpJMNevTF8MNk4zlEuW0gGSdWR4BEcQxRIT7Ru9NhAVZRrqZOSZmUZMxGplWn5nlhidPLRHTmM1rfd+Q6EcS8UwN3+RDRJwbZBki6UazBKI3rM5VYzPqT4wIe6vd1FaDho++FOyTQ7HVULTCqzVR5F+YwVNx4EJNd5Fip4pLakwtqO2UNtOWxHts8WHUI9HT0zY7XlDrzZ4Efgt6IHWDsPuLzTPSJlSoQjHRTH1vVwFutJGODUdVBY0xyTBCzq1UOCUFoGun8/Ax9Yzh3Em7RIK1t5/MzROi2KVRjayaqw4z1XO/3HTUsUvA81EXioqSHNRXHKoMlj9BThnkhLFVxZgIpnVCskS29dR9sds3HLWSO3Ywfjnx3ARHO8M/efDZ0dPe3v77Yi2wAPwCPSBD16APfAaHIIJII52PjmfnS/uR/er+8393oS6TptzD2yY++M3sfH/ig==</latexit>

hE(n)E(n0)iQ =
1

z

1X

k=0

2k

k!

"✓
@

@ ln z

◆k

eCa(z;µ)

# h
@k
JhO[J]

a;ren(n;µ)iQ
i ���

J=3

<latexit sha1_base64="akojR7yCED+tD5LkKpIhpoz148I="></latexit>

hO[J]
a;ren(n;µ)iQ = QJ�1ha(J, ln

Q2

µ2
;↵s(µ))

In perturbative massless QCD, we expect the functional from
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Deriving Factorization from Light-ray OPE
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QCD factorization formula for EEChard function jet function



Back to Conformal Case

RG equation
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For simplicity, let’s assume there is no degeneracy and mixing

Conformal case
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<latexit sha1_base64="7Omnyyq4fthrcgqADLVLntJwUOc="></latexit>

�S(J)� �T (J + 2�S(J)) = 0

Reciprocity Relation
<latexit sha1_base64="/umDRdPDoHS5GSRM5cNN91UEszY="></latexit>

eC(ln z;↵s) / z�
S(3;↵S)Exact scaling behavior



Light-ray OPE and Regge Trajectory
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Light-ray operators are expected to be the analytic continuation of local operators.
[Kravchuk, Simmons-Duffin, 2018]
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�� d

2

perturbative leading twist trajectory

conformal light-ray OPE point

J = 3

In pQCD, the light-ray OPE is smeared around the conformal point.

[Hofman, Maldacena, 2008; Kologlu, 
Kravchuk, Simmons-Duffin, Zhiboedov, 2019]

leading hadronization power correction
[HC, Monni, Xu, Zhu, 2024; 

Lee, Pathak, Stewart, Sun, 2024]
See HuaXing’s talk for details

Also see Iain, Zhiquan, Kyle’s talks for an alternative perspective 



Evolution of Leading Power Correction
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Hadron Collider

See HuaXing’s talk 
Assume power corrections = (hadron minus parton) results from Monte Carlo generator.



Strong Coupling Limit
Strong coupling limit in generic QFTs are hard. For holographic CFTs, we can 
access this limit through AdS/CFT correspondence.

Example: N=4 SYM and Type II B superstring theory on AdS5 × S5

Expansion in : Stringy Correction1/λ
Expansion in : QG Correction1/Nc
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Classical GR <—— large  and  limit:λ Nc

’t Hooft coupling: λ = g2
YMNc

string length: ℓs = λ−1/4RAdS

 GN ∼ N−2
c ∼ 1/cT

EEC in the strong coupling limit:
[Hofman, Maldacena, 2008]

Energy detectors correspond to shockwaves in AdS

[HC, Karlsson Zhiboedov, 2024]Leading QG Correction:

Enhancement property compared to the local correlator:

uniform distribution in the strong coupling limit
<latexit sha1_base64="I4yT/bdpZmJrLxG+SXiBTez6DQo=">AAACYnicfVHLSsNAFJ3GV42v1C51MVgEVyURX8uiCC4r2Ae0pUymt+3gZBJmJmIJ/UK/wL24d6sbJ00W9oEXBg7nnMs9nPEjzpR23feCtba+sblV3LZ3dvf2D5zSYVOFsaTQoCEPZdsnCjgT0NBMc2hHEkjgc2j5z3ep3noBqVgonvQkgl5ARoINGSXaUH0HupyIEQfcDYgeU8KT++k8lrmuWIDtle7M8Z/Wdypu1Z0NXgZeDioon3rf+ewOQhoHIDTlRKmO50a6lxCpGeUwtbuxgojQZzKCjoGCBKB6yayOKT41zAAPQ2me0HjG/t1ISKDUJPCNM42qFrWUXKV1Yj286SVMRLEGQbNDw5hjHeK0WzxgEqjmEwMIlcxkxXRMJKHa/MDcldcsqm2K8RZrWAbN86p3Vb18vKjUbvOKiugInaAz5KFrVEMPqI4aiKI39IW+0U/hw7KtklXOrFYh3ymjubGOfwE85brC</latexit>

hEEi ⇠ hEihEi
Also see Riccardo’s and Matthew’s talks



Summary
• Light-ray operators play an important role in collider physics.


• Light-ray OPE, organized as twist expansion, governs the small angle 
scaling behavior. 


• By generalizing light-ray OPE to non-conformal theory, we are able to derive 
the QCD factorization formula.


• Light-ray OPE is an interesting formalism that has fruitful phenomenological 
applications, including hadronization effects.
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