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Proof of principle of EEC in HIC

« Quark-initiated jet with known initial energy E (y/Z-jet)

+ |In this case energy loss effects are subleading and there is no need for resummation of soft emissions
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Proof of principle of EEC in HIC

« Quark-initiated jet with known initial energy E (y/Z-jet)

+ |In this case energy loss effects are subleading and there is no need for resummation of soft emissions
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 Medium-splittings calculated on a brick
. Soft approximation (z — 0, keeping zE finite) common in energy loss calculations not suitable here

* [wo avallable approximations:
+ Semi-hard approximation: resums multiple scatterings, ignores momentum broadening in an eikonal approach

+ Opacity expansion (GLV): possible unitarity issues, no eikonal assumptions involved


https://arxiv.org/abs/2107.02542
https://arxiv.org/abs/1907.03653
https://arxiv.org/abs/1807.03799

General expected features of EECs Iin heavy
lon collisions

 Medium-modifications are not enhanced by large
0gs and can be computed to LO in the number
of splittings

e Shape of correlators is not modified at very small
angles

 Medium-enhancement at large angles deviates
from vacuum power-law behavior

+ Amplitude of enhancement is model dependent

Two—Point Energy Correlator
Comparing Medium Models
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What is missing to have a meaningful
comparison to data”

at the LHC, CERN (igrualb
ol o &

* In-medium splitting calculations must be improved |
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+ (Go beyond the semi-hard approximation
* |Implement evolving media

 Energy loss effects must be included for inclusive
jets measurements given the dependence on the
nard scale

 Wake, medium response — not included in this talk



Improvements to calculations of iIn-medium
splittings

e Single scattering: allow medium parameters to change with evolving medium

* Multiple scatterings:

+ (Computed first corrections to semi-hard approximation to account for transverse momentum
broadening

+ Allow medium parameters to change with evolving medium

+ We can now completely remove the semi-hard approximation in the soft multiple scattering

(harmonic) approximation in an evolving medium, but it takes much longer to run |
Not yet implemented



Reallstic medium evolution

 EXxpress medium parameters entering our calculations in
terms of temperature extracted from hydro simulations

Multiple scatterings:  §(t) = kno T°(£(t))

Single scattering:  n(t) = kavT (§(t))  p*(t) = 6mas T2(£(t))

* Average over sample of possible trajectories for a given
centrality class

1
(Ae)e = /dqbdaro dyo w(wo, yo) Ag

w(xo,Y0) = Ta(xo,yo) Ta(b — (0, y0))



—nergy 10ss In heavy 1on collisions

Medium interactions enhance the probability
of having soft emissions at large angles

Reconstructed jet energy Is lower than the
initial parton energy

Energy lost by a |et susceptible to jet-by-jet
fluctuations

Narrow |et expected to lose less energy
than broader |ets




Energy loss In EECs in heavy ion collisions

For the y/Z-jet case energy loss is expected to be subdominant and not change significantly the
shape of the correlator

For inclusive jets measurements, energy loss effects become important given that they shitt the
hard scale. Selection bias

In particular, the hadronization transition will be shifted towards smaller angles
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Model for the hadronization transition in pp

* [nterpolate smoothly between the hadron gas region and the perturbative result

dz Y. L. Dokshitzer, G. Marchesini and B. R. Webber, hep-ph/9512336
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https://arxiv.org/abs/hep-ph/9512336

Model for the hadronization transition in pp

Interpolate smoothly between the hadron gas region and the perturbative result
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Same result can be obtained from the small-angle limit of the cross-section for radiation off a
massive particle
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https://arxiv.org/pdf/2210.09311.pdf
https://arxiv.org/abs/hep-ph/9512336

Energy loss through quenching weignts

For sufficiently narrow jets, the medium does not resolve the jet substructure and it losses energy
as a single source (totally coherent limit)

Assuming independent emissions, the distribution of lost energy can be computed from the
spectrum of soft medium-induced emissions

O

N r N _
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N =0

This distribution is then convoluted with the observable at a higher hard scale and averaged over

trajectories
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Corrections to this approach due to jet fluctuations can be calculated
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https://arxiv.org/abs/2312.12527

EECs for y/Z-jets
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 No modification to the shape of the correlators at small angles

 Normalization chosen such that quotient is 1 at small angles
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EEC for inclusive jets
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Nift in the energy scale appears as not trivial structure at small angles, while large
ngle enhancement does not seem to change
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TS Single scattering
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EEC for inclusive jets
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Summary and outlook

Selection bias appears in the correlators as a negative slope in the small angle region
Medium-induced splittings create an enhancement at larger angles

One free parameter + normalization is not fixed

Further improvements in the calculation will allow us to fix the free parameter using other measurements

Comparisons with several pr bins and centralities will provide a more complete picture

15



Thank you!



Results In the semi-hard approximation

Two—Point Energy Correlator Two—Point Energy Correlator
Multiple Scatterings: HO Multiple Scatterings: HO
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 No moditication at small angles
* [ransition towards medium-induced enhancement at larger angles

. Varying g has different effects depending on medium resolution
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https://arxiv.org/abs/2303.03413

dxV
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Results for first order In opacity

Two—Point Energy Correlator Two—Point Energy Correlator
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e Similar qualitative features compared to the semi-hard approach
e Transition towards medium-enhancement not so well defined

 Enhancement at large angles has a much smaller amplitude
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https://arxiv.org/abs/2303.03413

Calculation of in-medium
splittings
Collinear (high-energy) limit: All particles have a large longitudinal

momentum compared to their transverse momenta (small angles,
DGLAP limit)

Decoupling of transverse and longitudinal dynamics: Effects coming
from the transverse (with respect to the direction of the jet) structure of
the medium are suppressed by powers of the energy

Medium interactions are resummed through in-medium propagators

platl W p27t2

T{ :gR(p27t2;p17t1;w)

A~ A~

Cross section are expressed in terms of medium averages of products
of propagators
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Semi-hard approximation

FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653 Isaksen, Tywoniuk 2107.02542
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Semi-hard approximation

e Take in-medium propagators in the extreme eikonal limit where they can be written

as a Wilson line in a straight trajectory in coordinate space

20
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Semi-hard approximation

FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653 Isaksen, Tywoniuk 2107.02542

e Take in-medium propagators in the extreme eikonal limit where they can be written
as a Wilson line in a straight trajectory in coordinate space
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Semi-hard approximation

FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653 Isaksen, Tywoniuk 2107.02542

e Take in-medium propagators in the extreme eikonal limit where they can be written
as a Wilson line in a straight trajectory in coordinate space

Gnlta sitianiw) = [ Drew{ S [Taeite) [ Pew{ig [ de Agterien]

t

|- _J/

NS

VR (t2,t1;(r])

— Go.r(t2, @2 t1, ®1;w) Vr(t2, t1; |[2a])

 Neglect additional transverse momentum broadening
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Semi-hard approximation

FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653 Isaksen, Tywoniuk 2107.02542

e Take in-medium propagators in the extreme eikonal limit where they can be written
as a Wilson line in a straight trajectory in coordinate space

Gnltaz esitiaiw) = [ Drew{ ) [Cacio b pexn dig [ac apiern)

t

\ J/

V

VR (t2,t1;(r])

— Go.r(t2, @2 t1, ®1;w) Vr(t2, t1; |[2a])

 Neglect additional transverse momentum broadening

p3

gR(t27p2; tlapl;w) — e—zm(h—tl) / e_i(pl—pO).m VR(t27t1; [33 -+ ’I’Lt])

= (2m)26) (py — py) e '3 2TVt 11 [nat])
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Semi-hard approximation

FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653 Isaksen, Tywoniuk 2107.02542

Take in-medium propagators in the extreme eikonal limit where they can be written
as a Wilson line in a straight trajectory in coordinate space

Gnlta sitianiw) = [ Drew{ S [Taeite) [ Pew{ig [ de Agterien]

t

|- _J/
NS

VR (t2,t1;(r])

— Go.r(t2, @2 t1, ®1;w) Vr(t2, t1; |[2a])

Neglect additional transverse momentum broadening

p3

QR(tQ,Pz; t1,p1;w) — e~ tE (2Tl / eI PR VR(t27t1§ [33 - nt])
— (2m)26®) (py — py) e TV 8y, 1 ; [t])

The harmonic approximation (HO) is usually employed when using this approach
but it Is not necessary
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Semi-hard approximation

FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653 Isaksen, Tywoniuk 2107.02542

Take in-medium propagators in the extreme eikonal limit where they can be written
as a Wilson line in a straight trajectory in coordinate space

Gnlta sitianiw) = [ Drew{ S [Taeite) [ Pew{ig [ de Agterien]

t

|- _J/
NS

VR (t2,t1;(r])

— Go.r(t2, @2 t1, ®1;w) Vr(t2, t1; |[2a])

Neglect additional transverse momentum broadening

p3

gR(t27p2§ t1,p1;w) — e~ tE (2Tl / eI PR VR(t27t1§ [w - nt])
— (2m)26®) (py — py) e TV 8y, 1 ; [t])

The harmonic approximation (HO) is usually employed when using this approach
but it Is not necessary

Angular and time scales are easily identitiable from the analytic formulas
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Semi-hard approximation

Take in-medium propagators in the extreme eikonal limit where they can be written
as a Wilson line in a straight trajectory in coordinate space

Gnlta sitianiw) = [ Drew{ S [Taeite) [ Pew{ig [ de Agterien]

t

\ - _J/
NS

VR (t2,t1;(r])

— Go.r(t2, @2 t1, ®1;w) Vr(t2, t1; |[2a])

Neglect additional transverse momentum broadening

. p3

gR(t%pz; ?51,101;“) — e~ tE (2Tl / eI PR VR(tQa t1; [m - ”t])
— (2m)26®) (py — py) e TV 8y, 1 ; [t])

The harmonic approximation (HO) is usually employed when using this approach
but it Is not necessary

Angular and time scales are easily identitiable from the analytic formulas

Numerical evaluations are straightforward in the large-/N,. limit
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Relaxing approximations
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Relaxing approximations

* (Corrections due to momentum broadening can be easily included
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Relaxing approximations

* (Corrections due to momentum broadening can be easily included
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Relaxing approximations

* (Corrections due to momentum broadening can be easily included

p3 .
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Relaxing approximations

* (Corrections due to momentum broadening can be easily included

2

gR(t27p2; tlapl;w) — e_ig_i(b_tl) / 6_i(p1_p0).m VR(t27t1; [CL’ -+ nt])

T

. p3

— (2m)262) ti; [nt])

FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653
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Relaxing approximations

* (Corrections due to momentum broadening can be easily included

P3

Gr(t2, Pyit1, pryw) — e 2w 2t / e P17P0) T Vp (1 ;[ + it])

. p3

— (27)26'2) ti; [nt])
FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653

« Inthe large-IV, limit, eikonal approximation can also be relaxed, with

iIncreased complexity in the formulas and higher computational cost for
numerical evaluations
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Relaxing approximations

* (Corrections due to momentum broadening can be easily included

p

2
Gr(ta, Po;t1, Py w) — e t2w(f27h) / e P17P0) T Vp (1 ;[ + it])
£

. p3

— (27)26'2) ti; [nt])
FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653

« Inthe large-IV, limit, eikonal approximation can also be relaxed, with

iIncreased complexity in the formulas and higher computational cost for
numerical evaluations
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Relaxing approximations

* (Corrections due to momentum broadening can be easily included

P3

gR(t27p2; tlvpl;w) — e_i%(b_tl) / e_i(pl_pO).m VR(t27t1; [Q? -+ nt])

. p3

— (27)26'2) ti; [nt])
FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653

« Inthe large-IV, limit, eikonal approximation can also be relaxed, with

iIncreased complexity in the formulas and higher computational cost for
numerical evaluations
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t

\ _J
-~

VR (t2,t1;[7])

— Y0O.R : cl)

21


https://arxiv.org/abs/1907.03653

Relaxing approximations

* (Corrections due to momentum broadening can be easily included

P3

gR(t27p2; tlapl;w) — e_i%(b_tl) / e_i(pl_pO).m VR(t27t1; [Q? -+ nt])

. p3

— (2m)262) ti; [nt])
FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653

« Inthe large-IV, limit, eikonal approximation can also be relaxed, with

iIncreased complexity in the formulas and higher computational cost for
numerical evaluations

Onltasitiaiw) = [ Drew{ ) [Caciohpen dio [ anier©))

t1 tl

\ J/
-~

VR(t27t1;[r])
—y S : - ) Blaizot, FD, lancu, Mehtar-Tani 1209.4585
Apolinario, Armesto, Milhano, Salgado 1407.0599
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Relaxing approximations

* (Corrections due to momentum broadening can be easily included

P3

Gr(t2, Pyit1, pryw) — e 2w 2t / e P17P0) T Vp (1 ;[ + it])

. p3

— (27)26'2) ti; [nt])
FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653

« Inthe large-IV, limit, eikonal approximation can also be relaxed, with

iIncreased complexity in the formulas and higher computational cost for
numerical evaluations

Onlta st o) = [ Drew{ S [Taeite | pew{ig [ de Agterien]

t t1

\ - _J/
-~

VR(t27t1;[r])
—y S : - ) Blaizot, FD, lancu, Mehtar-Tani 1209.4585
Apolinario, Armesto, Milhano, Salgado 1407.0599

« Going beyond the large-N, limit requires a much more complex setup
where a system of coupled differential equations must be numerically
solved saksen, Tywoniuk 2303.12119
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Relaxing approximations

* (Corrections due to momentum broadening can be easily included

p3

gR(t27p2; tlapl;w) — e_i%(b_tl) / 6_i(p1_p0).m VR(t27t1; [CL’ -+ nt])

. p3

— (2m)262) ti; [nt])
FD, Milhano, Salgado, Tywoniuk, Vila 1907.03653

« Inthe large-IV, limit, eikonal approximation can also be relaxed, with

iIncreased complexity in the formulas and higher computational cost for
numerical evaluations

Onltasitiaiw) = [ Drew{ ) [Caciohpen dio [ anier©))

t

\ J/
-~

Vr(ta,t1;[r])
—y S : - ) Blaizot, FD, lancu, Mehtar-Tani 1209.4585
Apolinario, Armesto, Milhano, Salgado 1407.0599
» Goin pone only for y — gq and the code for this solution has fup
vvhler stability problems beyond a restricted area in parameter Y
SOV space and will not be used for this talk R
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Results for a brick with the harmonic
approximation
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Large reduction of the enhancement amplitude

Small dip before transitioning to medium-enhancement, already present when the
broadening correction is included

Overall picture of no modification at small angles followed by a transition to
medium-enhancement at large angles still valid
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