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EVENT SHAPE

Explicit calculations will 
be crucial for 
uncovering hidden 
simplicity and structures

How is the total scattering energy divided in the hadronic final state? 

How do we describe the final states produced in particle scattering? 

Event shape:   
measure the geometric distribution of energy flow, discriminate between jet-like vs. spherical events 
e.g.  Thrust,  Sphericity,  C-parameter,  N-jettiness, jet finding algorithms,…
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MULTI-POINT ENERGY FLOW 
CORRELATION

Evenly distributed for unpolarized source. 

- Simplest event shape:  expectation value of energy flow in fixed direction:  ⟨	Ε(𝑛)	⟩

Energy flow distribution  	Ε 𝑛 = !!

"#

Final state is an ensemble of varying number of particles,  characterized by energy flow  

Ε 𝑛 ≔*
$∈&

𝐸$ 	𝛿'(𝑛 − Ω$)
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- Two-particle correlators  ⟨	Ε(𝑛()Ε 𝑛' 	⟩
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Energy-energy correlation in N=4 sYM

Analytic structure for higher-point correlators? 
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𝑵−point Energy Correlators in the multi-collinear limit: 

Parametric representation similar to Feynman loop integrals

Potential for developing amplitudes methods for the study of  physical observables

𝑥$: energy carried by 
collinear particles 

(Muiti-point) Energy Correlators: 
correlation of energy deposited in 
detectors in different directions as 
function of the angles between them

Novel observables in collider physics measured at the LHC 



5 Exhibits an OPE in the 
(multi-) collinear limit

Energy correlators: 
correlation function of flow operators

⟨Ε 𝑛( Ε 𝑛' …Ε(𝑛))⟩ 

= 2𝑑"𝑥𝑒$!⋅+
⟨𝑂(𝑥)ℰ 𝑛( ⋯ℰ(𝑛))𝑂(0)⟩

⟨𝑂(𝑥)𝑂(0)⟩

A potential playground for novel 
onshell methods in scattering 
amplitudes[Shounak De et 
al,2308.03753]
[Arkani-Hamed,Yuan,1712.09991.]
[Gong, Yuan, 2206.06507]

new jet substructure 
calculations [Komiske et al, 
2201.07800] 

key for understanding 
the conformal light-ray 
OPE [Chang et al,
2202.04090][Chen et al, 
2202.04085]

Multi-collinear limit: 
relevant in the studies of 
jet physics  



Offshell definition

!!" #; %& = ()*+	-.	/⋅1⟨3(+)	Ε 7 Ε n9 3(0)⟩

EEC(⇣) ⇠

Z
d
4
x e

iq·x
Z 1

�1
dx2�dx3� lim

x2+,3+!1
x
2
2+x

2
3+h0|O

†(x)O(x2)O(x3)O(0)|0i

Ε " ≔ lim
'→)

*+ ,-	/0	"1231(5 = /0 + *, *	")

Wightman correlation functionDetector time integration

O:  half BPS operator (N=4)
    electromagnetic current (QCD)
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𝑂 𝑥( 𝑂 𝑥' 𝑂 𝑥, 𝑂 𝑥" =
Φ	(𝑢, 𝑣)
𝑥('" 𝑥,""

𝑢 =
𝑥("' 𝑥','

𝑥(,' 𝑥'"'
, 𝑣 =

𝑥('' 𝑥,"'

𝑥(,' 𝑥'"'
.

Double discontinuity formula:

Works well for two-point correlator (in particular 
in N=4 SYM).
Difficult to generalize to higher point. 

Analytically continue to Minkowski space: à G(u,v)
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Analytic function of distances on the celestial sphere: 𝜁$- =
!"(/#	⋅/%)

'(/#⋅!)(/%⋅!)	

⟨Ε 𝑛! Ε 𝑛" …Ε(𝑛#)⟩

= )
$%#

*𝑑	Π$	𝛿" 𝑛& − Ω& ⋯𝛿" 𝑛# − Ω#
𝐸!⋯𝐸#
𝑄#

𝐹𝐹$(𝑂)

Onshell definition

𝑘 = 𝑁 + 1: Leading order.  Manifestly finite integration over tree-level 
matrix element 𝐹𝐹)2(

(3)

𝐹𝐹! 𝑂 ∶ 	 0 𝑂 1,2, … , 𝑘 "	𝑠𝑢𝑚𝑚𝑒𝑑	𝑜𝑣𝑒𝑟	ℎ𝑒𝑙𝑖𝑐𝑖𝑡𝑦, 𝑐𝑜𝑙𝑜𝑟	𝑎𝑛𝑑	𝑝𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑜𝑛	𝑓𝑖𝑛𝑎𝑙	𝑠𝑡𝑎𝑡𝑒𝑠	
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𝑁 −point Energy correlators @𝐿𝑂
Master formula : energy integrations over onshell tree-level (𝑁 + 1)-point  
squared Form Factor

ℱ#'(: = *
)

!
𝑑	𝑥! 	… 𝑑	𝑥#	𝛿 1 − 𝑄# 𝑥!⋯𝑥# " 𝐹#*!

) 𝑂
"

𝑄): = 𝑥( +⋯+ 𝑥) − ∑$,- 𝑥$𝑥- 𝜁$-  

𝑠$- = 𝑥$𝑥-𝜁$-

𝐸)𝐶 = ℱ) 𝜁$- + 	𝑝𝑒𝑟𝑚𝑠(1, 2⋯ ,𝑁)

𝑥$ =
2𝐸$
𝑄

𝐹)2(
3 𝑂

'
= 𝐹)2(

3 𝑂
567

×	(products of ratios between madelstam variables ) 

𝑠$-8 = 𝑥$𝑥-𝜁$-+ 𝑥-𝑥8𝜁-8+ 𝑥$𝑥8𝜁$8, etc
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E(n⃗1)

E(n⃗2)

E(n⃗3)

O

∞

θ

Three-point Energy Correlator in 
N=4 sYM @LO

detectors the directions of the 
unit vectors n1,n2 and n3
. 

𝐿𝑖9 −𝑆 	𝑚𝑜𝑑𝑢𝑙𝑜 products of logarithms

τ1τ2

−sτ1

1

τ1

−s

−sτ1τ2

Kinematic data embedded in 6 
points on unit circle

𝑃((ℝ)

three points on the celestial 
sphere on a circle centered 
at the origin

𝑠 ≔ tan" #" , 𝜏$ ≔ 𝑒%&!", 𝜏" ≔ 𝑒%&#"

O √

s

φ2

φ1

𝑆 ≔ { (" ⟨;,⟩
(, ⟨";⟩

, (' ="
(= '"

, (' ",
(" ',

, (, ="
(= ",

, (' ," =>
', "= >(

, (" ', =>
," '= >(

 

}+ 𝐷> images

Function Space

Zhang, Yan, Phys.Rev.Lett. 129 (2022) 2, 021602  
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Perturbative results

⟨Ε 𝑛( Ε 𝑛' ⟩

E(n⃗1)

E(n⃗2)

E(n⃗3)

O

∞

θ

⟨Ε 𝑛( Ε 𝑛' Ε(𝑛,)⟩

ℱ 𝜁 = sin'
𝜒
2
	 @𝐿𝑂 @𝑁𝐿𝑂 @𝑁𝑁𝐿𝑂

ℱ 𝜁(', 𝜁(,, 𝜁', 	 @𝐿𝑂

⟨Ε 𝑛( Ε 𝑛' Ε(𝑛,)Ε(𝑛")⟩ ?	

ln(1 − 𝜁)
𝒜'' = {𝜁, 1 − 𝜁,

1 − 𝜁
1 + 𝜁

}

max.𝑤𝑒𝑖𝑔ℎ𝑡	3	𝑝𝑜𝑙𝑦𝑙𝑜𝑔𝑠 𝑚𝑎𝑥.𝑤𝑒𝑖𝑔ℎ𝑡	5	𝐻𝑃𝐿
+ 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐

max.𝑤𝑒𝑖𝑔ℎ𝑡	2	𝑝𝑜𝑙𝑦𝑙𝑜𝑔𝑠

16	𝑙𝑒𝑡𝑡𝑒𝑟𝑠, 2	𝑡𝑦𝑝𝑒𝑠	𝑜𝑓	𝑠𝑞𝑢𝑟𝑒	𝑟𝑜𝑜𝑡𝑠

𝑂(𝛼) 𝑂(𝛼') 𝑂(𝛼,)

𝑂(𝛼')

𝑂(𝛼,)

Basis	of classical polylogarithms
First	entry conditions
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𝑁 −point Energy correlators @𝐿𝑂

For arbitrary 𝑁, given by manifestly finite 𝑁-fold energy integrals. Go to higher order 
in the coupling constants without encountering IR divergence.

They admit parametric representation similar to  Feynman loop integrals.

Built entirely from tree-level quantities, the leading-order energy correlators, with 
an increasing number of detectors, may provide insights on the structures for 
higher-loop amplitudes. 
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Splitting function contains poles either linear or bi-linear in the 𝑥$ −parameters

The N−point correlators define a class of manifestly finite integrals in (𝑁 −
1)−dimensional projective space 

𝒢#'( 𝑧& : = *
)

!
𝑑	𝑥!…𝑑	𝑥#𝛿 1 − 𝑥! −⋯− 𝑥# 𝑥!⋯𝑥# " 𝑆𝑝𝑙𝑖𝑡!→#

) "

𝐸)𝐶?@AA. = 𝒢) 𝑧$ + 	𝑝𝑒𝑟𝑚𝑠(1, 2⋯ ,𝑁)

In the multi-collinear limit

𝑧$-: small angular separations 
𝑥$: energy fractions carried by 
collinear particles

𝑝$
% = 𝑝$&, 𝑝$', 𝑝$( =

𝑥$
1 + |𝑧$|)

1, 𝑧$ ), 𝑧$ →	𝑥$ 1, 𝑧$ ), 𝑧$ 𝜁$- → 𝑧$-
' ∼ 0
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Single-valued function of coordinates (𝑧&, ̅𝑧&) on 
the celestial sphere

= 0

= 1= 𝑧

=
𝑧 − 𝑤
1 − 𝑤

= 1= 𝑧

= 0 @	𝐿𝑂𝐺(𝑧) 

𝐺(𝑧, 𝑤) @	𝐿𝑂

Φ' 𝑧

𝐿𝑖' 1 − 𝑢 +
1
2 ln 𝑢	 ln 𝑣	

[H.Chen et al,
1912.11050 ],

𝑚𝑎𝑥.𝑤𝑒𝑖𝑔ℎ𝑡	3	𝑝𝑜𝑙𝑦𝑙𝑜𝑔𝑎𝑟𝑖𝑡ℎ𝑚𝑠

𝑁 = 3

𝑁 = 4

ln 𝑢	

Chicherin, Sokatchev, Moult,Yan,Zhu

𝐸E𝐶@𝐿𝑂 in the collinear limit:
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- Symbols, landau singularity analysis

- Physical constraints and asymptotic limits à Boostrap

-Integrand: 

-Integration

- Integration-by-part algorithm operating directly on the (Feynman-) 
parameter space . Profit from simplicity that exist for finite integrals.

-Intersection theory method

-Function

The squared (N+1)-point super form factor for ½ BPS operator, with 
manifest dual conformal symmetry.

Onshell methods applied to 
physical cross sections
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Form factor |𝐹EFGH 𝑂IJK |I 

The tree-level 1 → 𝑁 splitting function can be obtained from the squared (𝑁 + 1)-
point form factor where 𝑝!⋯𝑝# are collinear and 𝑝#*! is anti-collinear. 

|𝐹)567 ℒ |'given by product of chiral and anti-chiral diagrams describing the MHV rules.
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𝑝$ = 𝑦$ − 𝑦$C(, 	𝑝$2"≔ 𝑝$ , 	𝑠$2(,8= 𝑦$8'

𝑦"

𝑦($ 𝑦)

𝑦*
𝑦$

𝑦+

Compact form of the splitting function 
manifestly dual conformal invariant

In the collinear limit, |𝐹)2(|' can be expressed in 
terms of coordinates on a section in the periodic dual 
coordinate space  including one period +1 point 

[𝑦C(,… , y)] 

In the 𝑁 −particle collinear limit, 

𝑦$)' → 𝑥$2( +⋯+𝑥)C(
𝑦C($' → 𝑥( +⋯+𝑥$

For N=3,
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lim
( ' ,||"

E& '()*
"

E& ()*
"  =

In the quadruple collinear limit

𝑝$ = 𝑦$ − 𝑦$C(, 	𝑝$2=≔ 𝑝$ , 	𝑠$2(,8= 𝑦$8'
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Integration-by-parts for 
finite integrals 

We developed techniques suitable for the computation of the 𝐸#𝐶 for arbitrary 𝑁; 
based on methods for finite integrals [Caron Huot, Henn, 1404.2922][Henn, Ma, 
Yan,Zhang,2211.13967]
 

Advantages:
Bypass solving large linear systems of IBPs ; 
DEs exhibit a ”grading” structure, visualizes the iterative structure of loop integrals.
may apply in more general setup.
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𝑥,,..,/	 ≔ 𝑥, +⋯+ 𝑥/	𝑠,…/: = i
%,2 ∈[,,/]

𝑥%𝑥2 z%2
"

Energy integration over 
splitting function 

𝐺) ≔
𝐹 '

𝐹567 '

𝑁 = 3:	

𝐺) contains only multi-particle poles, no two-particle pole  
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𝑥,,..,/	 ≔ 𝑥, +⋯+ 𝑥/	𝑠,…/: = i
%,2 ∈[,,/]

𝑥%𝑥2 z%2
"

𝑁 = 4:	

𝐺) ≔
𝐹 '

𝐹567 '
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Goal：
-lower the degree of denominators in target integrals. 
transform them to simpler, manageable integrals with simple or at most double pole

Integration-by-part method can be designed to achieve these goals. 

Multi kinematic scales and high degree poles in the integrand poses 
great challenge to partial fractioning and multi-fold integration.
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N-point Integral Family

𝑁 = 3 ∶

𝑁 = 4 ∶

𝐷(CF are multi-
particle poles 
corresponding to 
physical 
singularities
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N-point Integral Family

1. Homogeneity: integrand has the overall scaling dimension −𝑁

2. Finiteness:  free from IR divergences as any subset of energy variables go to zero. 

Given condition 1, 
condition 2 is equivalent to the following UV power-counting behaviour: 

as

as 𝑥(, 𝑥', 𝑥,, 𝑥" → 𝜅 𝑥(, 𝑥', 𝑥,, 𝑥"
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An analog: Wilson-line web functions

The 𝐸)𝐶 fulfill the same criterions for the so-called ’admissible integrals’ (the absence of sub-
divergences) in [Henn, Ma, Yan, Zhang  2211.13967], 

No regulators are needed for the ”leading” divergences.
Four-dimensional IBP and DE methods apply.
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2. A finite integral may appear as linear combination of divergent ones

𝑥$(𝑥$" − 𝑥$)
𝑠$")" 𝑥$")

E.g. for ++++"
G+"," ++",

, ++"

G+"," ++",
, ++""

G+"," ++",
, ++
G+"," , ++"

G+"," , (
G+",++",

，there is relation  𝑧(' ' ++(++"C++)
G+"," ++",

+

𝑧', ' (++"C++)(++",C++")
G+"," ++",

+ 𝑧(, ' ++(++",C++")
G+"," ++",

− (
G+",++",

= 0

1. There are partial fractioning identities among the integrals carrying different 
propagator indices.

Integrals in families 𝑨𝒂 and 𝑩𝒂	 are defined in integer dimension 

𝑥(𝑥('
𝑠(',' 𝑥(',

,
𝑥('

𝑠(',' 𝑥(',
divergent finite



27

Type	equation	here.

Integrand reduction performed together with seeding and IBP reduction 

Setup integrand in a way that only allow x-monomials in the numerator
 Search for basis of ”single finite integrals ”

𝐻𝑒𝑟𝑒	𝑤𝑒	𝑑𝑒𝑚𝑎𝑛𝑑	𝑎$ ≥ 0,	𝑞8≤ 0 𝐷(CF are the physical, multi-particle poles 

Solutions:
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𝑶𝒊 ∘ 𝒇 must satisfy the power-counting condition 1 and condition 2

Differential operators acting on projective 
coordinates [x_1,…,x_N] 

IBP identities in projective space  
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IBP identities in projective space  

Boundary integral family: lower-point integrals 
defined in [𝑥(, . . �𝑥$ , . . , 𝑥)]

Expanded over 𝐴I,…I-;!+..!.
Each term is finite  

boundary terms are generated on the surface of 
integration domain
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2𝑎' + 𝑎" + 𝑎= + 𝑞' + 𝑞, + 1 = 4

Seeding 
(with power counting)

𝑓 =
1

𝑠(',
I" 𝑥',"

I& 𝑥(',"
I.O( =

𝜕
𝜕𝑥(

	𝑥'
C!"𝑥,

C!,	

In sector 𝐴3,(,3,(,(,3,3 consider 

Imposing power counting condition 1, condition 2 on  𝑂( ∘ 𝑓

Overall scaling =0

𝑎', 𝑎=, 𝑎" > 0
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2𝑎' + 𝑎" + 𝑎= + 𝑞' + 𝑞, + 1 = 4

Seeding 
(with power counting)

𝑓 =
1

𝑠(',
I" 𝑥',"

I& 𝑥(',"
I.O( =

𝜕
𝜕𝑥(

	𝑥'
C!"𝑥,

C!,	

In sector 𝐴3,(,3,(,(,3,3 

𝑎" + 𝑎= > 1

consider 

𝑥" → 𝜅	𝑥"

𝑥" → ∞

Imposing power counting condition 1, condition 2 on  𝑂( ∘ 𝑓
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2𝑎' + 𝑎" + 𝑎= + 𝑞' + 𝑞, + 1 = 4

Seeding 
(with power counting)

𝑓 =
1

𝑠(',
I" 𝑥',"

I& 𝑥(',"
I.O( =

𝜕
𝜕𝑥(

	𝑥'
C!"𝑥,

C!,	

In sector 𝐴3,(,3,(,(,3,3 

𝑎" + 𝑎= > 1

𝑎' + 𝑎" − 1 > 1

consider 
𝑥( → 𝜅	𝑥(

𝑥( → ∞

Imposing power counting condition 1, condition 2 on  𝑂( ∘ 𝑓
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2𝑎' + 𝑎" + 𝑎= + 𝑞' + 𝑞, + 1 = 4

Seeding 
(with power counting)

𝑓 =
1

𝑠(',
I" 𝑥',"

I& 𝑥(',"
I.O( =

𝜕
𝜕𝑥(

	𝑥'
C!"𝑥,

C!,	

In sector 𝐴3,(,3,(,(,3,3 

𝑎" + 𝑎= > 1

𝑎' + 𝑎" + 𝑎= − 1 > 2

consider 

𝑥(, 𝑥" → 𝜅(𝑥(, 𝑥")

𝑎' + 𝑎" − 1 > 1

(𝑥(, 𝑥") → ∞

Imposing power counting condition 1, condition 2 on  𝑂( ∘ 𝑓
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Seeding 
(with power counting and optimized by integrand reduction)

Generating Finite IBP relations 𝑀(  

Boundary integrals can be integrated out?  

Reduction on 𝑀( and 𝑀' for the full family 

Work flowGenerating partial fractioning identities 𝑀' among 
integrals generated in 𝑀(  

yes

no
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4-point energy integrals mapped onto 6 sub-topologies plus their images under a reflection 
symmetry which flips the detector orientation : 1 ↔ 4, 2 ↔ 3. 
The 6 topologies are further divided into three categories: 

5 distinct boundary integral topologies related by S4- symmetry:  

𝐵(,3,(,(	
[(,',,] 𝐵(,3,(,(	

[(,',"] 𝐵(,3,(,(	
[(,,,"] 𝐵(,3,(,(	

[',,,"] 𝐵(,(,3,(	
[',,,"]

A total number of 28 four-point master integrals , 14 three-point boundary integrals and and 1 
constant function.
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𝐵I+,3,I,,I.,!+,!",!, = 2
𝑑,𝑥
𝐺𝐿(1)

𝑥(
C!+𝑥'

C!"𝑥,
C!,

𝑠(',
I+ 𝑥',

I,𝑥(',
I.

𝐵(:
𝑥'

𝑠(',𝑥',𝑥(',

𝐵':
1

𝑠(',𝑥(',
𝐵,:

𝑥'
𝑠(',𝑥(',' 𝐵":

𝑥,
𝑠(',𝑥(','

Boundary terms are kinematic 
independent integrals which 
integrates to rational numbers.

EECC master integrals (triple collinear) 

1 𝐶(:

𝑑𝑙𝑜𝑔
1 − 𝑧
1 − ̅𝑧 𝑑𝑙𝑜𝑔

𝑧
̅𝑧

𝑑𝑙𝑜𝑔
1 − 𝑧 "

1 − 𝑧 "

𝑑𝑙𝑜𝑔 𝑧 "

𝑑𝑙𝑜𝑔 1 − 𝑧 "

𝑑𝑙𝑜𝑔 𝑧 "

𝑑	𝑔⃗ = 𝑑𝐴	𝑔⃗

= 1= 𝑧

= 0
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EEEEC Master Integrals
+++"

G+",.G+",+,.++",.
 , +""

G+",.G+",+",.++",.
++

G+",.G+",++",.
 , +"
G+",.G+",++",.

, +,
G+",.G+",++",.

,	

+,
G+",.G+",+,.

, +"
G+",.G+",+",.

, +,
G+",.G+",+",.

,

(
G+",.+,.++",.

 , (
G+",.+",.++",.

, (
G+",+,.++",.

, +,
G+",+,.++",." ,  (

G+",+",.++",.

(
G+",." +,.

 

+"+,
G+",G",.+",.++",.

 , +""

G+",G",.+",.++",.

+"
G+",G",.++",.

 , +,
G+",G",.++",.

,	

+++"
G+",G",.++",." , +++,

G+",G",.++",." , +++,
G+",G",.++",."

1 

𝐵(,3,(,(	
[(,',,] 𝐵(,3,(,(	

[(,',"] 𝐵(,3,(,(	
[(,,,"] 𝐵(,3,(,(	

[',,,"]

All except two integrals involve only 
rational letters

Evaluate to up to weight-3 
polylogarithms

= 0

= 1= 𝑧

=
𝑧 − 𝑤
1 − 𝑤
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Analytic properties

𝑠!"- = 𝑠"-. = 𝑥!"-. = 0

= 0 ≔ − 𝑧(, ' 𝑧," '(𝑎	𝑥' − 𝑥,)(𝑏	𝑥' − 𝑥,)(𝑐	𝑥' − 𝑥,)

𝑥( = 1
𝑥('," = 0

𝑠!"- = 0
𝑠"-. = 0 𝑎𝑥) − 𝑥* = 0

𝑏𝑥) − 𝑥* = 0

𝑐𝑥) − 𝑥* = 0

𝑥', 𝑧(' ' 𝑧'" ' + 𝑥,, 𝑧(, ' 𝑧," '

+ 𝑥''𝑥,( 𝑧(, ' − 𝑧', ' 𝑧'" ' + 𝑧(' '(− 𝑧', ' + 𝑧'" '

+ 𝑧," ')) + 𝑥,'𝑥'( 𝑧(, ' − 𝑧', ' 𝑧'" '

+ 𝑧(' ' − 𝑧', ' + 𝑧'" ' + 𝑧," '

defines a cubic curve

Cutting  three propagators

𝑓� ≔ ∫ �1�	
�� �

�2
�324�241�3241

	, 

 𝑓� ≔ ∫ �1�	
�� �

�4
�324�241�3241

	 .
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𝑓� ≔ ∫ �1�	
�� �

�2
�324�241�3241

	, 

 𝑓� ≔ ∫ �1�	
�� �

�4
�324�241�3241

	 .

𝑧!- " 𝑧-. "𝑓! ≔
/6

012 213
+ /7

213 310
+ /8

310 012
, 

𝑧(' ' 𝑧'" '𝑓' ≔ −
𝑔I

1
𝑐 −

1
𝑎

1
𝑎 −

1
𝑏
−

𝑔N
1
𝑎 −

1
𝑏

1
𝑏 −

1
𝑐
	−

𝑔?
1
𝑏 −

1
𝑐

1
𝑐 −

1
𝑎
.

𝑓!, 𝑓" are totally symmetric when shuffling the three cubic roots  

𝑔2, 𝑔3, 𝑔0: pure functions related by cyclic permutation

dlog basis: 

𝑔! ≔ 𝑔2 − 𝑔3	.

𝑔" ≔ 𝑔3 − 𝑔0	.
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𝑔! ≔ 𝑔2 − 𝑔3	.

𝑔" ≔ 𝑔3 − 𝑔0	.
𝒜?ON$? ≔

𝑎
𝑏	,

𝑎 + 𝑧 '

𝑏 + 𝑧 ' ,
𝑎 + 𝑤 '

𝑏 + 𝑤 ' ,
𝑎 + 𝑧
𝑎 + ̅𝑧

𝑏 + ̅𝑧
𝑏 + 𝑧 ,

𝑎 + 𝑤
𝑎 + �𝑤

𝑏 + �𝑤
𝑏 + 𝑤 ∪ (𝑎 → 𝑏, 𝑏 → 𝑐)

𝑔!, 𝑔" contain 10 more letters involving the cubic roots, which only appear in the last entry

= 0

= 1= 𝑧

=
𝑧 − 𝑤
1 − 𝑤

Under proper parametrization, e.g. using 𝑎, 𝑏, 𝑧 ', 𝑤 ' ,  𝑔I . 𝑔N,𝑔? 	can evaluated in HyperInt. 

Despite the cubic-root dependence, the master 
integrals are single-valued function whose 
branch cuts cancel on the Euclidean sheet. 
They all satisfy a first-entry condition: the first 
entry of the symbol must be |𝑧$-|'. 
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Three-point correlator : 

Symbol alphabets

𝒜-: = 𝑧, ̅𝑧, 1 − 𝑧, 1 − ̅𝑧, 1 − 𝑧 ", 1 − 1 − 𝑧 ", 𝑧 " − 1 − 𝑧 "

Four-point correlator :   

𝒜!"-.:
= {

}

Y𝑤𝑧 − 𝑤,𝑤 ̅𝑧 − Y𝑤, 1 − 𝑤 − Y𝑤 + Y𝑤𝑧, 1 − 𝑤 − Y𝑤 + 𝑤 ̅𝑧, 𝑤

− 𝑧 ", Y𝑤 − 𝑧 ", Y𝑤𝑧 − ̅𝑧𝑤, 𝑧 " − 𝑤 " ∪ (𝑤 ↔
1
𝑧
, Y𝑤 ↔

1
̅𝑧
)

𝒜. = 𝒜- 1,2,3 ∪ 𝒜- 2,3,4 ∪ 𝒜- 1,2,4 ∪ 𝒜- 1,3,4 ∪ 𝒜!"-. ∪𝒜043&0

= 1= 𝑧

= 0

= 0

= 1= 𝑧

=
𝑧 − 𝑤
1 − 𝑤

𝑑𝑒𝑓𝑖𝑛𝑒	 𝒜, ≔ 𝒜, ∪ {𝑧 − ̅𝑧}
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Symbol alphabets

1𝑠𝑡	𝑒𝑛𝑡𝑟𝑦:	
𝑧 ", 1 − 𝑧 ", 𝑤 ", 1 − 𝑤 ", 𝑧 − 𝑤 "

𝒜!"-.\{ 𝑧 " − 𝑤 "},𝒜043&0	only	appear	in	last	entry

= 0

= 1= 𝑧

=
𝑧 − 𝑤
1 − 𝑤

𝒮(𝐸.𝐶)

2𝑛𝑑	𝑒𝑛𝑡𝑟𝑦:
𝒜- 1,2,3 ∪  𝒜- 2,3,4 ∪ 𝒜- 1,2,4 ∪ 𝒜- 1,3,4 ∪ { 𝑧 " − 𝑤 "}

𝑧$"𝑧)+
𝑧$)𝑧"+

"
=

𝑧 "

𝑤 "
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43×	43	system of differential equations

𝐴(C'(

𝐴''C'P
𝐵(CQ

𝐵(3C("

1

Iterative structures for (the symbol of ) 𝑁 −point 
correlators / adjacency relations? 

Master integrals graded 
by transcendental weight

𝑑𝐵 =

𝑔⃗ = 𝑑𝐵	𝑔⃗
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𝐸𝐸𝐸𝐸𝐶)R"	ST5	 �
?@AA.

=
1

|𝑧('|' 𝑧', ' 𝑧," ' [𝒢	(𝑧, 𝑤)]

+perms(1,2,3,4)

𝑅$, 𝑟-  : Algebraic functions  
𝐴$  :  28 pure master integrals 4-pt integral family
        21 weight-3 +  7 weight-2 
𝐵-:   14  pure master integrals in the boundary  integral family 
         9 weight-2 + 5 weight-1 

EEEEC in N=4 SYM in the quadruple collinear limit : 

𝐴(,(,3,(,(,3,( 𝐴3,(,(,(,(,(,3

𝐴3,(,3,(,(,(,( 𝐴3,3,(,(,(,(,(

𝒢	(𝑧, 𝑤): the sum of integrals in four 
sub topologies

𝒢 𝑧, 𝑤 = [𝑅$𝐴$ + 𝑟- 	𝐵- + 𝑟3]

The expressions for 𝑅&, 𝑟5 are complicated, contain high degree poles (up to six 
degree), most are spurious.
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𝐸𝐸𝐸𝐸𝐶)R"	ST5	 �?@AA.
∝

1
|𝑧"$|'

	𝐸𝐸𝐸𝐶)R"ST5 �?@AA.

Factorization Limits

𝐸𝐸𝐸𝐸𝐶)R"	ST5	 �
?@AA.

∝
1

|𝑧',|'
	𝐸𝐸𝐶)R"ST5 �

?@AA
×𝐸𝐸𝐶)R"ST5 �

?@AA

= 0

= 1= 𝑧

=
𝑧 − 𝑤
1 − 𝑤

(1,2,3) triple collinear : 𝑤, �𝑤 → 1 

(1,2) (3,4)  double collinear : 𝑧, ̅𝑧, (
9
, (
U9
→ 0	
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Challenges: mixed weight, complication in the rational coefficients 

Opportunities: 
Imposing physical constraints, 
lower-weight terms could be fixed from the higher-weight functions

Are there ways to bypass heavy IBPs and determine the E^NC via 
bootstrap?   

Bootstrapping the Energy 
Correlators
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-Differential equations 

intersection theory method as a short cut for building the system of DEs

-Discontinuity 

based on the method of projective geometry developed in 1712.09991 (also 
refering to 2206.06507)

Probing the structure of the 
symbol

Ongoing collaborations with Hofie Hannesdottir, 
Andrzej Pokraka, Xiaoyuan Zhang, 
Ellis Ye Yuan, Jianyu Gong
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E^NC  as simplex contour 
integral

Δ:	Canonical simplex

= [0: 1: 0]= [0: 1: 0]

= [0: 0: 1]

We believe energy correlators  can be analytically continued, so they 
are functions of complex variables.

In 𝐶𝑃/C(,
domain of 𝑥$  are promoted to complex field.  𝑉$𝑉- 	can be deformed 
within the 𝐶𝑃(subspace it belongs to.

(n-1)-Simplex is uniquely determined by its 0-faces. In 𝑅/C(,
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Taking deformed integration contour to compute discontinuity associated to the branch cut, (i.e. 
symbol entry), which can be read off from matrix 𝑄.

The ENC integrals are projective in 𝐶𝑃/C( 

𝑬𝑵𝑪 from projective geometry 

= 1= 𝑧

= 0

𝐶𝑃,

Spherical contour approach: 



50

Warm up: 1-simplex

(The first entry of) the symbol emerge where the integrand 
singularities hits the contour boundary. 

𝐼 = 2
V

det 𝑄 ⟨𝑋	𝑑	𝑋⟩
𝑋	𝑄	𝑋 = 2

[(:3]

[3:(] 𝑟( − 𝑟' (𝑥(𝑑𝑥' − 𝑥'𝑑𝑥()
(𝑥( − 𝑟(𝑥')(𝑥( − 𝑟'𝑥')

𝑃$𝑉- = 0

𝑃(,' = 𝑟(,': 1 	𝑆 𝐼 =⊗
𝑃(𝑉( 𝑃'𝑉(
𝑃(𝑉' 𝑃(𝑉'

=⊗ 𝑟(𝑄C()

𝑟 𝑀 ≡
𝑀$" + 𝑀$"" −𝑀$$𝑀""

𝑀$" − 𝑀$"" −𝑀$$𝑀""

Type	equation	here.

𝑄 =
1
2

2 −𝑟( − 𝑟'
−𝑟( − 𝑟' 2 =

𝑟(
𝑟'
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Residue contour

Pick up (𝑉$,𝑃-) and analytically continue their bracket ⟨𝑉$𝑃-⟩ around zero, or equivalently, 
letting 𝑉$  to deform around 𝑃-  . 

Compute discontinuity:  

𝑆 𝐼 =	⊗ ⟨𝑉(𝑃(⟩ −⊗ ⟨𝑉'𝑃(⟩𝐷𝑖𝑠𝑐7+,X+𝐼 = 2
|⟨&X+⟩|RY

det 𝑄 ⟨𝑋	𝑑	𝑋⟩
𝑋	𝑄	𝑋 =2𝜋𝑖
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Spherical contour
Fibration of  𝐶𝑃/C(over 𝐶𝑃'

Taking (2,3) spherical contour: 

𝐶𝑃' → 𝐶𝑃(×	𝑆(

𝜔', 𝜔, → (𝜔, �𝜔)

Choose a partition, e.g {(2,3),(1,4)}

The discontinuity is a 𝐶𝑃(- integral over [𝜔(: 𝜔"]:
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Symbol construction

combine with 𝑆[𝐷𝑖𝑠𝑐(,[Λ]]

Leading singularity

𝑟 𝑄 ',, ',,
C( = 𝑧ªz 𝑟 𝑄Z',

C( =
1 − 𝑧
1 − ̅𝑧

𝐷𝑖𝑠𝑐(" 𝐷𝑖𝑠𝑐', Λ =
1

𝑧 − ̅𝑧

first entry second entry

𝐷𝑖𝑠𝑐$-[Λ] 𝐷𝑖𝑠𝑐[$-[𝐷𝑖𝑠𝑐$- Λ ]

𝑆 𝐷𝑖𝑠𝑐', Λ =
1

𝑧 − ̅𝑧 ×(⊗
1 − 𝑧
1 − ̅𝑧)
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𝑬𝑵𝑪 from intersection theory 

The E^NC (in D=4-2e) defines a differential form which belong to a twisted cohomology 

𝑆$: 𝑢𝑛𝑤𝑖𝑠𝑡𝑒𝑑

𝑇$: 𝑡𝑤𝑖𝑠𝑡𝑒𝑑

(Potential) IR divergences are regulated 
at the twisted boundary

All differential forms are regular at the 
relative boundary 
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Boundary stratification of the relative 
twisted cohomology 

It is more convenient to build the DEs for the dual 
forms.

Define a dual relative twisted cohomology:   
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The intersection method applies to higher-loop 
order, where phase-space integrals are IR divergent.

A basis of dual forms :

𝐵(:
𝑥'

𝑠(',𝑥',𝑥(',

𝐵':
1

𝑠(',𝑥(',
𝐵,:

𝑥'
𝑠(',𝑥(','

𝐵":
𝑥,

𝑠(',𝑥(','

1 𝐶(:

Number of dual basis on each boundary 
matches the number of master integrals sector 
by sector 
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-NLO:  
  Promoting to d=4-2e dimension, incorporating ideas from intersection theory methods.   

Summary

Further development of phase-space integration algorithms 

-𝐸#𝐶 at generic angle, away from collinear limit.  

Algorithm for bootstrapping the 𝐸#𝐶

- What do we learn about the function space/rational structure? 
  
-How to impose physical constraints, e.g. from various OPE limits of 
light-ray operators
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THANK YOU FOR YOUR ATTENTION !


