Power Corrections to Energy Correlators from Light-ray OPE

Hua Xing Zhu Peking University

Energy Correlators at the Collider Frontier July 11th, 2024, MITP, Mainz

Dual view on energy correlators

DGLAP evolution

Time-like anomalous dimension

Running coupling

Incorporating track

Quantum interference in parton shower

nuclear structure

medium effects

massive quark

- Light-ray OPE
- Space-like anomalous dimension
- Smearing in spin
- ???
- **Evolution for non-diagonal density matrix**
- ???
- ???
- ???
- ??? P.T. and N.P. Power corrections see also lain and Zhiquan's talks
 - 2

Track function describe a parton k converted to a subset of hadrons with quantum number R and total momentum fraction x.

One step closer to the true nature of hadronization than fragmentation function.

The track function formalism

H.-M. Chang, M. Procura, J. Thaler, W. Waalewijn, 2013

$$dy^{+}d^{d-2}y_{\perp}e^{ik^{-}y^{+}/2}\sum_{X}\delta\left(x-\frac{P_{R}^{-}}{k^{-}}\right)\frac{1}{2N_{c}}\mathrm{tr}\left[\frac{\gamma^{-}}{2}\langle0|\psi(y^{+},0,y_{\perp})|X\rangle\langle X|\bar{\psi}^{-}(y^{+},0,y_{\perp})|X\rangle\langle X|\bar{\psi}^{-}(y^{+},0,y_{\perp})|X\rangle\langle X|G_{-}^{\lambda,a}(0)|0\rangle\right]$$

X

The call for track-based calculation

observables. For all of these observables, the uncertainties for the track-based observables are significantly smaller than those for the calorimeter-based observables, particularly for higher values of β , where more soft radiation is included within the jet. However, since no track-based calculations exist at the present time, calorimeter-based measurements are still useful for precision QCD studies. The selection of charged particle jets. Note that track-based observables are IRC-unsafe. In general, nonperturbative track functions can be used to directly compare track-based measurements to analytical calculations [67-69]; however, such an approach has not yet been developed for jet angularities. Two

Defined of track-based observable

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\bar{e}} = \sum_{N} \int \mathrm{d}\Pi_{N} \, \frac{\mathrm{d}\bar{\sigma}_{N}}{\mathrm{d}\Pi_{N}} \int \prod_{i=1}^{N} \mathrm{d}x_{i} \, T_{i}(x_{i}) \, \delta[\bar{e} - \hat{e}(\{x_{i}p_{i}^{\mu}\} - \hat{e}(\{$$

e.g., jet mass: $\bar{e} = \sum_{i} (x_i p_i^{\mu})^2$

[ATLAS Collaboration, 1912.09837]

})]

Track EEC is simple

All hadron ENC:

$$\text{ENC} = \int d\Pi \frac{d\sigma}{d\Pi} \frac{E_1 E_2 \cdots E_N}{Q^N}$$

track ENC:

$$E_i \to \int dx_i \, x_i T_i(x) E_i =$$

$$\operatorname{ENC}_{\operatorname{tr}} = \int d\Pi \frac{d\sigma}{d\Pi} \frac{T_1(1)E_1T_2(1)E_2\cdots T_N(1)E_N}{Q^N} \prod_{i,j} \delta(z_{ij} - \cos\theta_{ij})$$

Complete factorization of measurement and weight

H. Chen, I. Moult, X.Y. Zhang, HXZ, 2020

$$\prod_{i,j} \delta(z_{ij} - \cos \theta_{ij})$$

RG flow of track function

RG equation for gluon track function

$$\begin{aligned} \frac{d}{d\ln\mu^2} T_g(x) &= T_g(x) \ K_g^{(1)} & \text{H. Chen et al., 221C} \\ &+ \int_0^1 dx_1 \int_0^1 dx_2 \int_0^1 dz \delta \left(x - x_1 \frac{1}{1+z} - x_2 \frac{z}{1+z} \right) \left[T_g(x_1) T_g(x_2) \ K_{gg,1}^{(1)}(z) \right] \\ &+ \sum_q \left(T_q(x_1) T_{\bar{q}}(x_2) + T_q(x_2) T_{\bar{q}}(x_1) \right) \ K_{q\bar{q},1}^{(1)}(z) \right] \\ &+ \int_0^1 dx_1 \int_0^1 dx_2 \int_0^1 dx_3 \int_0^1 dz \int_0^1 dt \ \delta \left(x - x_1 \frac{1}{1+z+zt} - x_2 \frac{z}{1+z+zt} - x_3 \frac{z}{1+z+zt} - x_3 \frac{z}{1+z+zt} - x_3 \frac{z}{1+z+zt} \right) \\ &\times \left\{ \ 6 \ T_g(x_1) T_g(x_2) T_g(x_3) \ K_{ggg,1}^{(1)}(z,t) \right. \\ &+ \sum_q \left[T_g(x_3) \left(T_q(x_2) T_{\bar{q}}(x_1) + T_q(x_1) T_{\bar{q}}(x_2) \right) \ K_{gq\bar{q},1}^{(1)}(z,t) \\ &+ T_g(x_2) \left(T_q(x_3) T_{\bar{q}}(x_2) + T_q(x_2) T_{\bar{q}}(x_3) \right) \ K_{gq\bar{q},3}^{(1)}(z,t) \right] \right\}. \end{aligned}$$

fifth central moment of gluon track func.

$$\frac{\mathrm{d}}{\mathrm{d}\ln\mu^2}\kappa(4) = -\gamma_{gg}(5)\kappa(4) + \gamma_{\kappa_2\kappa_2}\kappa^2(2)$$

6

Track EEC at NLO

LO (1978): Basham, Brown, Ellis, Love NLO (2018): L. Dixon et al. 1801.03219

NLO on track (2018): Y.B. Li et al. 2108.01674 First ever track-based observable at NLO!

Modification of scaling from track

- Modification to scaling from track is small at low point
- Two-point is almost identical on track and all hadrons in shape
- Monotonicity increasing in slope for ratio of track ENCs

• In the free hadron region, the charge-to-all hadron ratio approach $(2/3)^2$

Light-ray operators

Hofman, Maldacena, 2008 Kravchuk, Simmons-Duffin, 2018

$$\mathcal{E}(\vec{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \ \vec{n}_i T^{0i}(t, r\vec{n})$$

$$\mathcal{L}(\vec{n}) = \int_{-\infty}^{\infty} d(n \cdot x) \lim_{\bar{n} \cdot x \to \infty} (\bar{n} \cdot x)^2 \bar{n}^{\mu} \bar{n}^{\nu} T_{\mu\nu}(x)$$

The simplest light-ray operator measure the asymptotic energy flow at null infinity

Light-ray OPE: why important theoretically $O(x)O(0) = \sum x^{\gamma_i} c_i O_i \quad \Longrightarrow \quad \langle O(x_1)O(x_2)\cdots O(x_n) \rangle$ Euclidean OPE:

Light-ray OPE:

Kologlu, Kravchuk, Simmons-Duffin, Zhiboedov, 19

form of an OPE in a fictitious twodimensional Euclidean CFT

If the space of light-ray operators are fully carved out, then any N-point energy correlators can be build out from two-point

Spinning light-ray operator

$$\mathcal{O}_q^{[J]} = \frac{1}{2^J} \bar{\psi} \gamma^+ (iD^+)^{J-1} \psi$$

$$\mathcal{O}_{g}^{[J]} = -\frac{1}{2^{J}} F_{a}^{\mu+} (iD^{+})^{J-2} F_{a}^{\mu+} ($$

$$\mathcal{O}^{[J]}_{\tilde{g}(\lambda)} = -\frac{1}{2^J} F^{\mu+}_a (iD^+)^{J-2} F^{\mu+}_a$$

$$\mathcal{E}\mathcal{E} = \frac{c_1}{\theta^{2-\gamma_q}} \mathbb{O}_q^{J=3} + \frac{c_2}{\theta^{2-\gamma_g}} \mathbb{O}_g^{J=3}$$

 $F_a^{\nu+}\epsilon_{\lambda,\mu}\epsilon_{\lambda,\nu}$

 $+e^{i2\phi}\frac{c_3}{\rho_{A^2-\gamma_{\tilde{a}}}}\mathbb{O}^{J=3}_{\tilde{g},+}+e^{-i2\phi}\frac{c_3}{\rho_{A^2-\gamma_{\tilde{a}}}}\mathbb{O}^{J=3}_{\tilde{g},-}$ $c_3 = \frac{\alpha}{15\pi} (C_A - n_f T_f) \quad \textcircled{\bigcirc}$

Different ways to polarize the gluon

un-pol. pol.

 $f(\phi) = \operatorname{Tr}|A\rho|$

How do we find the azimuthal asymmetry in experiment?

 $\mathcal{E}(\hat{n}_1)\mathcal{E}(\hat{n}_2)\mathcal{E}(\hat{n}_3) = \frac{1}{(2\pi)^2} \frac{2}{\theta_S^2} \frac{2}{\theta_L^2} \vec{\mathcal{J}} \left[\widehat{C}_{\phi_S}(2) - \widehat{C}_{\phi_S}(3) \right] \left[\frac{\alpha_s}{\alpha_s} \right]$

H. Chen, I. Moult, HXZ, 2020

$$\frac{1}{\alpha_s(\theta_L Q)}{\left[\hat{G}_{\phi_L}(3) - \hat{C}_{\phi_L}(4)\right]} \left[\frac{\alpha_s(Q)}{\alpha_s(\theta_L Q)}\right]^{\frac{\hat{\gamma}^{(0)}(4)}{\beta_0}} \vec{\mathbb{O}}^{[4]}(\hat{n}_1) + \cdot$$

An analytic formula resumming the logs from light-ray OPE

• •

Comparing with "quantum" parton shower

Algorithm for incorporating the full quantum mechanical effects of spin correlation exist for quite some time.

J. Collins, 1988; I. Knowles, 1990; J. Forshaw, J. Holguin, S. Platzer, 2019

A. Karlberg, G. Salam, L. Scyboz, R. Verheyen, 2021

EEEC help validating the Monte-Carlo implementation

 $rac{1}{\sigma_{
m tot}} rac{d\Sigma}{d\Delta\psi}$

Breaking degeneracy by PDFs $f(\phi) = \text{Tr}[A\rho]$ $\rho = \begin{pmatrix} P_{qg} & P_{q\tilde{g}} \\ P_{a\tilde{a}} & P_{aa} \end{pmatrix}$ +/--/+

$$A = \mathcal{E}_{\text{proton}} \mathcal{E}$$

example of nuclear energy correlator

How to write a light-ray OPE for a proton state is an open question!

$$c_3 = f_g(x)C_A - n_f T_f f_q(x)$$

enhance the spin interference effects by exploiting the difference of PDFs

X.L. Li, X.H. Liu, F. Yuan, HXZ, 2023

Entangled by the Higgs Y.X. Guo, X.H. Liu, F. Yuan, HXZ, 2024

$$|\rho_{++}| = |\rho_{+-}|$$

Maximally entangled state

$$A = \mathcal{E}_{\text{proton}} \mathcal{E} \otimes \mathcal{E}_{\text{proton}} \mathcal{E}$$

Similarly idea used to probe CP property of the Higgs

T. Plehn, D. Rainwater, D. Zeppenfeld, 2001

Perturbative and non-perturbative power expansion

twist expansion

In both expansions, symmetry plays a prominent role

Hidden structure in twist expansion

Perturbative data at higher order in twist expansion

 $z = \theta_{S} e^{i\phi}$

twist expansion

Conformal block expansion for EEEC

$$-i\sum_{j} \left(p^{j}_{\mu} \frac{\partial}{\partial p^{j,\nu}} - (\mu \leftrightarrow \nu) \right) \quad C_{2} = \frac{1}{2} M_{\mu\nu} M^{\mu}$$

$$C_{2} \mathcal{E}_{3} \rangle_{\chi} = \sum_{\delta,j} C_{\delta,j}(n_{1}, n_{2}, \partial_{n_{2}}, \varepsilon) \langle \mathbb{O}^{J=3}_{\delta,j}(n_{2}, \varepsilon) \mathcal{E}_{3}(n_{3}) \rangle_{\chi}$$

Conformal block expansion

 $\langle \mathcal{E}_1 \mathcal{E}_2 \mathcal{E}_3 \rangle_{\chi} = \sum c_{\delta,j} G_{\delta,j}(z)$ δ, j

dynamical data

Chang, Simmons-Duffin, 2022 Chen, Moult, Sandor, HXZ, 2022

kinematical data (conformal block in 2D CFT)

Conformal block expansion

Conformal block expansion

Pb+Pb with wake / vacuum

Can a single $\delta = 6$ block fit the model?

How to interpret jet wake using conformal block expansion?

Non-perturbative power corrections to energy correlators from light-ray OPE

2406.06668, with H. Chen, P. Monni, Z. Xu

Significance of N.P. power corrections

power corrections = hadron - parton better to extract from experiment

At % level, control over the power corrections are necessary

Power expansion from symmetry

 $\lim_{n_1 \to n_2} \mathcal{E}(n_1)\mathcal{E}(n_2) = \frac{1}{x_L}\vec{C} \cdot$

dimension: 1 + 1 = -3 + (-3)

$$egin{array}{c|c} & \mathbb{L}_{ au} & \mathcal{L}_{ au} & \mathcal{L}_{ au} \\ \hline \mathrm{coll. \ spin} & 1- au & \mathcal{L}_{ au} \\ \mathrm{dimension} & - au - 1 & \mathcal{L}_{ au} \end{array}$$

Key assumptions: the hadronization scale is boost invariant

$$\vec{\mathbb{O}}_{\tau=2}^{[J=3]}(n_2) + \frac{\Lambda_{\text{QCD}}}{x_L^{3/2}} \vec{D} \cdot \vec{\mathbb{O}}_{\tau=2}^{[J=2]}(n_2) + \cdots$$

$ec{\mathcal{O}}^{[J]}_{ au}$	$ec{\mathbb{O}}^{[J]}_{ au}$	$ x_L $	$ \Lambda_{ m QCD} $
-J + J	$\begin{array}{c} 1 - (\tau + J) \\ J - 1 \end{array}$	$\begin{vmatrix} 2\\ 0 \end{vmatrix}$	$\begin{vmatrix} 0\\1 \end{vmatrix}$

Scaling and its violation in power correction

- Power corrections also exhibits scaling law!
- Plotting in the correct variable θQ manifests that the transition happen at a single transverse scale
- Removing the classical scaling behavior, leads to mild *θQ* but still non-trivial dependence ⇒ new nonperturbative function
- Also exists Q dependence

Scaling violation from RG invariance

 $\lim_{n_1 \to n_2} \mathcal{E}(n_1) \mathcal{E}(n_2) = \frac{1}{x_L} \vec{C} \cdot \vec{\mathbb{O}}_{\tau=2}^{[J=3]}(n_2) + \frac{\Lambda_{\text{QCD}}}{x_L^{3/2}} \vec{D} \cdot \vec{\mathbb{O}}_{\tau=2}^{[J=2]}(n_2) + \cdots$

Define a transverse momentum scale $K_{\perp} = \theta Q$

 $\mathrm{ENC}_{1,\Psi_a}^{\mathrm{N.P.}}(K_{\perp},Q) = \Lambda_{\mathrm{QCD}} \times \vec{D}_N$

$$\mu \frac{d}{d\mu} \vec{\mathbb{O}}_{\tau=2}^{[J]}(n;\mu) = \gamma_{\tau=2}^{[J]}(\mu) \cdot \vec{\mathbb{O}}_{\tau=2}^{[J]}(n;\mu)$$

 $\operatorname{ENC}_{1,\Psi_q}^{\mathrm{N.P.}}(K_{\perp},Q) = \Lambda_{\mathrm{QCD}} \times \vec{D}_N\left(1,\frac{\Lambda_{\mathrm{QCD}}^2}{K_{\perp}^2}\right) \cdot U_N(K_{\perp},Q) \cdot \frac{\langle \vec{\mathbb{O}}_{\gamma}^{|}}{(4\pi)^2}$

define a non-perturbative func. $D(K_{\perp})$

$$\left(\frac{K_{\perp}^2}{\mu^2}, \frac{\Lambda_{\rm QCD}^2}{\mu^2}\right) \cdot \frac{\langle \vec{\mathbb{O}}_{\tau=2}^{[J=N]}(n;\mu) \rangle_{\Psi_q}}{(4\pi)^{-1} \sigma_{\Psi_q} Q^{N-1}} \left(\frac{Q^2}{\mu^2}\right)$$

nonperturbative perturbative

In the absent of $\Lambda_{\rm OCD},\,\theta$ dependence in D can be predicted from Q dependence

$$\mu \frac{d\vec{D}_N}{d\mu} = -\vec{D}_N \cdot \gamma_{\tau=2}^{[J=N]}$$

$$\hat{\mathcal{D}}_{\tau=2}^{[J=N]}(n;Q) \rangle_{\Psi_q}$$

$$U_N(K_\perp,Q) \equiv \mathbb{P} \exp\left(-\int_{K_\perp}^Q \frac{d\mu}{\mu} \gamma_{\tau=2}^{[J=N]}(\mu)\right)$$

Q dependence predicted

Non-perturbative scale enters the formula as a boost invariant scale Justify the use of light-ray OPE The Q dependence of power corrections as a whole is predicted

Universal N.P. functions

 $\operatorname{ENC}_{1,\Psi_{q}}^{\mathrm{N.P.}}(K_{\perp},Q) = \Lambda_{\mathrm{QCD}} \times \vec{D}_{N} \left(1, \frac{\Lambda_{\mathrm{QCD}}^{2}}{K_{\perp}^{2}}\right) \cdot U_{N}(K_{\perp},Q) \cdot \frac{\langle \vec{\mathbb{O}}_{\tau=2}^{\lfloor J=N \rfloor}(n;Q) \rangle_{\Psi_{q}}}{(4\pi)^{-1} \sigma_{\Psi_{q}} Q^{N-1}}$

Validating against event generator

What's happening to EEC?

Expanding to the next-to-next-to-leading power

$$\lim_{n_1 \to n_2} \mathcal{E}(n_1) \mathcal{E}(n_2) = \frac{1}{x_L} \vec{C} \cdot \vec{\mathbb{O}}_{\tau=2}^{[J=3]}(n_2) + \frac{\Lambda_{\text{QCD}}}{x_L^{3/2}} \vec{D} \cdot \vec{\mathbb{O}}_{\tau=2}^{[J=2]}(n_2) + \frac{\Lambda_{\text{QCD}}^2}{x_L^2} \vec{E} \cdot \vec{\mathbb{O}}_{\tau=2}^{[J=1]}(n_2) + \cdots$$

Pole at J=1 due to small-x singularity

Large anomalous dimension could enhance the sensitivities to NNLP

An better scheme for e+e-

$$\vec{F}_1^{[N]}(K_{\perp}, Q) \cdot \vec{v}_i^{[N]} = \left[\frac{\alpha_s(Q)}{\alpha_s(K_{\perp})}\right]^{\lambda_i^{[N]}/(2\beta_0)} \left[\Lambda_{\rm QCD}\vec{D}_N\left(1, \frac{\Lambda_{\rm QCD}^2}{K_{\perp}^2}\right) \cdot \vec{v}_i^{[N]}\right]$$

the evolution

$$\vec{F}_1^{[N]}(K_{\perp},Q) = \frac{R_N(Q,Q_2)}{R_N(Q_1,Q_2)} \vec{F}_1^{[N]}(K_{\perp},Q_1) + \frac{R_N(Q_1,Q)}{R_N(Q_1,Q_2)} \vec{F}_1^{[N]}(K_{\perp},Q_2)$$

$$R_N(Q_1, Q_2) = \det \begin{pmatrix} \alpha_s(Q_1)^{\lambda_1^{[N]}/(2\beta_0)} & \alpha_s(Q_1)^{\lambda_2^{[N]}/(2\beta_0)} \\ \alpha_s(Q_2)^{\lambda_1^{[N]}/(2\beta_0)} & \alpha_s(Q_2)^{\lambda_2^{[N]}/(2\beta_0)} \end{pmatrix} \quad \frac{\log[Q_1]}{\log[Q_1]}$$

$$x_{L}^{3/2}Q \operatorname{ENC}_{\Psi_{q}}^{\mathrm{N.P.}}(K_{\perp},Q) \approx \frac{R_{N}(Q,Q_{2})}{R_{N}(Q_{1},Q_{2})} x_{L}^{3/2}Q_{1} \operatorname{ENC}_{\Psi_{q}}^{\mathrm{N.P.}}(K_{\perp},Q_{1}) + \frac{R_{N}(Q_{1},Q)}{R_{N}(Q_{1},Q_{2})} x_{L}^{3/2}Q_{2} \operatorname{ENC}_{\Psi_{q}}^{\mathrm{N.P.}}(K_{\perp},Q_{2}),$$

$$\uparrow$$
contains $\mathcal{O}(\Lambda_{\mathrm{QCD}}) + \mathcal{O}(\Lambda_{\mathrm{QCD}}^{2}) + \cdots$ requires input at two energy scales

] - Log[Q2]	$\alpha s (2 \beta 0 + \lambda 1 + \lambda 2) (Log[Q] - Log[Q1]) (Log[Q] - Log[Q1])$			
1] - Log[Q2]	8π(Log[Q1] – Log[Q2])			

 \mathbf{J}

Results for the alternative scheme

- For e+e-, fit for 250 and 500 GeV from Monte-Carlo and predict other energy
- Same for Higgs->gg
- Now good agreement is found even for EEC
- Agreement is even found deep into the non-perturbative region

Incorporating track again

power corrections on tracks is defined as Pythia - perturbative LL

 $PNC^{tr}(x_L) = PNC_{pert}^{tr}(x_L) + \frac{\Lambda_{tr,1}^{(n)}}{x_L^{1.5}} + \frac{\Lambda_{tr,2}^{(n)}}{x_L}$

	2-point	$3 ext{-point}$	4-point
all-particle	$rac{\Lambda_1^{(2)}}{x_L^{1.5}} + rac{\Lambda_2^{(2)}}{x_L}$	$rac{\Lambda_1^{(3)}}{x_L^{1.5}}+rac{\Lambda_2^{(3)}}{x_L}$	$rac{\Lambda_1^{(4)}}{x_L^{1.5}}+rac{\Lambda_2^{(4)}}{x_L}$
$\Lambda_1^{(n)}$	0.00076 ± 0.00006	0.00044 ± 0.00004	0.000229 ± 0.000013
$\Lambda_2^{(n)}$	$7\times10^{-9}\pm0.0005$	$1.0 imes 10^{-9} \pm 0.00028$	0.000031 ± 0.00011
charged-particle	$rac{\Lambda_{{ m tr},1}^{(2)}}{x_L^{1.5}}+rac{\Lambda_{{ m tr},2}^{(2)}}{x_L}$	$rac{\Lambda_{{ m tr},1}^{(3)}}{x_L^{1.5}}+rac{\Lambda_{{ m tr},2}^{(3)}}{x_L}$	$rac{\Lambda_{ ext{tr,1}}^{(4)}}{x_L^{1.5}}+rac{\Lambda_{ ext{tr,2}}^{(4)}}{x_L}$
$\Lambda^{(n)}_{\mathrm{tr},1}$	0.000266 ± 0.000023	0.000106 ± 0.000013	0.000044 ± 0.000004
$\Lambda^{(n)}_{\mathrm{tr},2}$	0 ± 0.00019	0 ± 0.00011	0 ± 0.00004
$\Lambda^{(n)}_{\mathrm{tr},1}/\Lambda^{(n)}_1$	0.35	0.24	0.19

M. Jaarsma, et al., 2307.15739

Summary

- Energy correlators provide a dual view of high energy scattering
- Light-ray operators make symmetry manifest:
 - spin physics
 - perturbative and non-perturbative power corrections
- Phenomenology and experimental driven measurement can bring in new challenging for field theory: e.g. tracks
- Simple, but not simpler