Nonperturbative Corrections for Energy Correlators: R-scheme for Precision Predictions

lain Stewart MIT

Energy Correlators at the Sollider Frontier workshop MITP, Mainz July 11, 2024

arXiv:2305.19311 S.Schinder, IS, Z.Sun = $S.^3$ '23 arXiv:2405.19396 K.Lee, A.Pathak, IS, Z.Sun

Massachusetts Institute of Technology

(TP

Outline

My Talk: Formalism and basic EEC results

- Board $\begin{cases} \circ & \text{Operator Expansion for Nonperturbative Effects} \\ \circ & \text{Universality Classes for Hadronization in } e^+e^- \\ \circ & \text{Defining Nonperturbative parameters:} \end{cases}$

 - renormalization schemes and renormalons
 - Results for EEC in e^+e^-

Part 2 by Zhiquan Sun: extension to projected N-point Correlators, small angle limit (e^+e^- and pp), and cool results

Perturbative Results: MS scheme versus R scheme S.³ '23

- improved convergence in R scheme (vs. MS scheme)
- smaller perturbative uncertainty

Including Leading Nonperturbative Correction:

 $S.^{3}$ '23

- no fit parameters!
- model independent
- good agreement with data

S.³ '23

 with thrust parameters (assuming massless hadrons)

- include +20% hadron mass correction to Ω_1
- better agreement