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1. Motivation for track-based measurements

Pile-up removal

Superior angular resolution
— good for jet substructure




1. Motivation for track-based measurements

Pile-up removal

Superior angular resolution
— good for jet substructure

E.g. for groomed p = In(m?/p3)
Calonmeter tracks:
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1. Main message on track-based predictions

Track-based measurements are sensitive to hadronization.

Instead of hadronization models in parton showers,
track functions offer systematically improvable framework.,

Recently extended to O(a2) — high precision possible!

For energy correlators, track functions are easy to implement
(only moments)
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1. Some motivations for energy correlators

Energy correlators probe correlations in energy flow:

-3 [do =55 66— 035) ~ ()2 i)

[Basham Brown, Ellis, Love]

Theory: energy weights suppress soft radiation — (simpler)
collinear calculation with different (smaller) uncertainties.

Phenomenology: separation of physics at different scales.

Applications: «, determination, hadronization, dead cone
effect, quark-gluon plasma, top quark mass, ...



1. Some pheno applications
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1. Some pheno applications

Dead cone

[Craft, Lee, Mecaj, Mouli]

Top quark mass
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1. Calculations require track functions

L, o
20y

[Chang, Procura, Thaler, W\W]|

T;(x, ) describes total momentum fraction « of initial parton i
converted to tracks, i.e. p* = xp* + O(Aqcp)

Nonperturbative, process-independent function.
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1. Calculations require track functions

L, o
=0

[Chang, Procura, Thaler, W\W]|

T;(x, ) describes total momentum fraction « of initial parton i
converted to tracks, i.e. p* = xp* + O(Aqcp)

Nonperturbative, process-independent function.
Conservation of probability: fOl dzTi(z) =1

all charged hadrons in X

Definition in light-cone gauge -

T,(0) = [yttt 2y 6 (o - 1)
X

< t{%mwyﬂo,yL>rX><X\w<o>\o>}
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1. Track function at order o5

splitting function

(D) 1 (0)
zbare Z/dz 47 \eyv c )PJ’L( )} /dmlTj (ajlvlu)

IR

X /dﬂ?g T,g )($2,M)5[£E — zx1 — (1 — 2) @)

summing contribution of branches

1/err cancels against IR pole in partonic cross section.

1/eyv is renormalized, leads to evolution of track function.
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1. Track function evolution at LO
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[Chang, Procura, Thaler, W\W]|

Consistent with extraction from Pythia at different energies.
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1. Track function evolution at LO
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Consistent with extraction from Pythia at different energies.

Simplifies for integer moments: =¥ = [z21 + (1 — 2)z5]"

binomial expansion
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1. Track-based energy correlators

E;
S im0
F .

J

Angular resolution of tracks is essential at small 6.
Conversion to tracks is simple:

E;, — /dxz (x;) x; By = T;(1) E;

[Chen, Moult, Zhang, Zhu]

0 = 0 involves T;(2), enters resummation of In6 for  « 1

N-point energy correlators involve at most the Nth moment
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1. Track-based energy correlators beyond LO

Beyond LO, there is a cancellation of IR poles between
perturbative calculation and partonic track functions.

Result is pretty simple. E.g. for finite part of gluon jet function

Jg(2) = 0(2)T,(2) 4 Z; _(%CATQ(1)2 T %”qu(1)2> %Jr
+ 5(2)( 879580AT9(1)2 — ;_;lnqu(l)2>_

Result on all particles is given by T;(n) — 1.
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1. How to match onto track functions

Lets take the example of PDFs, which we can write as:
(PlO(Q)|P) = Ci(Q) ® (P|O;| P)

hadronic partonic PDF
Cross section  cross section (renormalized)

Because C; (@) holds independent of the states, we can
calculate it by replacing | P) — |q), |g)-
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1. How to match onto track functions

Lets take the example of PDFs, which we can write as:
(PlO(Q)|P) = Ci(Q) ® (P|O;| P)

hadronic partonic PDF
Cross section  cross section (renormalized)

Because C;()) holds independent of the states, we can
calculate it by replacing | P) — |q), |g)-

Equivalently, we can calculate the LHS by “attaching” a tree-
level PDF fz.(o) (partonic state). Using that in dim. reg.

fz(O) _ f})are _ Zij R fjljen
the poles from Z must cancel against IR poles to give C'(Q).

For track functions, you need to attach a TZ.(O) to each parton¢
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. Track function evolution at NLO

Kernels are lengthy but available electronically.

Projects onto DGLAP, also yields evolution of multi-hadron

fragmentation functions
[Chen, Jaarsma, Li, Moult, WW, Zhu]
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1. Track function evolution at NLO for moments

Energy conservation implies evolution has symmetry * — = + a

Make manifest by using shift-invariant central moments
A=Ty(1) - Ty(1), 0i(2) =T;(2) — Ti(1)%

leading to compact expressions:
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[Li, Moult, Schrijnder van Velzen, W\W, Zhu] 20



1. Track-based EEC

First O(a?) result for track-based measurement:

c
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resummation needed /
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AEEC on Charged Particl
=
[
< =
IN ek

Ratio to NLO

cosy

AEEC(cos x) = EEC(cos x) — EEC(— cos x)

Uncertainty reduced at NLO, good agreement with data.

[Li, Moult, Schrijnder van Velzen, WW, Zhu]
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1. Projected N-point energy correlator
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All vs. charged particles are qualitatively similar, e.g. slope
increases with

Quantitative difference is calculable with track functions!

[Jaarsma, Li, Moult, WW, Zhu] 22



1. Projected N-point energy correlator

Ratio of PEC on Tracks to PEC on All Particles Ratio of PEC on Tracks to PEC on All Particles
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Ratio of charged to all particles is constant for 2-point, but
not higher point.

In perturbative region ratio is ~ T(m)T (N — M) ~ T(1)"

In nonperturbative region ratio is ~ (2/3)% ~ T;(1)* for all N.
[Jaarsma, Li, Moult, WW, Zhu] 23



1. Bonus: how to extract the track function

The momentum fraction of charged particles in a jet is at LO
the track function = use this to extract it!

There are effects of hard scattering (quark vs. gluon) and jet
formation:

Track Jet Functions vs. Track Functions

3 prR = 500 GeV
= Quark Jet, NLO

= Gluon Jet, NLO \
2 = Quark Track, NLO / Y\
\‘\\
-\

& Gluon Track, NLO ///

06

Lirk

[Lee, Moult, Ringer, WW]



2. Fast evaluation of energy correlators



2. The challenge

do PTyiy -+ -PT,in
o= Y [do PR P Ry max (R )

1] geeny ’iN T

Evaluating the (projected) N-point correlator for M particles,
requires O(M™) time. Prohibitive for N > 6.
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2. The challenge

do PTyiy -+ -PT,in
o= Y [do PR P Ry max (R )

1, i N T

Evaluating the (projected) N-point correlator for M particles,
requires O(M™) time. Prohibitive for N > 6.

A simple solution is to (re)cluster using a (sub)jet radius r.
This speeds things up and gives reliable results for Ry, > r.
x No results for Ry, < r, and reducing r increases time.

Our solution: use a dynamic subjet radius set by actual
distances between particles in the event.
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2. Our solution

Recluster jet with C/A

[Budhraja, WW]
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2. Our solution

Recluster jet with C/A

Take first split, separation AR

[Budhraja, WW]| 29



2. Our solution

Recluster jet with C/A
Take first split, separation AR |

Decluster until subjets with
radius 7 = AR/+/ f

I
AR/A\/f !

[Budhraja, WW]
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2. Our solution

Recluster jet with C/A
Take first split, separation AR

Decluster until subjets with
radius 7 = AR/+/ f

Obtain correlator for terms
iINnvolving both sides of the split:

> priy pr;o(Rp — Rij)
2 J

[Budhraja, WW] 31



2. Our solution

Recluster jet with C/A
Take first split, separation AR

Decluster until subjets with
radius 7 = AR/+/ f

Obtain correlator for terms
iINnvolving both sides of the split:

> priy pr;o(Rp — Rij)
2 J

Recurse on each branch to get
correlations at smaller scales.

[Budhraja, WW]
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2. Some comments

These approximations preserve the sum rule exactly.

Our default is to cluster with C/A with fixed resolution f.
Surprisingly, kr with f = k7 .., works well.

We use MIT Open Data that utilizes CMS 2011A reprocessed
data on jets. This is a sample of jets with

pr € [500,550] GeV, |n| < 1.9
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2. Performance: computation time
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N-point correlator [Budhraja, WW]

Up to several orders of magnitude speed up over Komiske’s
code, depending on desired accuracy.

Time per event using single core on MacBook Air M1.
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2. Performance: accuracy
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Going from 3- to 6-point increases error from 2 to 5% for f = 8
kT method has sub-permille accuracy across most of range.

All methods perform less well at jet boundary. 35



2. FastEEC public code

Avallable at:

https://qithub.com/abudhraj/FastEEC/releases/tag/0.1

Includes:

C++ code, only dependency is Fastdet (for reclustering).
Example input and output files.

Mathematica notebook that converts output into a plot of
our paper.

When the code is executed from the command line the following inputs are needed

./eec_fast input_file events N f minbin nbins output_file

The above command line parameters require

The input_file from which events should be read
events > 0 is the number of events

36
1 < N < 9 specifies which point correlator to compute


https://github.com/abudhraj/FastEEC/releases/tag/0.1

3. & beyond



3. The space of observables

Coming from Soft-Collinear Effective Theory/Jet Substructure,
energy correlators are actually quite special.

Most observables (e.g. jet mass) are sensitive to soft radiation
— messy, grooming, ... 3



3. Collinear sensitive observables

Observables that are only sensitive to collinear radiation are
usually associated with nonperturbative effects: PDFs, FFs...

Momentum fractions of (sub)jets instead of hadrons can be
considered [Dasgupta, Dreyer, Salam, Soyez; Kang, Ringer, Vitev; ...]

Z/da 959 0i;)
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3. Collinear sensitive observables

Observables that are only sensitive to collinear radiation are
usually associated with nonperturbative effects: PDFs, FFs...

Momentum fractions of (sub)jets instead of hadrons can be
considered [Dasgupta, Dreyer, Salam, Soyez; Kang, Ringer, Vitev; ...]

Recoill-free et axes also work, e.g. jet shape with respect to
the winner-take-all axis [Neil, Scimemi, WW]

Z/da 959 0i;)
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3. Collinear sensitive observables

Observables that are only sensitive to collinear radiation are
usually associated with nonperturbative effects: PDFs, FFs...

Momentum fractions of (sub)jets instead of hadrons can be
considered [Dasgupta, Dreyer, Salam, Soyez; Kang, Ringer, Vitev; ...]

Recoill-free et axes also work, e.g. jet shape with respect to
the winner-take-all axis [Neil, Scimemi, WW]

Weights = > 1 further suppress soft radiation and can be
treated using the track function framework.

EFEY

Z/da oo 30 = 0g)
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3. Collinear sensitive observables

Observables that are only sensitive to collinear radiation are
usually associated with nonperturbative effects: PDFs, FFs...

Momentum fractions of (sub)jets instead of hadrons can be
considered [Dasgupta, Dreyer, Salam, Soyez; Kang, Ringer, Vitev; ...]

Recoill-free et axes also work, e.g. jet shape with respect to
the winner-take-all axis [Neil, Scimemi, WW]

Weights = > 1 further suppress soft radiation and can be
treated using the track function framework.

What about correlations in observables other than angle”
EFfE"

Z/da Q%‘?é@ 0;;)
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3. Energy Weighted Observable Correlations

Motivation: instead of correlations in angle, we may prefer
mass (of a resonance), formation time (QGP), ...

Challenge: collinear unsafe — regularize using (sub)jet radius.
Example: mass EWOC

do
DS

subjets 7,7
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do

3. Mass EWOC for hadronic W decay

dlog z
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( ) EEC

F{MPpeak — Mw _ +34.20
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[ Pythia 8.307, pp to WTW ™, /s=14.0 TeV

500 GeV < prjet, Rjet =1

103 102 101

102

100

do
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EEC on subjets
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GeV — «1tL_19.37
0.150 | Pythia 8.307, pp to WHW~, /s=14.0 TeV

500 GeV < prjet, Rijet = 1

0.125}
0.100t Set by myy
0.075F
0.050F

0.025}

0.000

107 103 102

[Alipour-Fard, WW]|

Mass Subjet EWOC
(mPeak—mW) =0 06+5.84
GeV - M —6.37

| Pythia 8.307, pp to WHW~, /s=14.0 TeV
500 GeV < PT, jets Rjet =1
myy
10?
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. Choice of subjet radius

do

Pythia 8.307, pp to W W, \/s=14.0 TeV
[ 500 GeV < DT, jet s Rjet =1

‘Mass EWOC

T'sub = 0.0 .
Tsub = 0.03 ]

m— b = 0.3

== Hadron .
Hadron + MPI |

[Alipour-Fard, W\W]

Choosing rsup > 0 is crucial for identifying W mass peak.
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. Choice of subjet radius

Pythia 8.307, pp to W W, \/s=14.0 TeV
[ 500 GeV < DT, jet s Rjet =1

‘Mass EWOC

—— oub — 03

m—— Jot, Mass

== Hadron .
Hadron + MPI |

m [G'eV] ‘

[Alipour-Fard, W\W]

Choosing rsup > 0 is crucial for identifying W mass peak.

Mass EWOC similar to jet mass, but much robuster to MPI.
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Conclusions and outlook

Tracks & energy correlators are perfect match:

Superior angular resolution essential.
Only track function moments enter.

FastEEC: orders of magnitude speed up
for higher-point energy correlator.

Correlations in other observables are
possible and promising (using subjets).
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Conclusions and outlook

Tracks & energy correlators are perfect match:

Superior angular resolution essential.
Only track function moments enter.

FastEEC: orders of magnitude speed up
for higher-point energy correlator.

Correlations in other observables are
possible and promising (using subjets).
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