

Wright Laboratory

Exploring the Invisible Universe

Probing QCD with N-point Energy Correlators MITP EEC Workshop 2024

Ananya Rai, 10th July 2024

Imaging the Wakes of Jets with EEECs: Roadmap

What are wakes and what is the hybrid model?

MITP-EEC Workshop 2024

A.Rai, Yale University

How can projected correlators be used to probe QCD?

See Hannah's talk next!

What new things can the shape-dependent energy-energy-energy correlator add?

Talk outline Two sub-talks

* Probing vacuum QCD using energy correlators

Probing vacuum QCD with N-point Energy Correlators in Jets at ALICE

MITP EEC Workshop 2024

Ananya Rai (on behalf of ALICE), 10th July 2024

* Probing QCD matter using energy correlators

Probing QCD matter with N-point Energy Correlators in Jets

MITP EEC Workshop 2024

Wright Laboratory

Ananya Rai (on behalf of herself), 10th July 2024 *Based on work with Hannah Bossi (MIT), Arjun Kudinoor (Cambridge --> MIT), Ian Moult (Yale Daniel Pablos (Santiago), Krishna Rajagopal (MIT)

 $\tau_0 < 1 \text{ fm/c}$

Wright Laboratory

Probing vacuum QCD with N-point **Energy Correlators in Jets at** ALICE **MITP EEC Workshop 2024**

Ananya Rai (on behalf of ALICE), 10th July 2024

Jets and Jet Substructure Looking inside jets

* Created from iterative splittings of hard scattered partons during the initial collision

* Multi-scale objects: QCD evolution imprinted on jets as they go from perturbative to non-perturbative scales

Correlation Functions Some intuition from other systems

* Correlation functions indicate **phase** transitions Eg 1: Ferromagnetic transition, correlation length $\rightarrow \infty$

Eg 2: Use correlations to trace back to possible inflation scenarios

- Active area of research for hadronic jets
- Recent results from ALICE, CMS, STAR — wide energy range!

A.Rai, Yale University

Energy Correlators in Jets Definition

Number of particles in the correlation

ENC(
$$R_L$$
) = $\left(\prod_{k=1}^N \int d\Omega_{\vec{n}_k}\right) \delta(R_L - \Delta \hat{R})$

Largest distance between N particles

Energy Correlators in Jets Constructing the correlators

- Find a jet
- 2. Create pairs with jet constituents
- 3. Fill an energy-weighted histogram

- 1. Find a jet
- 2. Create triplets with jet constituents
- 3. Find the largest distance between the triplets
- 4. Fill an energy-weighted histogram

QFT Detour: Anomalous Dimensions What they are and why they matter

QFT operators have a scaling/mass dimension Δ_{\odot} . For e.g., in 3+1D, scalar field $[\phi] = 1$, fermion field $[\psi] = 3/2$. Quantum mechanical effects $\longrightarrow \Delta_{\odot}$ gets shifted by "anomalous dimensions", $\gamma_{\mathbb{O}}$: $\Delta_{\mathbb{O}} = \Delta_{\mathbb{O}, classical} + \gamma_{\mathbb{O}}$

We will discuss how in the case of energy correlators, extracting these allows us to probe the strong coupling constant, $\alpha_{\rm S}$!

Allow us to probe quantum mechanical corrections! Measuring and extracting these is a great way to prove to ourselves that we live in a quantum world

A.Rai, Yale University

 QCD evolution from right (perturbative) partons) to left (non-perturbative, free streaming hadrons), with the peak region representing confinement transition.

- Curve shifts to the left with increasing jet p_T – elongating the perturbative regime.
- γ_2 is the anomalous dimension of EEC operator - quantum correction! Powers of the slope *"Scaling behavior"*

MITP-EEC Workshop 2024

11

Preliminary Results: EEC Dependence on \sqrt{s}

• Two ALICE measurements: $\sqrt{s} = 5.02$ TeV and 13 TeV

ALI-PREL-557542

Preliminary Results: E3C pp $\sqrt{s} = 13 TeV$

- Preserve the "size" of the correlation
- Similar behavior as the EEC
- γ_3 is the anomalous dimension of E3C operator

ALI-PREL-558358

ALI-PREL-558363

Both E3C & EEC are normalized by the area (in the measured range) and bin width.

MITP-EEC Workshop 2024

14

Trends between theory and data agree

• Current work: extracting the anomalous dimensions and attempting to map them to $\alpha_{\rm S}$

Comparison to MC generators pp $\sqrt{s} = 13 TeV$

ALI-PREL-557442

ALI-PREL-557457

- Herwig shows better agreement than Pythia for EEC and E3C. Differences are more pronounced in the hadronization region.
- E3C/EEC isolates perturbative physics.

A.Rai, Yale University

MITP-EEC Workshop 2024

ALI-PREL-557472

• The ratio to MC sits at unity for E3C/EEC - signifying that non-perturbative power corrections cancel and

Ongoing work **pp** $\sqrt{s} = 13 TeV$

•Preliminary results used *bin-by-bin* correction method (possible due to excellent R_{I} resolution at ALICE)

 $f_{corr}(R_L^{det}, p_{T,iet}^{det}) = ENC_{det}/ENC_{true}$ $ENC_{true}(p_{T,iet}^{true}) = (1/f_{corr})ENC_{det}(p_{T,iet}^{det})$

 Unfold to extract anomalous dimensions and relate to $\alpha_{\rm S}$.

Goal: Extract the anomalous dimensions γ_3 and γ_2

Both E3C & EEC are normalized by the area (in the measured range) and bin width.

Summary and Outlook Energy Correlators in vacuum QCD and beyond

Energy Correlators show clear separation of energy scales inside jets

Ratios of projected correlators are sensitive to running of the strong *coupling,* α_{s} . We can extract the slopes of E3C/EEC and relate them to α_{s} .

Energy correlators in the QGP

Wright Laboratory

Energy Correlators in Jets MITP EEC Workshop 2024

Ananya Rai (on behalf of herself), 10th July 2024

Daniel Pablos (Santiago), Krishna Rajagopal (MIT)

time

π, K, p,

Energy Correlators in Heavy Ion Collisions Active area of research!

Resolving the Scales of the Quark-Gluon Plasma with Energy Correlators Carlota Andres,¹ Fabio Dominguez,² Raghav Kunnawalkam Elayavalli,^{3,4,5} Jack Holguin,¹ Cyrille Marquet,¹ and Ian Moult⁶ ¹CPHT, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France ²Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain ³Wright Laboratory, Yale University, New Haven, CT ⁴Brookhaven National Laboratory, Upton NY ⁵Dependent of Discourse of Astronomy Version belt Incourses National Trans **Probing the Short-Distance Structure of the Quark-Gluon Plasma** with Energy Correlators

Zhong Yang,¹ Yayun He⁽⁾,^{2,3} Ian Moult,⁴ and Xin-Nian Wang⁽⁾,^{1,5} ¹Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China ²Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Q

A Coherent View of the Quark-Gluon Plasma from **Energy Correlators**

Carlota Andres,^a Fabio Dominguez,^b Jack Holguin,^a Cyrille Marquet,^a Ian Moult^c

^a CPHT, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France ^bInstituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain

Seeing Beauty in the Quark-Gluon Plasma with Energy Correlators

Carlota Andres,¹ Fabio Dominguez,² Jack Holguin,¹ Cyrille Marquet,¹ and Ian Moult³ ¹CPHT, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France ²Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain ³Department of Physics, Yale University, New Haven, CT 06511

Energy Correlators in Heavy Ion Collisions Looking for interesting physics

Impact of medium on jet

"Jet Energy Loss" **Drag Force**

•Can we measure the medium response with energy correlators?

What is the best observable for experiments?

Impact of jet on medium Negative Wake

"Medium Response" Hydrodynamic Wake

E2C and E3C in Heavy Ion Collisions Looking for interesting physics Wake effects appear at *large angles* Effects are further **enhanced** for E3C!

**Green (solid diamonds) curve implements unphysical energy loss

A.Rai, Yale University

E3C/E2C in Heavy Ion Collisions Looking for interesting physics

**Green (solid diamonds) curve implements unphysical energy loss

A.Rai, Yale University

- **Experimentally interesting** because ratios are more robust to detector effects!
- Ratios will also cancel some ${\bullet}$ uncorrelated background effects

 R_{I}

E3C/E2C in Heavy Ion Collisions **Some open questions**

**Green (solid diamonds) curve implements unphysical energy loss

A.Rai, Yale University

- We see deviation from vacuum behavior at large R_I
- We think that this "flat" region corresponds to the presence of the wake
- In pp, we access the anomalous dimensions of vacuum QCD. How should we interpret the scalings in this picture here?

 R_{I}

Tuning the wake signal: E2C Enhancing and suppressing soft physics

*By doing so we lose IRC safety and become more susceptible to non-perturbative effects A.Rai, Yale University

We can tune the correlator to isolate hard or soft physics via energy weights!

Studying jet p_T dependence n = 1

Expectation: Lower $p_{\rm T}$ jets should show more medium modification

Difficult to see any differences by eye for both the E2C and E3C

Studying jet p_T dependence n = 0.5

Expectation: Lower $p_{\rm T}$ jets should show more medium modification $^{\bullet}$

Studying R dependence Can we see the wake?

A.Rai, Yale University

- γ/Z -hadron correlations instead of jets to maximize effect (Yen-Jie's talk on Monday)

Experimental Outlook How to maximize signal in data

Can turn knobs to see medium response effects at smaller R!

See Jussi's talk on Friday for results on E2C in data!

More to come, stay tuned!

What next?

We have identified the scale of the medium response (wake) using projected N-point correlators. Can we use the full EEEC to uniquely identify the wake?

A.Rai, Yale University

MITP-EEC Workshop 2024

Hannah's talk!

Backup

Higher Point Projected Correlators in Jets Definition & Motivation

A.Rai, Yale University

R_L **Tuning the wake signal: E2C Enhancing and suppressing soft physics**

We can tune the correlator to isolate hard or soft physics via energy weights!

Tuning the wake signal: E3C Enhancing and suppressing soft physics

We can tune the correlator to isolate hard or soft physics via energy weights!

E2C and E3C in Heavy Ion Collisions Looking for interesting physics Wake effects appear at *large angles* Effects are **enhanced** for E3C!

**Green (solid diamonds) curve implements unphysical energy loss

A.Rai, Yale University

