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Figure 4: Comparison of perturbative results for the EEC cross-section in the MS and R
schemes in eqs. (2.23) and (3.6), respectively. Here, LO is O(↵s) and NLO is O(↵2

s). The
R scheme results have overlapping uncertainty bands and better convergence than MS.

3.2 R scheme with resummation

Equation (3.6) still has one remaining issue, associated with large logarithms induced by the
scale R. To avoid large logarithms in cn(z, µ/Q) and dn(µ/R), we see from eq. (3.5) that we
would need R ' µ ' Q. Retaining the scaling ⌦1(R) ⇠ ⇤QCD, however, requires a relatively
small value of R, like R ' 2GeV; and this scale would cause large ln(µ/R) ' ln(Q/R) in
dn(µ/R). We can resolve these conflicting needs by using the RGE for R in ref. [104], which
has been implemented for ⌦1(R) in refs. [54, 59],

⌦1(R1) = ⌦1(R0) +K(R1, R0) = ⌦1(R0)�
1X

n=0

�⌦1,R
n

Z R1

R0

dR
h↵s(R)

4⇡

in+1

. (3.7)

Here K(R1, R0) is a dimension-1 evolution kernel that sums large logarithms between R0

and R1. For leading logarithmic (LL) resummation, we need the anomalous dimension
�⌦1,R
0

= d10 = �8.357, while at next-to-leading logarithmic (NLL), we also need �⌦1,R
1

=

d20 � 2�0d10 = 55.693. Here, we again quote numerical values from ref. [59], with nf =

5 active light flavors, suitable for the Q = mZ that we use in our numerical analysis.
Calculating �⌦1,R

2
requires d30 as input, which is not yet available.

This solution to the R-RGE enables us to write

1

�0

d⌃

dz
=


1

�0

d⌃̂R(R1)

dz
+

K(R1, R0)

2Q
⇥
[z(1� z)]3/2

⇤
+

�
+

⌦1(R0)

2Q
⇥
[z(1� z)]3/2

⇤
+

, (3.8)

where the first term in square brackets corresponds to the resummed perturbative prediction
for the EEC, while the last term contains the R scheme power correction. Here, R0 ' 2GeV

and R1 ' Q.

3.3 Perturbative convergence

Next, we compute the R scheme perturbative EEC cross-section d⌃̂R/dz at LO and NLO
from eq. (3.5). For simplicity, we take µ = R1 in d⌃̂R/dz. At LO, we carry out the
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Perturbative Results:    scheme  versus R schemeMS

• improved convergence in R scheme (vs.  scheme)

•smaller perturbative uncertainty 


MS
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 NLO (analytic): Dixon, Luo, Shtabovenko, Yang, Zhu (2018)MS
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Figure 5: Predictions for the full EEC with the inclusion of the leading nonperturba-
tive correction in the MS and R schemes, compared to OPAL data [60], as discussed in
section 3.4. Central values are displayed at both LO=O(↵s) and NLO=O(↵2

s).

Hadron mass corrections are known to have a significant impact on universality relations
for ⌦1 [56]. This is influenced by assumptions made about hadron masses when using
experimental measurements to determine a given observable. Ref. [57] developed a field-
theoretic method to compute hadron mass corrections to universality relations. For an
observable e, we denote the leading-power mass correction by ⌦e

1
= ce⌦

ge
1

, where ⌦ge
1

=
R
1

0
dr ge(r)⌦1(r) and r = pT /

q
p2T +m2 for a hadron of transverse momentum pT and mass

m. Here ce and ge(r) are analytically calculable terms, while ⌦1(r) is a universal hadronic
matrix element. Following the notation of ref. [57], for the EEC we define

fEEC(r, y) = 2 cosh y �
⇣1� cos ✓

2
� z

⌘
= 2 cosh y �

✓
1

2
�

sinh y

2
p
r2 + sinh2 y

� z

◆
. (3.9)

Here, y is rapidity and the prefactor 2 is the combinatoric factor for two energies. Then,

cEEC =

Z
+1

�1
dy fEEC(1, y) =

1

2[z(1� z)]3/2
,

gEEC(r) =
1

cEEC

Z
+1

�1
dy fEEC(r, y) = r . (3.10)

Here, cEEC is the coefficient of ⌦1 for the massless universality relation, in agreement with
eqs. (2.27) and (3.8).

The result gEEC(r) = r implies that ⌦gEEC
1

is in the so-called E-scheme universality
class of power corrections, which differs from the thrust universality class ⌦g⌧

1
quoted above.

Since gEEC(r) > g⌧ (r), we expect the value of the EEC power correction to be larger than
that for thrust. A two-term basis expansion provides a fairly accurate parametrization for
the impact of hadron masses on g(r) [57], enabling us to write any observable as a linear

– 17 –

Including Leading Nonperturbative Correction:

•no fit parameters!

•model independent

•good agreement with data
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Figure 6: Full nonperturbative predictions for the EEC without (left) and with (right)
corrections from hadron mass effects as discussed in sections 3.4 and 3.5, normalized to
NLO R scheme. We show the uncertainty bands for NLO curves with the perturbative and
parametric uncertainties added in quadrature.

combination of nonperturbative parameters ⌦ge
1

= be
0
⌦(0)

1
+ be

1
⌦(1)

1
. Using the R scheme

thrust fit, and ⌦(0)

1
�⌦(1)

1
' 0.7GeV from Monte Carlo fits [57], we find ⌦gEEC

1
/⌦g⌧

1
= 1.21.

Thus, hadron mass effects in the EEC induce a 21% increase in the value of ⌦1(R0), giving
⌦gEEC
1

(R0) = 0.895±0.054GeV. It is harder to obtain an analogous MS estimate, as Monte
Carlo simulations with hadronization at the shower cutoff are physically similar to the R
scheme, but not to MS. Thus, we simply assume that MS hadron mass corrections also
cause a 21% increase, yielding ⌦̄gEEC

1
= 0.305± 0.084GeV.

3.5 Comparison to experimental data

We now combine the perturbative EEC results and leading nonperturbative corrections to
predict the total EEC cross-section. In figure 5, we compare our MS and R scheme results
with OPAL data [60]. Here, ⌦̄1 and ⌦1(R0) include the estimated hadron mass corrections.
We normalize the theory results by dividing by the full hadronic cross-section �, to O(↵s)

and O(↵2
s) for LO and NLO [107]. Our NLO R scheme result agrees well with OPAL

data, except in the z ! 0 and z ! 1 regions, where one should resum large perturbative
logarithms to higher orders in ↵s. Note that the NLO R scheme result is also closer to the
data than the LO R scheme result. For MS, the power correction shifts MS predictions
closer to the data, but it is apparent that one needs higher-order perturbative corrections
to improve agreement.

It is difficult to illustrate hadron mass effects and uncertainties in the theoretical pre-
dictions on the scales shown in figure 5. Therefore, we display the same data as percent
deviations from the NLO R scheme result in figure 6. In the left panel, we use the massless
hadron parameter values, corresponding to the thrust fit values of ⌦̄1 and ⌦1(R0).7 In the
right panel, we include the 21% increase in these parameters due to the hadron mass effects

7Though we have only shown predictions for the EEC and not considered fits to the EEC data, we do
note that fits at a single value of Q are insufficient to break the degeneracy between different values of
↵s(mZ) and ⌦1(R0). For example, had we fixed ↵s(mZ) = 0.118, we could find a value of ⌦1(R0) that
gives similarly good agreement with the OPAL data, as in the right panel of figure 6.
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•  better agreement

•  with thrust parameters 
(assuming massless  
 hadrons)

•  include +20% hadron  
mass correction to Ω1
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