Novel Aspects of Energy Correlators in $\mathrm{N}=4$ super Yang－Mills Theory

Kai Yan
MITP Programme：Energy Correlators at Collider Frontier
2024／07

SJTUPA
上海交通大学物理与天文学院

EVENT SHAPE

How do we describe the final states produced in particle scattering?
How is the total scattering energy divided in the hadronic final state?
Event shape:
measure the geometric distribution of energy flow, discriminate between jet-like vs. spherical events e.g. Thrust, Sphericity, C-parameter, N -jettiness, jet finding algorithms,...

Explicit calculations will be crucial for uncovering hidden simplicity and structures

MULTI-POINT ENERGY FLOW CORRELATION

Final state is an ensemble of varying number of particles, characterized by energy flow

$$
\mathrm{E}(n):=\sum_{i \in X} E_{i} \delta^{2}\left(n-\Omega_{i}\right)
$$

- Simplest event shape: expectation value of energy flow in fixed direction: $\langle\mathrm{E}(n)\rangle$

$$
\text { Energy flow distribution }\langle\mathrm{E}(n)\rangle=\frac{q^{0}}{4 \pi} \quad \text { Evenly distributed for unpolarized source. }
$$

- Two-particle correlators $\left\langle\mathrm{E}\left(n_{1}\right) \mathrm{E}\left(n_{2}\right)\right\rangle$

Analytic structure for higher-point correlators?

(Muiti-point) Energy Correlators: correlation of energy deposited in detectors in different directions as function of the angles between them

Novel observables in collider physics measured at the LHC
N-point Energy Correlators in the multi-collinear limit:

$$
\mathrm{E}^{\mathrm{N}} \mathrm{C} \stackrel{\text { coll. }}{=} \int_{0}^{1} d x_{1} \cdots d x_{N} \delta\left(1-\sum_{i} x_{i}\right)\left(x_{1} \cdots x_{N}\right)^{2} \mathcal{P}_{1 \rightarrow N}^{(0)}
$$

x_{i} : energy carried by collinear particles

Parametric representation similar to Feynman loop integrals
Potential for developing amplitudes methods for the study of physical observables

Energy correlators:

correlation function of flow operators

$$
\begin{aligned}
& \left\langle\mathrm{E}\left(n_{1}\right) \mathrm{E}\left(n_{2}\right) \ldots \mathrm{E}\left(n_{N}\right)\right\rangle \\
& =\int d^{4} x e^{i q \cdot x} \frac{\left\langle O(x) \mathcal{E}\left(n_{1}\right) \cdots \varepsilon\left(n_{N}\right) O(0)\right\rangle}{\langle O(x) O(0)\rangle}
\end{aligned}
$$

$$
\mathcal{E}(n)=\int_{-\infty}^{+\infty} d u \lim _{r \rightarrow \infty} r^{2} T_{0 i}(t=u+r, r \vec{n}) n^{i}
$$

Exhibits an OPE in the (multi-) collinear limit
key for understanding the conformal light-ray
OPE [Chang et al, 2202.04090][Chen et al, 2202.04085]

Multi-collinear limit: relevant in the studies of jet physics
new jet substructure
calculations [Komiske et al, 2201.07800]

A potential playground for novel onshell methods in scattering amplitudes[Shounak De et al,2308.03753] [Arkani-Hamed,Yuan,1712.09991.]
[Gong, Yuan, 2206.06507]

Offshell definition

$$
E E C\left(\chi ; q^{2}\right)=\int d^{4} x e^{i q \cdot x}\left\langle O(x) \mathrm{E}(n) \mathrm{E}\left(\mathrm{n}^{\prime}\right) O(0)\right\rangle
$$

$$
\begin{aligned}
& \text { O: half BPS operator (N=4) } \\
& \text { electromagnetic current (QCD) }
\end{aligned} \sim \int d x_{2,-} d x_{3,-}\langle O T T O\rangle
$$

$$
\mathrm{E}(n):=\lim _{r \rightarrow \infty} r^{2} \int d x_{-} n^{j} T_{0 j}\left(t=x_{-}+r, r \vec{n}\right)
$$

$$
\mathrm{EEC}(\zeta) \sim \int d^{4} x e^{i q \cdot x} \int_{-\infty}^{\infty} d x_{2-} d x_{3-} \lim _{x_{2+, 3+} \rightarrow \infty} x_{2+}^{2} x_{3+}^{2}\langle 0| O^{\dagger}(x) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) O(0)|0\rangle
$$

$$
\left\langle O\left(x_{1}\right) O\left(x_{2}\right) O\left(x_{3}\right) O\left(x_{4}\right)\right\rangle=\frac{\Phi(u, v)}{x_{12}^{4} x_{34}^{4}} \quad u=\frac{x_{14}^{2} x_{23}^{2}}{x_{13}^{2} x_{24}^{2}}, v=\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}
$$

Analytically continue to Minkowski space: $\rightarrow \mathrm{G}(\mathrm{u}, \mathrm{v})$
Double discontinuity formula:
$\int_{C_{2}} d x_{2-} \int_{C_{3}} d x_{3-}^{\prime} \operatorname{disc}_{x_{2-}=x_{-}} \operatorname{disc}_{x_{3-}^{\prime}=0}[\mathcal{G}(u, v)]$

Works well for two-point correlator (in particular
 in $\mathrm{N}=4 \mathrm{SYM}$).
Difficult to generalize to higher point.

Onshell definition

$$
\begin{aligned}
& \left\langle\mathrm{E}\left(n_{1}\right) \mathrm{E}\left(n_{2}\right) \cdots \mathrm{E}\left(n_{N}\right)\right\rangle \\
& =\sum_{k>N} \int d \Pi_{k} \delta^{2}\left(n_{i}-\Omega_{i}\right) \cdots \delta^{2}\left(n_{N}-\Omega_{N}\right) \frac{E_{1} \cdots E_{N}}{Q^{N}} F F_{k}(0)
\end{aligned}
$$

$\left.F F_{k}(O):|\langle 0| O| 1,2, \ldots, k\right\rangle\left.\right|^{2}$ summed over helicity, color and permutations on final states

Analytic function of distances on the celestial sphere: $\zeta_{i j}=\frac{q^{2}\left(n_{i} \cdot n_{j}\right)}{2\left(n_{i} \cdot q\right)\left(n_{j} \cdot q\right)}$
$k=N+1$: Leading order. Manifestly finite integration over tree-level matrix element $F F_{N+1}^{(0)}$

N-point Energy correlators @LO

Master formula : energy integrations over onshell tree-level ($N+1$)-point squared Form Factor

$$
\begin{aligned}
& E^{N} C=\mathcal{F}_{N}\left(\zeta_{i j}\right)+\operatorname{perms}(1,2 \cdots, N) \\
& \mathcal{F}_{N}^{L O}:=\int_{0}^{1} d x_{1} \ldots d x_{N} \delta\left(1-Q_{N}\right)\left(x_{1} \cdots x_{N}\right)^{2}\left|F_{N+1}^{(0)}(O)\right|^{2} \\
& Q_{N}:=x_{1}+\cdots+x_{N}-\sum_{i, j} x_{i} x_{j} \zeta_{i j}
\end{aligned}
$$

$$
\begin{aligned}
& x_{i}=\frac{2 E_{i}}{Q} \quad s_{i j}=x_{i} x_{j} \zeta_{i j} \quad s_{i j k}=x_{i} x_{j} \zeta_{i j}+x_{j} x_{k} \zeta_{j k}+x_{i} x_{k} \zeta_{i k}, \text { etc } \\
& \left|F_{N+1}^{(0)}(O)\right|^{2}=\left|F_{N+1}^{(0)}(O)\right|_{M H V} \times(\text { products of ratios between madelstam variables })
\end{aligned}
$$

Three-point Energy Correlator in

N=4 sYM @LO

Zhang, Yan, Phys.Rev.Lett. 129 (2022) 2, 021602

three points on the celestial sphere on a circle centered at the origin

$$
s:=\tan ^{2} \frac{\theta}{2}, \tau_{1}:=e^{i \phi_{23}}, \tau_{2}:=e^{i \phi_{13}}
$$

Function Space

$L i_{w}(-S)$ modulo products of logarithms
detectors the directions of the unit vectors $\mathrm{n} 1, \mathrm{n} 2$ and n 3

$$
\begin{aligned}
& S:=\left\{\frac{\langle 14\rangle\langle I 3\rangle}{\langle 13\rangle\langle 4 I\rangle}, \frac{\langle 12\rangle\langle 54\rangle}{\langle 15\rangle\langle 24\rangle}, \frac{\langle 12\rangle\langle 43\rangle}{\langle 14\rangle\langle 23\rangle}, \frac{\langle 13\rangle\langle 54\rangle}{\langle 15\rangle\langle 43\rangle}, \frac{\langle 12\rangle\langle 34\rangle\langle 56\rangle}{\langle 23\rangle\langle 45\rangle\langle 61\rangle^{\prime}}, \frac{\langle 14\rangle\langle 23\rangle\langle 56\rangle}{\langle 34\rangle\langle 25\rangle\langle 61\rangle}\right. \\
& \}+D_{6} \text { images }
\end{aligned}
$$

points on unit circle

Perturbative results

$\left\langle\mathrm{E}\left(n_{1}\right) \mathrm{E}\left(n_{2}\right)\right\rangle \quad \mathcal{F}\left(\zeta=\sin ^{2} \frac{\chi}{2}\right) @ L O \quad O(\alpha) \quad O\left(\alpha^{3}\right) \quad @ N L O \quad$ max. weight 3 polylogs max.weight 5 HPL

$$
\begin{aligned}
& O\left(\alpha^{2}\right) \\
& \mathcal{F}\left(\zeta_{12}, \zeta_{13}, \zeta_{23}\right) @ L O
\end{aligned}
$$

max. weight 2 polylogs

16 letters, 2 types of squre roots
Basis of classical polylogarithms
First entry conditions
$\left\langle\mathrm{E}\left(n_{1}\right) \mathrm{E}\left(n_{2}\right) \mathrm{E}\left(n_{3}\right) \mathrm{E}\left(n_{4}\right)\right\rangle$
? $\quad O\left(\alpha^{3}\right)$

N-point Energy correlators @LO

For arbitrary N, given by manifestly finite N-fold energy integrals. Go to higher order in the coupling constants without encountering IR divergence.

They admit parametric representation similar to Feynman loop integrals.
Built entirely from tree-level quantities, the leading-order energy correlators, with an increasing number of detectors, may provide insights on the structures for higher-loop amplitudes.

In the multi-collinear limit

$$
p_{i}^{\mathrm{\mu}}=\left(p_{i}^{+}, p_{i}^{-}, p_{i}^{+}\right)=\frac{x_{i}}{\sqrt{1+\left|z_{i}\right|^{2}}}\left(1,\left|z_{i}\right|^{2}, z_{i}\right) \rightarrow x_{i}\left(1,\left|z_{i}\right|^{2}, z_{i}\right) \quad \zeta_{i j} \rightarrow\left|z_{i j}\right|^{2} \sim 0
$$

$$
E^{N} C_{\text {coll. }}=\mathcal{G}_{N}\left(z_{i}\right)+\operatorname{perms}(1,2 \cdots, N)
$$

$$
\mathcal{G}_{N}^{L O}\left(z_{i}\right):=\int_{0}^{1} d x_{1} \ldots d x_{N} \delta\left(1-x_{1}-\cdots-x_{N}\right)\left(x_{1} \cdots x_{N}\right)^{2}\left|S p l i t_{1 \rightarrow N}^{(0)}\right|^{2}
$$

Splitting function contains poles either linear or bi-linear in the x_{i}-parameters
The N-point correlators define a class of manifestly finite integrals in ($N-$ 1)-dimensional projective space $\left[x_{1}: \cdots: x_{N}\right] \in \mathrm{P}_{N-1}\left(\mathbb{R}_{+}\right)$

$E^{N} C @ L O$ in the collinear limit:

Single-valued function of coordinates $\left(z_{i}, \bar{z}_{i}\right)$ on the celestial sphere

$$
N=3
$$

$N=4$

$G(z, w) @ L O$
max.weight 3 polylogarithms

Chicherin, Sokatchev, Moult,Yan,Zhu

Onshell methods applied to physical cross sections

-Integrand:

The squared ($\mathrm{N}+1$)-point super form factor for $1 / 2 \mathrm{BPS}$ operator, with manifest dual conformal symmetry.
-Integration

- Integration-by-part algorithm operating directly on the (Feynman-) parameter space. Profit from simplicity that exist for finite integrals.
-Intersection theory method
-Function
- Symbols, landau singularity analysis
- Physical constraints and asymptotic limits \rightarrow Boostrap

Form factor $\left|F_{N M H V}\left(O_{20}^{\prime}\right)\right|^{2}$

The tree-level $1 \rightarrow N$ splitting function can be obtained from the squared ($N+1$)point form factor where $p_{1} \cdots p_{N}$ are collinear and p_{N+1} is anti-collinear.
$\left|F_{N M H V}(\mathcal{L})\right|^{2}$ given by product of chiral and anti-chiral diagrams describing the MHV rules.

$\lim _{1| | 2 \ldots \| n-1} \mathrm{FF}_{n, 1}=\sum_{\left\{b, b^{\prime}\right\} ;\left\{c, c^{\prime}\right\}}\left(\sum_{i=b}^{b^{\prime}} \sum_{j=c}^{c^{\prime}} \sum_{k=e}^{e^{\prime}} x_{i} x_{j} x_{k} z_{i k} \bar{z}_{k j}\right)^{4} \times \frac{z_{b-1 b} z_{b^{\prime} b^{\prime}+1}}{s_{b b^{\prime}} K_{b-1, b^{\prime}} K_{b, b^{\prime}} L_{b, b^{\prime}} L_{b, b^{\prime}+1}} \frac{\bar{z}_{c-1} \bar{z}_{c^{\prime} c^{\prime}+1}}{\bar{s}_{c c^{\prime}} \bar{K}_{c-1, c^{\prime}} \bar{K}_{c, c^{\prime}} \bar{L}_{c, c^{\prime}} \bar{L}_{c, c^{\prime}+1}}$

In the collinear limit, $\left|F_{N+1}\right|^{2}$ can be expressed in terms of coordinates on a section in the periodic dual coordinate space including one period +1 point

$$
\left[y_{-1, \ldots,}, y_{N}\right]
$$

Compact form of the splitting function manifestly dual conformal invariant

$$
(a, b, c, d) \equiv \frac{y_{a b}^{2} y_{c d}^{2}}{y_{a c}^{2} y_{b d}^{2}}
$$

For $\mathrm{N}=3$,
$\lim _{1| | 2| | 3} \frac{\left|F_{4}^{\mathrm{NMHV}}\right|^{2}}{\left|F_{4}^{\mathrm{MHV}}\right|^{2}}=(-1,1,2,4)+(-1,3,2,0)+(3,1,0,4)$

In the N-particle collinear limit,

$$
\begin{gathered}
y_{i N}^{2} \rightarrow x_{i+1}+\cdots+x_{N-1} \\
y_{-1 i}^{2} \rightarrow x_{1}+\cdots+x_{i}
\end{gathered}
$$

In the quadruple collinear limit

$-1+(-1,1,2,5)+(-1,2,3,5)+(-1,4,3,0)+(4,1,0,5)+(-1,3,2,0)+(4,2,1,5)$
$+(-1,4,3,0)(-1,1,2,4)+(4,1,0,5)(0,2,3,5)+(-1,4,3,1)(-1,4,2,0)+(3,1,0,5)(4,2,0,5)$
$+(-1,4,3,1)(-1,1,2,5)+(3,1,0,5)(-1,2,3,5)+(-1,1,2,4)(-1,1,3,5)+(0,2,3,5)(-1,1,3,5)$

Integration-by-parts for finite integrals

> We developed techniques suitable for the computation of the $E^{N} C$ for arbitrary N; based on methods for finite integrals [Caron Huot, Henn, 1404.2922][Henn, Ma, Yan,Zhang,2211.13967]

Advantages:
Bypass solving large linear systems of IBPs;
DEs exhibit a "grading" structure, visualizes the iterative structure of loop integrals. may apply in more general setup.

Energy integration over splitting function

$$
\begin{aligned}
& \left.\quad \begin{array}{r}
\mathrm{E}^{\mathrm{N}} \mathrm{C} \stackrel{\text { coll. }}{=} \frac{1}{\left|z_{12} \cdots z_{N-1 N}\right|^{2}} \int \frac{d^{N} x}{\mathrm{GL}(1)}\left(x_{1}+\cdots+x_{N}\right)^{-N} \mathcal{G}_{N} \\
+\operatorname{perm}\left(z_{1}, \cdots, z_{N}\right)
\end{array}\right] \quad G_{N}:=\frac{|F|^{2}}{\left|F_{M H V}\right|^{2}} \\
& N=3: \quad(3,1,0,4)=\frac{s_{23} x_{123}}{s_{123} x_{23}} \quad(-1,3,2,0)=\frac{s_{12} x_{123}}{s_{123} x_{12}} \quad(-1,1,2,4)=\frac{x_{1} x_{123}}{x_{12} x_{23}}
\end{aligned}
$$

G_{N} contains only multi-particle poles, no two-particle pole

$$
s_{I \ldots . .}:=\sum_{(i, j) \in[I, J]} x_{i} x_{j}\left|z_{i j}\right|^{2} \quad x_{I, \ldots J}:=x_{I}+\cdots+x_{J}
$$

$$
\mathrm{E}^{\mathrm{N}} \mathrm{C} \stackrel{\text { coll. }}{=} \frac{1}{\left|z_{12} \cdots z_{N-1 N}\right|^{2}} \int \frac{d^{N} x}{\mathrm{GL}(1)}\left(x_{1}+\cdots+x_{N}\right)^{-N} \mathcal{G}_{N} \quad G_{N}:=\frac{|F|^{2}}{\left|F_{M H V}\right|^{2}}
$$

$$
+\operatorname{perm}\left(z_{1}, \cdots, z_{N}\right)
$$

$$
N=4:
$$

$$
\begin{array}{rlr}
(-1,4,3,0) & =\frac{s_{123} x_{1234}}{s_{1234} x_{123}} & (-1,4,2,0)(0,2,3,5)=\frac{s_{12}^{2} x_{1234} x_{4}}{s_{1234} s_{123} x_{12} x_{34}} \\
(-1,4,3,0)(-1,1,2,4) & =\frac{s_{123} s_{34} x_{1234} x_{1}}{s_{1234} s_{234} x_{12} x_{123}} & (0,4,3,1)(-1,1,3,5)=\frac{s_{1234} s_{23}}{s_{123} s_{234}} \frac{x_{1} x_{4}}{x_{123} x_{234}}
\end{array}
$$

$$
s_{I . . . I}:=\sum_{(i, j) \in[I, J]} x_{i} x_{j}\left|z_{i j}\right|^{2} \quad x_{I, \ldots J}:=x_{I}+\cdots+x_{J}
$$

$$
\begin{aligned}
& \mathrm{E}^{\mathrm{N}} \mathrm{C} \stackrel{\text { coll. }}{=} \frac{1}{\left|z_{12} \cdots z_{N-1 N}\right|^{2}} \int \frac{d^{N} x}{\mathrm{GL}(1)}\left(x_{1}+\cdots+x_{N}\right)^{-N} \mathcal{G}_{N} \\
& \quad+\operatorname{perm}\left(z_{1}, \cdots, z_{N}\right)
\end{aligned}
$$

Multi kinematic scales and high degree poles in the integrand poses great challenge to partial fractioning and multi-fold integration.

Goal:
-lower the degree of denominators in target integrals.
transform them to simpler, manageable integrals with simple or at most double pole Integration-by-part method can be designed to achieve these goals.

N-point Integral Family

$$
N=3:
$$

$$
B_{a_{1}, \cdots, a_{6}} \equiv \int \frac{d^{3} x}{\mathrm{GL}(1)} \frac{s_{12}^{-a_{5}} s_{23}^{-a_{6}}}{s_{123}{ }^{a_{1}} x_{12}^{a_{2}} x_{23}^{a_{3}} x_{123}^{a_{4}}}
$$

$$
\begin{aligned}
& A_{a_{1}, \cdots, a_{10}} \equiv \int \frac{d^{4} x}{\mathrm{GL}(1)} \frac{1}{\prod_{i} D_{i}^{a_{i}}} \\
& D_{1}=s_{1234}, \quad D_{2}=s_{123}, \quad D_{3}=s_{234}, \\
& D_{4}=x_{1234}, \quad D_{5}=x_{234}, \quad D_{6}=x_{123}, \quad D_{7}=x_{34}: \\
& D_{8}=s_{12}, \quad D_{9}=s_{23}, \quad D_{10}=s_{34} .
\end{aligned}
$$

D_{1-7} are multiparticle poles

$$
N=4:
$$ corresponding to physical singularities

N-point Integral Family

1. Homogeneity: integrand has the overall scaling dimension $-N$

$$
\text { as }\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \rightarrow \kappa\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}
$$

2. Finiteness: free from IR divergences as any subset of energy variables go to zero.

Given condition 1,
condition 2 is equivalent to the following UV power-counting behaviour:

$$
\prod_{i} D_{i}^{-a_{i}} \sim O\left(\kappa^{-1-|\widetilde{S}|}\right) \text { as } \quad S \rightarrow \kappa S, \kappa \rightarrow \infty, \forall S \subset\left\{x_{1}, \cdots, x_{N}\right\}
$$

An analog: Wilson-line web functions

$$
\begin{gathered}
\mathrm{T} 2\left[a_{1}, \cdots, a_{7}\right]=\int \frac{d^{D} k_{1}}{i \pi^{D / 2}} \frac{d^{D} k_{2}}{i \pi^{D / 2}} \frac{D_{7}^{-a_{7}}}{D_{1}^{a_{1}} \cdots D_{6}^{a_{6}}} \\
D_{1}=-2 k_{1} \cdot v_{1}+\delta, \quad D_{2}=-2\left(k_{1}+k_{2}\right) \cdot v_{1}+\delta, \quad D_{3}=-2\left(k_{1}+k_{2}\right) \cdot v_{2}+\delta, \\
D_{4}=-2 k_{2} \cdot v_{2}+\delta, \quad D_{5}=-k_{1}^{2}, \quad D_{6}=-k_{2}^{2}, \quad D_{7}=k_{1} \cdot k_{2} .
\end{gathered}
$$

The $E^{N} C$ fulfill the same criterions for the so-called 'admissible integrals' (the absence of subdivergences) in [Henn, Ma, Yan, Zhang 2211.13967],

No regulators are needed for the "leading" divergences.
Four-dimensional IBP and DE methods apply.

Integrals in families $\boldsymbol{A}_{\vec{a}}$ and $\boldsymbol{B}_{\vec{a}}$ are defined in integer dimension

1. There are partial fractioning identities among the integrals carrying different propagator indices.

$$
\begin{aligned}
& \text { E.g. for }\left\{\frac{x_{1} x_{12}}{s_{123}^{2} x_{123}}, \frac{x_{1}^{2}}{s_{123}^{2} x_{123}}, \frac{x_{12}^{2}}{s_{123}^{2} x_{123}}, \frac{x_{1}}{s_{123}^{2}}, \frac{x_{12}}{s_{123}^{2}}, \frac{1}{s_{123} x_{123}}\right\} \text {, there is relation }\left|z_{12}\right|^{2} \frac{x_{1}\left(x_{12}-x_{1}\right)}{s_{123}^{2} x_{123}}+ \\
& \left|z_{23}\right|^{2} \frac{\left(x_{12}-x_{1}\right)\left(x_{123}-x_{12}\right)}{s_{123}^{2} x_{123}}+\left|z_{13}\right|^{2} \frac{x_{1}\left(x_{123}-x_{12}\right)}{s_{123}^{2} x_{123}}-\frac{1}{s_{123} x_{123}}=0
\end{aligned}
$$

2. A finite integral may appear as linear combination of divergent ones

$$
\left\{\frac{x_{1} x_{12}}{s_{123}^{2} x_{123}}, \frac{x_{1}^{2}}{s_{123}^{2} x_{123}}\right\} \text { divergent } \quad \frac{x_{1}\left(x_{12}-x_{1}\right)}{s_{123}^{2} x_{123}} \text { finite }
$$

Solutions:

Integrand reduction performed together with seeding and IBP reduction

Setup integrand in a way that only allow x-monomials in the numerator Search for basis of "single finite integrals"

$$
A_{a_{1}, \cdots, a_{7} ; q_{1}, \cdots, q_{4}} \equiv \int \frac{d^{4} x}{\mathrm{GL}(1)} \frac{x_{1}^{-q_{1}} x_{2}^{-q_{2}} x_{3}^{-q_{3}} x_{4}^{-q_{4}}}{D_{1}^{a_{1}} D_{2}^{a_{2}} \cdots D_{7}^{a_{7}}}
$$

Here we demand $a_{i} \geq 0, q_{k} \leq 0 \quad D_{1-7}$ are the physical, multi-particle poles

IBP identities in projective space

$$
O_{i}=\frac{\partial}{\partial x_{i}} v, i=1, \cdots, N: \quad \begin{aligned}
& \text { Differential operators acting on projective } \\
& \text { coordinates }\left[\mathrm{x} _1, \ldots, \mathrm{x} _\mathrm{N}\right]
\end{aligned}
$$

$$
\begin{gathered}
\int \frac{d^{N} x}{\mathrm{GL}(1)} O_{i} \circ f=-\left.\int \frac{d^{N-1} x}{\mathrm{GL}(1)} v \circ f\right|_{x_{i}=0} \\
v=\prod_{k} x_{k}^{-q_{k}}, \quad f=\frac{1}{\prod_{j} D_{j}^{a_{j}}}
\end{gathered}
$$

$\boldsymbol{O}_{\boldsymbol{i}} \circ \boldsymbol{f}$ must satisfy the power-counting condition 1 and condition 2

$$
\begin{aligned}
& O_{i} \rightarrow \kappa^{\beta_{S}} O_{i}, \forall S \subset\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \\
\kappa_{S}= & -\sum_{k \in S} q_{k}-d_{i}^{S} \quad d_{i}^{S} \equiv 1 \text { if } i \in S \text { and } 0 \text { otherwise }
\end{aligned}
$$

IBP identities in projective space

$$
\begin{gathered}
\int \frac{d^{N} x}{\mathrm{GL}(1)} O_{i} \circ f=-\left.\int \frac{d^{N-1} x}{\mathrm{GL}(1)} v \circ f\right|_{x_{i}=0} \\
v=\prod_{k} x_{k}^{-q_{k}}, \quad f=\frac{1}{\prod_{j} D_{j}^{a_{j}}}
\end{gathered}
$$

Expanded over $A_{a, \ldots a_{7} ; q_{1 . .} q_{4}}$ Each term is finite
boundary terms are generated on the surface of integration domain
$B_{a_{1}, a_{2}, a_{3}, a_{4} ; q_{1}, q_{2}, q_{3}}^{[j, k, l} \equiv \int \frac{d^{3} x}{\operatorname{GL}(1)} \frac{x_{j}^{-q_{1}} x_{k}^{-q_{2}} x_{l}^{-q_{3}}}{s_{j k l}^{a_{1}} x_{j k}^{a_{2}} x_{k l}^{a_{3}} x_{j k l}^{a_{4}}}$
Boundary integral family: lower-point integrals defined in $\left[x_{1}, \ldots \widehat{x}_{i}, \ldots, x_{N}\right]$

Seeding
 (with power counting)

In sector $A_{0,1,0,1,1,0,0}$ consider

$$
\mathrm{O}_{1}=\frac{\partial}{\partial x_{1}} x_{2}^{-q_{2}} x_{3}^{-q_{3}} \quad f=\frac{1}{s_{123}^{a_{2}} x_{234}^{a_{5}} x_{1234}^{a_{4}}} \quad a_{2}, a_{5}, a_{4}>0
$$

Imposing power counting condition 1, condition 2 on $O_{1} \circ f$

$$
2 a_{2}+a_{4}+a_{5}+q_{2}+q_{3}+1=4 \quad \text { Overall scaling }=0
$$

Seeding

(with power counting)

In sector $A_{0,1,0,1,1,0,0}$ consider

$$
\mathrm{O}_{1}=\frac{\partial}{\partial x_{1}} x_{2}^{-q_{2}} x_{3}^{-q_{3}} \quad f=\frac{1}{s_{123}^{a_{2}} x_{234}^{a_{5}} x_{1234}^{a_{4}}}
$$

Imposing power counting condition 1 , condition 2 on $O_{1} \circ f$

$$
\begin{array}{cl}
2 a_{2}+a_{4}+a_{5}+q_{2}+q_{3}+1=4 \\
a_{4}+a_{5}>1 & x_{4} \rightarrow \infty
\end{array}
$$

Seeding

(with power counting)

In sector $A_{0,1,0,1,1,0,0}$ consider

$$
\mathrm{O}_{1}=\frac{\partial}{\partial x_{1}} x_{2}^{-q_{2}} x_{3}^{-q_{3}} \quad f=\frac{1}{s_{123}^{a_{2}} x_{234}^{a_{5}} x_{1234}^{a_{4}}}
$$

Imposing power counting condition 1 , condition 2 on $O_{1} \circ f$

$$
\begin{gathered}
2 a_{2}+a_{4}+a_{5}+q_{2}+q_{3}+1=4 \\
a_{4}+a_{5}>1 \\
a_{2}+a_{4}-1>1
\end{gathered}
$$

$$
x_{1} \rightarrow \infty
$$

Seeding

(with power counting)

In sector $A_{0,1,0,1,1,0,0}$ consider

$$
\mathrm{O}_{1}=\frac{\partial}{\partial x_{1}} x_{2}^{-q_{2}} x_{3}^{-q_{3}} \quad f=\frac{1}{s_{123}^{a_{2}} x_{234}^{a_{5}} x_{1234}^{a_{4}}}
$$

Imposing power counting condition 1, condition 2 on $O_{1} \circ f$

$$
\begin{gathered}
2 a_{2}+a_{4}+a_{5}+q_{2}+q_{3}+1=4 \\
a_{4}+a_{5}>1 \\
a_{2}+a_{4}-1>1 \\
a_{2}+a_{4}+a_{5}-1>2
\end{gathered}
$$

$$
\left(x_{1}, x_{4}\right) \rightarrow \infty
$$

Work flow

4-point energy integrals mapped onto 6 sub-topologies plus their images under a reflection symmetry which flips the detector orientation : $1 \leftrightarrow 4,2 \leftrightarrow 3$.
The 6 topologies are further divided into three categories:

```
Type-I (one 3-particle cut) : (2,4,5,6) (2,4,6,7)
Type-II (4- and 3-particle cut) : (1,2,4,5) (1,2,4,7)
Type-III (two 3-particle cuts): (2,3,4,5) (2,3,5,6)
```

5 distinct boundary integral topologies related by S4- symmetry:

$$
B_{a_{1}, a_{2}, a_{3}, a_{4} ; q_{1}, q_{2}, q_{3}}^{[j, k, l]} \equiv \int \frac{d^{3} x}{\mathrm{GL}(1)} \frac{x_{j}^{-q_{1}} x_{k}^{-q_{2}} x_{l}^{-q_{3}}}{s_{j k l}^{a_{1}} x_{j k}^{a_{2}} x_{k l}^{a_{3}} x_{j k l}^{a_{4}}}
$$

$$
B_{1,0,1,1}^{[1,2,3]} \quad B_{1,0,1,1}^{[1,2,4]} \quad B_{1,0,1,1}^{[1,3,4]} \quad B_{1,0,1,1}^{[2,3,4]} \quad B_{1,1,0,1}^{[2,3,4]}
$$

A total number of 28 four-point master integrals, 14 three-point boundary integrals and and 1 constant function.

EECC master integrals (triple collinear)

$$
B_{a_{1}, 0, a_{3}, a_{4}, q_{1}, q_{2}, q_{3}}=\int \frac{d^{3} x}{G L(1)} \frac{x_{1}^{-q_{1}} x_{2}^{-q_{2}} x_{3}^{-q_{3}}}{s_{123}^{a_{1}} x_{23}^{a_{3}} x_{123}^{a_{4}}}
$$

$$
\begin{aligned}
& B_{1}: \frac{x_{2}}{s_{123} x_{23} x_{123}} \\
& B_{2}: \frac{1}{s_{123} x_{123}} \quad B_{3}: \frac{x_{2}}{s_{123} x_{123}^{2}} \quad B_{4}: \frac{x_{3}}{s_{123} x_{123}^{2}} \\
& C_{1}: 1 \quad \begin{array}{l}
\text { Boundary terms are kinematic } \\
\text { independent integrals which } \\
\text { integrates to rational numbers. }
\end{array}
\end{aligned}
$$

$$
d \vec{g}=d A \vec{g}
$$

$$
\left.\begin{array}{|ll|}
\hline \operatorname{dlog}\left(\frac{1-z}{1-\bar{z}}\right) & \operatorname{dlog}\left(\frac{z}{\bar{z}}\right) \\
\operatorname{dlog}\left(\frac{|1-z|^{2}}{1-|z|^{2}}\right) & \operatorname{dlog}|z|^{2}
\end{array} \right\rvert\,
$$

EEEEC Master Integrals

Evaluate to up to weight-3 polylogarithms

All except two integrals involve only rational letters

Analytic properties

$$
\begin{aligned}
f_{1} & :=\int \frac{d^{4} x}{G L(1)} \frac{x_{2}}{s_{123} s_{234} x_{1234}} \\
f_{2} & :=\int \frac{d^{4} x}{G L(1)} \frac{x_{3}}{s_{123} s_{234} x_{1234}}
\end{aligned}
$$

Cutting three propagators

$$
\begin{aligned}
& s_{123}=s_{234}=x_{1234}=0 \quad \text { defines a cubic curve } \\
& x_{2}^{3}\left|z_{12}\right|^{2}\left|z_{24}\right|^{2}+x_{3}^{3}\left|z_{13}\right|^{2}\left|z_{34}\right|^{2} \\
& +x_{2}^{2} x_{3}\left(\left(\left|z_{13}\right|^{2}-\left|z_{23}\right|^{2}\right)\left|z_{24}\right|^{2}+\left|z_{12}\right|^{2}\left(-\left|z_{23}\right|^{2}+\left|z_{24}\right|^{2}\right.\right. \\
& \left.\left.+\left|z_{34}\right|^{2}\right)\right)+x_{3}^{2} x_{2}\left(\left(\left|z_{13}\right|^{2}-\left|z_{23}\right|^{2}\right)\left|z_{24}\right|^{2}\right. \\
& +\left|z_{12}\right|^{2}\left(-\left|z_{23}\right|^{2}+\left|z_{24}\right|^{2}+\left|z_{34}\right|^{2}\right) \\
& =0:=-\left|z_{13}\right|^{2}\left|z_{34}\right|^{2}\left(a x_{2}-x_{3}\right)\left(b x_{2}-x_{3}\right)\left(c x_{2}-x_{3}\right)
\end{aligned}
$$

$$
\begin{array}{rlrl}
f_{1} & :=\int \frac{d^{4} x}{G L(1)} \frac{x_{2}}{s_{123} S_{234} x_{1234}}, & f_{1} & =\frac{1}{(c-a)(a-b)} \int d \ln x_{3} \wedge \ln \frac{a x_{2}-x_{3}}{b x_{2}-x_{3}} \wedge d \ln \frac{D_{2}}{D_{4}} \wedge d \ln \frac{D_{3}}{D_{4}} \\
f_{2} & :=\int \frac{d^{4} x}{G L(1)} \frac{x_{3}}{s_{123} S_{234} x_{1234}} . & -\frac{1}{(b-c)(c-a)} \int d \ln x_{3} \wedge \ln \frac{b x_{2}-x_{3}}{c x_{2}-x_{3}} \wedge d \ln \frac{D_{2}}{D_{4}} \wedge d \ln \frac{D_{3}}{D_{4}}
\end{array}
$$

dlog basis:

$$
\begin{aligned}
& g_{1}:=g_{a}-g_{b} . \\
& g_{2}:=g_{b}-g_{c} .
\end{aligned}
$$

$$
\left|z_{13}\right|^{2}\left|z_{34}\right|^{2} f_{1}:=\frac{g_{a}}{(c-a)(a-b)}+\frac{g_{b}}{(a-b)(b-c)}+\frac{g_{c}}{(b-c)(c-a)^{\prime}}
$$

$\left|z_{12}\right|^{2}\left|z_{24}\right|^{2} f_{2}:=-\frac{g_{a}}{\left(\frac{1}{c}-\frac{1}{a}\right)\left(\frac{1}{a}-\frac{1}{b}\right)}-\frac{g_{b}}{\left(\frac{1}{a}-\frac{1}{b}\right)\left(\frac{1}{b}-\frac{1}{c}\right)}-\frac{g_{c}}{\left(\frac{1}{b}-\frac{1}{c}\right)\left(\frac{1}{c}-\frac{1}{a}\right)}$.
f_{1}, f_{2} are totally symmetric when shuffling the three cubic roots
g_{a}, g_{b}, g_{c} : pure functions related by cyclic permutation

Under proper parametrization, e.g. using $\left(a, b,|z|^{2},|w|^{2}\right), g_{a} \cdot g_{b,} g_{c}$ can evaluated in HyperInt.
g_{1}, g_{2} contain 10 more letters involving the cubic roots, which only appear in the last entry

$$
\begin{aligned}
& g_{1}:=g_{a}-g_{b} . \\
& g_{2}:=g_{b}-g_{c} .
\end{aligned}
$$

$$
\mathcal{A}_{\text {cubic }}:=\left\{\frac{a}{b}, \frac{a+|z|^{2}}{b+|z|^{2}}, \frac{a+|w|^{2}}{b+|w|^{2}}, \frac{a+z}{a+\bar{z}} \frac{b+\bar{z}}{b+z}, \frac{a+w}{a+\bar{w}} \frac{b+\bar{w}}{b+w}\right\} \cup(a \rightarrow b, b \rightarrow c)
$$

Despite the cubic-root dependence, the master integrals are single-valued function whose branch cuts cancel on the Euclidean sheet. They all satisfy a first-entry condition: the first entry of the symbol must be $\left|z_{i j}\right|^{2}$.

Symbol alphabets

Three-point correlator :

$$
\mathcal{A}_{3}:=\left\{z, \bar{z}, 1-z, 1-\bar{z}, 1-|z|^{2}, 1-|1-z|^{2},|z|^{2}-|1-z|^{2}\right\}
$$

Four-point correlator: \quad define $\overline{\mathcal{A}_{3}}:=\mathcal{A}_{3} \cup\{z-\bar{z}\}$

$$
\mathcal{A}_{4}=\overline{\mathcal{A}_{3}}(1,2,3) \cup \overline{\mathcal{A}_{3}}(2,3,4) \cup \overline{\mathcal{A}_{3}}(1,2,4) \cup \overline{\mathcal{A}_{3}}(1,3,4) \cup \mathcal{A}_{1234} \cup \mathcal{A}_{\text {cubic }}
$$

$$
\begin{aligned}
& \mathcal{A}_{1234}: \\
& =\{\bar{w} z-w, w \bar{z}-\bar{w}, 1-w-\bar{w}+\bar{w} z, 1-w-\bar{w}+w \bar{z}, w \\
& \left.-|z|^{2}, \bar{w}-|z|^{2}, \bar{w} z-\bar{z} w,|z|^{2}-|w|^{2}\right\} \cup\left(w \leftrightarrow \frac{1}{z}, \bar{w} \leftrightarrow \frac{1}{\bar{z}}\right)
\end{aligned}
$$

Symbol alphabets

$$
\mathcal{S}\left(E^{4} C\right) \quad 1 \text { st entry: }
$$

$$
\left|\frac{z_{12} z_{34}}{z_{13} z_{24}}\right|^{2}=\frac{|z|^{2}}{|w|^{2}}
$$

43×43 system of differential equations $\vec{g}=d B \vec{g}$
Master integrals graded

Iterative structures for (the symbol of) N-point correlators / adjacency relations?

EEEEC in $\mathbf{N}=4$ SYM in the quadruple collinear limit :

The expressions for R_{i}, r_{j} are complicated, contain high degree poles (up to six degree), most are spurious.
$\mathcal{G}(z, w)$: the sum of integrals in four sub topologies
$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
-••••••••

$$
\begin{gathered}
{\left.E E E E C_{N=4 ~ S Y M}\right|_{\text {coll. }}}=\frac{1}{\left|z_{12}\right|^{2}\left|z_{23}\right|^{2}\left|z_{34}\right|^{2}}[\mathcal{G}(z, w)] \\
+\operatorname{perms}(1,2,3,4) \\
\mathcal{G}(z, w)=\left[R_{i} A_{i}+r_{j} B_{j}+r_{0}\right]
\end{gathered}
$$

R_{i}, r_{j} : Algebraic functions
A_{i} : 28 pure master integrals 4-pt integral family
21 weight-3 +7 weight-2
B_{j} : 14 pure master integrals in the boundary integral family 9 weight-2 +5 weight-1

Factorization Limits

$(1,2,3)$ triple collinear : $(w, \bar{w}) \rightarrow 1$

$$
\left.\left.E E E E C_{N=4 S Y M}\right|_{\text {coll. }} \propto \frac{1}{\left|z_{4 i}\right|^{2}} E E E C_{N=4 S Y M}\right|_{\text {coll }}
$$

$(1,2)(3,4)$ double collinear: $\left(z, \bar{z}, \frac{1}{w}, \frac{1}{\bar{w}}\right) \rightarrow 0$

$$
\left.\left.E E E E C_{N=4 S Y M}\right|_{\text {coll. }} \propto \frac{1}{\left|z_{23}\right|^{2}} E E C_{N=4 S Y M}\right|_{\text {coll }} \times\left. E E C_{N=4 S Y M}\right|_{\text {coll }}
$$

Bootstrapping the Energy Correlators

Are there ways to bypass heavy IBPs and determine the E^NC via bootstrap?

Challenges: mixed weight, complication in the rational coefficients
Opportunities:
Imposing physical constraints, lower-weight terms could be fixed from the higher-weight functions

Probing the structure of the symbol

-Differential equations
intersection theory method as a short cut for building the system of DEs
-Discontinuity
based on the method of projective geometry developed in 1712.09991 (also refering to 2206.06507)

Ongoing collaborations with Hofie Hannesdottir, Andrzej Pokraka, Xiaoyuan Zhang, Ellis Ye Yuan, Jianyu Gong

E^NC as simplex contour integral

Δ : Canonical simplex

$$
I_{N}=\int_{\Delta} \frac{T\left[X^{m}\right]\left\langle X d^{N-1} X\right\rangle}{\prod_{I}\left(X Q_{I} X\right)^{a_{I}} \prod_{J}\left(H_{J} X\right)^{b_{J}}}
$$

($\mathrm{n}-1$)-Simplex is uniquely determined by its 0 -faces. $\operatorname{In} R^{n-1}$,

$$
\sum_{i=1}^{n} x_{i} V_{i}, \quad \sum_{i=1}^{n} \not x_{i}=1 \text { and }(\forall i) x_{i} \geq 0
$$

We believe energy correlators can be analytically continued, so they are functions of complex variables.

In $C P^{n-1}$,
domain of x_{i} are promoted to complex field. $\overline{V_{i} V_{j}}$ can be deformed within the $C P^{1}$ subspace it belongs to.

$\boldsymbol{E}^{\boldsymbol{N}} \boldsymbol{C}$ from projective geometry

The ENC integrals are projective in $C P^{n-1}$

$$
\begin{aligned}
&h(\boldsymbol{\omega})) \rightarrow \mathrm{d}^{3} \omega / \mathrm{GL}(1) /\left(\omega_{1}+\omega_{2}+\omega_{3}\right)^{\mathbb{N}} \\
& F_{1}=\int \mathrm{d}^{3} \omega \frac{\omega_{2} \omega_{3} \delta(1-h(\boldsymbol{\omega}))}{\omega_{1} \omega_{2}+|z|^{2} \omega_{2} \omega_{3}+|1-z|^{2} \omega_{1} \omega_{3}}=3 \int_{C P^{3}} \frac{\left\langle\boldsymbol{\omega} \mathrm{~d}^{3} \boldsymbol{\omega}\right\rangle \omega_{2} \omega_{3}}{(\boldsymbol{\omega} Q \boldsymbol{\omega})^{4}} \\
& Q=\frac{1}{2}\left(\begin{array}{cccc}
0 & 1 & |z-1|^{2} & 1 \\
1 & 0 & |z|^{2} & 1 \\
|z-1|^{2}|z|^{2} & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right)
\end{aligned}
$$

Spherical contour approach:
Taking deformed integration contour to compute discontinuity associated to the branch cut, (i.e. symbol entry), which can be read off from matrix Q.

Warm up: 1-simplex

$$
I=\int_{\Delta} \frac{\sqrt{\operatorname{det} Q}\langle X d X\rangle}{X Q X}=\int_{[1: 0]}^{[0: 1]} \frac{\left(r_{1}-r_{2}\right)\left(x_{1} d x_{2}-x_{2} d x_{1}\right)}{\left(x_{1}-r_{1} x_{2}\right)\left(x_{1}-r_{2} x_{2}\right)}
$$

Type equation here.

$$
\begin{gathered}
S[I]=\otimes \frac{\left\langle P_{1} V_{1}\right\rangle\left\langle P_{2} V_{1}\right\rangle}{\left\langle P_{1} V_{2}\right\rangle\left\langle P_{1} V_{2}\right\rangle}=\otimes r\left(Q^{-1}\right) \quad P_{1,2}=\left[r_{1,2}: 1\right] \\
r(M) \equiv \frac{M_{12}+\sqrt{M_{12}^{2}-M_{11} M_{22}}}{M_{12}-\sqrt{M_{12}^{2}-M_{11} M_{22}}}=\frac{r_{1}}{r_{2}}
\end{gathered}
$$

(The first entry of) the symbol emerge where the integrand singularities hits the contour boundary.

$$
\left\langle P_{i} V_{j}\right\rangle=0
$$

Residue contour

Compute discontinuity:
Pick up (V_{i}, P_{j}) and analytically continue their bracket $\left\langle V_{i} P_{j}\right\rangle$ around zero, or equivalently, letting V_{i} to deform around P_{j}.

$$
\operatorname{Dis} c_{V_{1}, P_{1}} I=\int_{\left|\left\langle X P_{1}\right\rangle\right|=\epsilon} \frac{\sqrt{\operatorname{det} Q}\langle X d X\rangle}{X Q X}=2 \pi i \quad S[I]=\otimes\left\langle V_{1} P_{1}\right\rangle-\otimes\left\langle V_{2} P_{1}\right\rangle
$$

Fibration of $C P^{n-1}$ over $C P^{2}$

$$
C P^{2} \rightarrow C P^{1} \times S^{1}
$$

Spherical contour

Choose a partition, e.g $\{(2,3),(1,4)\}$

Taking $(2,3)$ spherical contour: $\quad\left(\omega_{2}, \omega_{3}\right) \rightarrow(\omega, \bar{\omega})$

$$
\begin{aligned}
\operatorname{Disc}_{23}\left[F_{1}\right] & =3 \int_{\Delta}{ }^{(23)} \frac{\mathrm{d}^{2} \boldsymbol{\omega}_{\widehat{23}}}{\mathrm{GL}(1)} \frac{1}{(z \bar{z})^{4}} \int_{0}^{\infty} \mathrm{d} r \int_{0}^{2 \pi} \mathrm{~d} \theta \frac{2 i r P_{23}}{\left(r^{2}+\omega_{\widehat{23}} Q_{\widehat{23}} \boldsymbol{\omega}_{\widehat{23}}\right)^{4}} \\
\boldsymbol{\omega}_{\widehat{23}} & =\left(\omega_{1}, \omega_{4}\right) \quad Q_{\widehat{23}}=-\left(\begin{array}{cc}
\frac{(1-z)(1-\bar{z})}{z \bar{z}} & \frac{2-z-\bar{z}}{2 z \bar{z}} \\
\frac{2-z \bar{z}}{2 z \bar{z}} & \frac{1}{z \bar{z}}
\end{array}\right)
\end{aligned}
$$

The discontinuity is a $C P^{1}$ - integral over $\left[\omega_{1}: \omega_{4}\right]$:

$$
\operatorname{Disc}_{23}\left[F_{1}\right]=-\frac{\pi i}{(z \bar{z})^{3}} \int_{\Delta^{(23)}} \frac{\mathrm{d}^{2} \boldsymbol{\omega}_{\widehat{23}}}{\mathrm{GL}(1)} \frac{T_{23}}{\left(\boldsymbol{\omega}_{\widehat{23}} Q_{\widehat{23}} \boldsymbol{\omega}_{\widehat{23}}\right)^{3}}
$$

Symbol construction

$$
\operatorname{Disc}_{14}\left[\operatorname{Disc}_{23}[\Lambda]\right]=\frac{1}{z-\bar{z}} \quad \longrightarrow \quad S\left[\operatorname{Disc}_{23}[\Lambda]\right]=\frac{1}{z-\bar{z}} \times\left(\otimes \frac{1-z}{1-\bar{z}}\right)
$$

$$
\mathcal{S}[\Lambda]=\frac{1}{z-\bar{z}} \times\left(|z|^{2} \otimes \frac{1-z}{1-\bar{z}}+|1-z|^{2} \otimes \frac{z}{\bar{z}}\right)^{, \quad \text { combine with } S\left[\operatorname{Disc}_{13}[\Lambda]\right]}
$$

first entry
second entry
Leading singularity

$$
r\left(Q_{\{2,3\}\{2,3\}}^{-1}\right)=z \overline{\mathrm{z}} \quad r\left(Q_{2 \overline{3}}^{-1}\right)=\frac{1-z}{1-\bar{z}}
$$

$\boldsymbol{E}^{N} \boldsymbol{C}$ from intersection theory

The $\mathrm{E}^{\wedge} \mathrm{NC}$ (in $\mathrm{D}=4-2 \mathrm{e}$) defines a differential form which belong to a twisted cohomology

$$
\begin{gathered}
I_{\mu, \nu}:=\int \frac{\mathrm{d}^{3} \boldsymbol{\omega}}{\operatorname{GL}(1)} \frac{u}{\mathbf{T}^{\mu} \mathbf{S}^{\boldsymbol{\nu}}}:=\int u \varphi_{\mu, \nu} \quad \boldsymbol{\mu} \in \mathbb{Z}^{4}, \boldsymbol{\nu} \in \mathbb{Z}^{2}, u=\mathbf{T}^{(-\varepsilon,-\varepsilon,-\varepsilon, 3 \varepsilon)} \\
\varphi_{\mu, \boldsymbol{\nu}} \in H^{3}\left(X ; \nabla_{\omega}\right), \quad \nabla_{\omega}=\mathrm{d}+\omega \wedge, \quad \omega=\mathrm{d} \log u \quad X=\mathbb{C P}^{3} \backslash \mathcal{T} \mathcal{S}
\end{gathered}
$$

(Potential) IR divergences are regulated at the twisted boundary

All differential forms are regular at the relative boundary

Define a dual relative twisted cohomology:

$$
\mathbb{1}=\sum_{a, b}\left|\varphi_{a}\right\rangle C_{a b}^{-1}\left\langle\check{\varphi}_{b}\right| \quad C_{a b}=\left\langle\check{\varphi}_{a} \mid \varphi_{b}\right\rangle
$$

$$
\begin{aligned}
& H^{3}\left(X^{\vee}, \mathcal{S} ; \nabla_{-\omega}\right)=H^{3}\left(X^{\vee} ; \nabla_{-\omega}\right) \bigoplus_{i=1,2} H^{2}\left(X^{\vee} \cap \mathcal{S}_{i} ; \nabla_{-\omega}\right) \bigoplus H^{1}\left(X^{\vee} \cap \mathcal{S}_{12} ; \nabla_{-\omega}\right) \\
& X^{\vee}=\mathbb{C P}^{3} \backslash \mathcal{T}, \quad \text { and } \quad \mathcal{S}_{J}=\bigcap_{i \in J} \mathcal{S}_{i}
\end{aligned}
$$

It is more convenient to build the DEs for the dual forms.

$$
\check{\varphi}=\sum_{J} \delta_{J}\left(\check{\phi}_{J}\right)
$$

$$
\begin{aligned}
& \varphi_{1}^{\vee}=\delta_{\{ \}}\left(\frac{\varepsilon^{2}}{\omega_{1} \omega_{2} \omega_{3}} \frac{\mathrm{~d} \omega_{1} \wedge \mathrm{~d} \omega_{2} \wedge \mathrm{~d} \omega_{3}}{\mathrm{GL}(1)}\right) \\
& \varphi_{2}^{\vee}=\delta_{1}\left(\frac{\varepsilon}{\omega_{1} \omega_{2}} \frac{\mathrm{~d} \omega_{1} \mathrm{~d} \omega_{2}}{\mathrm{GL}(1)}\right) \\
& \varphi_{3}^{\vee}=\delta_{1}\left(-\frac{\varepsilon}{\omega_{2}\left(\omega_{1}\left|z_{13}\right|^{2}+\omega_{2}\left|z_{23}\right|^{2}\right)} \frac{\mathrm{d} \omega_{1} \mathrm{~d} \omega_{2}}{\mathrm{GL}(1)}\right) \\
& \varphi_{4}^{\vee}=\delta_{1}\left(\frac{\sqrt{\left(\left|z_{12}\right|^{2}\right)^{2}+\left(\left|z_{13}\right|^{2}\right)^{2}+\left(\left|z_{23}\right|^{2}\right)^{2}-2\left|z_{12}\right|^{2}\left|z_{13}\right|^{2}-2\left|z_{12}\right|^{2}\left|z_{23}\right|^{2}-2\left|z_{13}\right|^{2}\left|z_{23}\right|^{2}}}{\omega_{1}^{2}\left|z_{13}\right|^{2}+\omega_{2}^{2}\left|z_{23}\right|^{2}+\left(\left|z_{13}\right|^{2}+\left|z_{23}\right|^{2}-\left|z_{12}\right|^{2}\right) \omega_{1} \omega_{2}} \frac{d \omega_{1} \mathrm{~d} \omega_{2}}{\text { GL(1) }}\right) \\
& \varphi_{5}^{\vee}=\delta_{12}\left(\frac{1}{\omega_{1}} \frac{\mathrm{~d} \omega_{1}}{\mathrm{GL}(1)}\right) \\
& \text { by sector } \\
& C_{1}: \quad 1 \\
& B_{2}: \frac{1}{s_{123} x_{123}} \\
& B_{3}: \frac{x_{2}}{s_{123} x_{123}^{2}} \\
& B_{4}: \frac{x_{3}}{s_{123} x_{123}^{2}} \\
& B_{1}: \frac{x_{2}}{s_{123} x_{23} x_{123}}
\end{aligned}
$$

Summary

Further development of phase-space integration algorithms
-NLO:
Promoting to $\mathrm{d}=4-2 \mathrm{e}$ dimension, incorporating ideas from intersection theory methods.
$-E^{N} C$ at generic angle, away from collinear limit.

Algorithm for bootstrapping the $E^{N} C$

- What do we learn about the function space/rational structure?
-How to impose physical constraints, e.g. from various OPE limits of light-ray operators

THANK YOU FOR YOUR ATTENTION !

