UNCERTAINTY QUANTIFICATION IN NUCLEAR MANY-BODY THEORY

ALESSANDRO LOVATO

Argonne $\boldsymbol{\Delta}$
PRISMA+ Colloquium
University of Mainz

CAREER RECAP

2006: Bachelor in Physics from "Sapienza" University (Rome, Italy)

2008: Master in Particle Physics from "Sapienza" University (Rome, Italy)

2012: PhD in Astro-Particle Physics from "SISSA" (Trieste, Italy)

2012-2014: Postdoc in the ALCF Division at Argonne

2014 - present: Staff Scientist in the Physics Division at Argonne

2018 - present: (on leave) Researcher at INFN-TIFPA in Italy

HISTORICAL INTRODUCTION

Voltaire (attributed to): Uncertainty is an uncomfortable position. But certainty is a ridiculous one.

HISTORICAL INTRODUCTION

Plato, The Apology of Socrates: Although I do not suppose that either of us knows anything really beautiful and good, I am better off than he is - for he knows nothing, and thinks he knows. I neither know nor think I know.

HISTORICAL INTRODUCTION

June 2008

Policy Statement on the Inclusion of Uncertainty Estimates for Theoretical Papers in Physical Review A

The fallowing policy statement was discussed and approwed try the Editorial Board of Physical Review A in May $2(00 \mathrm{~B}$

Papers presenting the results of theoretias calculstions are expected to inchuce uncertainty eatimates for the calculat are whenever practicable, and especially under the following circumstances:
a. If the authors claim high ascuracy, or improvements on the accuracy ef previsus work.
b. If the primary motivation for the paper is to make comparisons with present or future high precision experimental dete.
e. If the primary motivation is to provide interpclations er extrapolations c^{2} kown experimental data.

The Editors

"AB-INITIO" NUCLEAR THEORY

SOURCES OF UNCERTAINTIES

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle \quad ; \quad M_{m n}=\left\langle\Psi_{m}\right| J\left|\Psi_{n}\right\rangle
$$

SOURCES OF UNCERTAINTIES

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle \quad ; \quad M_{m n}=\left\langle\Psi_{m}\right| J\left|\Psi_{n}\right\rangle
$$

- Modeling the Hamiltonian and currents is a long-standing problem of Nuclear Physics

SOURCES OF UNCERTAINTIES

$$
H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle \quad ; \quad M_{m n}=\left\langle\Psi_{m}\right| J\left|\Psi_{n}\right\rangle
$$

- Modeling the Hamiltonian and currents is a long-standing problem of Nuclear Physics
- Solving the quantum many-body problems entails approximations

SOURCES OF UNCERTAINTIES

$$
\stackrel{-}{H}\left|\bar{\Psi}_{n}\right\rangle=\bar{E}_{n}\left|\bar{\Psi}_{n}\right\rangle, \quad ; \quad{ }_{-} \bar{M}_{m n}=\left\langle\Psi_{m}\right| J\left|\Psi_{n}\right\rangle
$$

- Modeling the Hamiltonian and currents is a long-standing problem of Nuclear Physics.
- Solving the quantum many-body problems entails approximations.
- These two sources of uncertainties can be correlated.

HAMILTONIAN

	NN	3 N	4N
$\begin{gathered} \mathrm{LO} \\ O\left(Q^{0} / \Lambda^{0}\right) \end{gathered}$	$\frac{1990}{2}$	-	-
$\begin{gathered} \mathrm{NLO} \\ O\left(Q^{2} / \Lambda^{2}\right) \end{gathered}$		$1992,1994 \text { [166-169] }$	——
$\begin{gathered} \mathrm{N}^{2} \mathrm{LO} \\ O\left(Q^{3} / \Lambda^{3}\right) \end{gathered}$		1994 [167,170]	-
$\begin{gathered} \mathrm{N}^{3} \mathrm{LO} \\ O\left(Q^{4} / \Lambda^{4}\right) \end{gathered}$			
$\begin{gathered} \mathrm{N}^{4} \mathrm{LO} \\ O\left(Q^{5} / \Lambda^{5}\right) \end{gathered}$?

UQ FOR THE TWO-BODY FORCE

- Bayes's theorem to include prior information in a transparent way

$$
\operatorname{pr}(\vec{\alpha} \mid D, I)=\frac{\operatorname{pr}(D \mid \vec{\alpha}, I) \cdot \operatorname{pr}(\vec{\alpha} \mid I)}{\operatorname{pr}(D \mid I)}
$$

- Keep track of both experimental and theory uncertainties

$$
y_{\exp }=y_{\text {true }}+\delta y_{\exp } \quad y_{\text {true }}=y_{\mathrm{th}}+\delta y_{\mathrm{th}}
$$

- Theory uncertainties dominated by EFT truncation

$$
y_{\mathrm{th}}^{(k)}=y_{\mathrm{ref}} \sum_{\nu=0}^{k} c_{\nu} Q^{\nu} \quad ; \quad Q=\frac{\max \left(m_{\pi}, p\right)}{\Lambda_{b}} \quad ; \quad \delta y_{\mathrm{th}}^{(k)}=y_{\mathrm{ref}} \sum_{\nu=k+1}^{\infty} c_{\nu} Q^{\nu}
$$

D. Furnstahl, Phys. Rev. C 92, 024005 (2015)
S. Wesolowski, J. Phys. G 46, 045102 (2019)
I. Svensson et al., Phys.Rev.C 105, 014004 (2022)

UQ FOR THE TWO-BODY FORCE

$\widetilde{C}_{1 S 0}^{n p}$	$\widetilde{C}_{1 S 0}^{p p}$	$\widetilde{C}_{3 S 1}$	$C_{1 S 0}$	$C_{3 P 0}$	$C_{1 P 1}$	$C_{3 P 1}$	$C_{3 S 1}$	$C_{3 S 1-3 D 1}$	$C_{3 P 2}$

UQ FOR THE THREE-BODY FORCE

THE MEAN-FIELD APPROXIMATION

The mean field ground-state wave function is a Slater determinant

$$
\begin{aligned}
& \Phi_{0}\left(x_{1}, \ldots, x_{A}\right)=\mathcal{A}\left[\phi_{n_{1}}\left(x_{1}\right), \ldots, \phi_{n_{A}}\left(x_{A}\right)\right] \\
& \Phi_{0}\left(x_{1}, x_{2}\right)=\phi_{1}\left(x_{1}\right) \phi_{2}\left(x_{2}\right)-\phi_{2}\left(x_{1}\right) \phi_{1}\left(x_{2}\right)
\end{aligned}
$$

CONFIGURATION-INTERACTION METHODS

UQ IN CONFIGURATION-INTERACTION METHODS

(a) NCSM results

(b) network topology
M. Knöll et al., Phys. Lett.B 839 (2023) 137781
T. Wolfgruber et al., arXiv:2310.05256

UQ IN CONFIGURATION-INTERACTION METHODS

TACKLE LARGER SYSTEMS

Polynomially-scaling methods reach (much) larger systems with controlled approximations

TACKLE LARGER SYSTEMS

CONTINUUM QUANTUM MONTE CARLO

The GFMC projects out the lowest-energy state using an imaginary-time propagation

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left|\Psi_{V}\right\rangle=\sum_{n} c_{n}\left|\Psi_{n}\right\rangle \\
\lim _{\tau \rightarrow \infty} e^{-\left(H-E_{0}\right) \tau}\left|\Psi_{V}\right\rangle= \\
\quad=\sum_{n} c_{n} e^{-\left(E_{n}-E_{0}\right) \tau}\left|\Psi_{n}\right\rangle=c_{0}\left|\Psi_{0}\right\rangle \\
\\
\text { J. Carlson, Phys. Rev. C 36, } 2026 \text { (1987) } \\
\text { B. Pudliner et al., PRC 56, 1720 (1997) }
\end{array}\right. \text { }
\end{aligned}
$$

UQ IN CONTINUUM QUANTUM MONTE CARLO

The fermion ground state is (typically) an excited state of the Hamiltonian

$$
E_{0}^{S} \leq E_{0}^{A} \longleftrightarrow \lim _{\tau \rightarrow \infty} e^{-\left(H-E_{0}^{A}\right) \tau}\left|\Psi_{V}\right\rangle=\sum_{n} c_{n}^{S} e^{-\left(E_{n}^{S}-E_{0}^{A}\right) \tau}\left|\Psi_{n}\right\rangle+c_{0}^{A}\left|\Psi_{0}^{A}\right\rangle+\ldots
$$

The boson ground-state component does not affect the Hamiltonian expectation value

$$
\langle H\rangle=\int d R_{N}\left\langle\Psi_{V}\right| H\left|R_{N}\right\rangle\left\langle R_{N}\right| e^{-\left(E_{n}^{S}-E_{0}^{A}\right) \tau}\left|\Psi_{n}\right\rangle=0
$$

Problem: The variance diverges exponentially

$$
\left\langle H^{2}\right\rangle=\int d R_{N}\left\langle\Psi_{V}\right| H\left|R_{N}\right\rangle^{2}\left\langle R_{N}\right| e^{-\left(E_{n}^{S}-E_{0}^{A}\right) \tau}\left|\Psi_{n}\right\rangle
$$

UQ IN CONTINUUM QUANTUM MONTE CARLO

[^0]

UQ FOR THE NUCLEAR EQUATION OF STATE

NEUTRON-MATTER EQUATION OF STATE

We benchmarked three many-body methods using the AV18 and chiral-EFT interactions

NEUTRON-MATTER EQUATION OF STATE

Extended the benchmark calculations to phenomenological and chiral-EFT three-body forces

UQ FOR NEUTRINO-OSCILLATION PHYSICS

Image courtesy of Noemi Rocco

UQ FOR NEUTRINO-OSCILLATION PHYSICS

Accurate neutrino-nucleus scattering calculations critical for the success of the experimental program

$$
N_{\mathrm{near}} \approx \int d E \Phi_{\mathrm{near}}(E) \times \underline{\underline{\sigma(E)}} \quad N_{\mathrm{far}} \approx \int d E P(E) \times \Phi_{\mathrm{far}}(E) \times \underline{\underline{\sigma(E)}}
$$

UQ FOR NEUTRINO-OSCILLATION PHYSICS

UQ FOR NEUTRINO-OSCILLATION PHYSICS

$$
R_{\alpha \beta}(\omega, \mathbf{q})=\sum_{f}\left\langle\Psi_{0}\right| J_{\alpha}^{\dagger}(\mathbf{q})\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right| J_{\beta}(\mathbf{q})\left|\Psi_{0}\right\rangle \delta\left(\omega-E_{f}+E_{0}\right)
$$

$$
E_{\alpha \beta}(\tau, \mathbf{q}) \equiv \int d \omega e^{-\omega \tau} R_{\alpha \beta}(\omega, \mathbf{q})=\left\langle\Psi_{0}\right| J_{\alpha}^{\dagger}(\mathbf{q}) e^{-\left(H-E_{0}\right) \tau} J_{\beta}(\mathbf{q})\left|\Psi_{0}\right\rangle
$$

UQ FOR NEUTRINO-OSCILLATION PHYSICS

UQ IN THE MANY-BODY METHOD

$$
E_{\alpha \beta}(\tau, \mathbf{q})
$$

$$
R_{\alpha \beta}(\omega, \mathbf{q})
$$

UQ IN THE MANY-BODY METHOD

$$
\begin{aligned}
& E_{i}^{\sigma}=\bar{E}_{i}+\epsilon_{i}, \\
& E\left(\tau_{n_{\tau}}\right) \longrightarrow
\end{aligned}
$$

UQ IN THE MANY-BODY METHOD

UQ IN THE INPUT CURRENT

We employed z-expansion parameterizations of axial form factors, consistent with experimental or LQCD data

D. Simons, et al, arXiv:2210.02455

NEUTRINOLESS DOUBLE-BETA DECAY

- Lepton number not conserved.
- Neutrino mass has a Majorana component.
- Provide crucial information about neutrino mass generation.
- Suggest that the matter-antimatter asymmetry in the universe originated in leptogenesis.

NEUTRINOLESS DOUBLE-BETA DECAY

$$
\left[T_{1 / 2}\right]^{-1}=G^{0 \nu}\left|M^{0 \nu}\right|^{2}\left\langle m_{\beta \beta}\right\rangle^{2} \quad ; \quad m_{\beta \beta}=\left|\sum_{k} m_{k} U_{e k}\right|^{2} \quad ; \quad M^{0 \nu}=\left\langle\Psi_{f}\right| O^{0 \nu}\left|\Psi_{i}\right\rangle
$$

NEURAL NETWORK QUANTUM STATES

NEURAL-NETWORK QUANTUM STATES

NQS are now widely and successfully applied to study condensed-matter systems

NEURAL-NETWORK QUANTUM STATES

NEURAL-NETWORK QUANTUM STATES

Nucleons are fermions

$$
\Psi_{V}\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{A}\right)=-\Psi_{V}\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{A}\right)
$$

Slater-Jastrow ansatz

$$
\Psi_{V}(X)=e^{J(X)} \Phi(X) \quad ; \quad \Phi(X)=\operatorname{det}\left[\begin{array}{cccc}
\phi_{1}\left(\mathbf{x}_{1}\right) & \phi_{1}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{1}\left(\mathbf{x}_{N}\right) \\
\phi_{2}\left(\mathbf{x}_{1}\right) & \phi_{2}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{2}\left(\mathbf{x}_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{N}\left(\mathbf{x}_{1}\right) & \phi_{N}\left(\mathbf{x}_{2}\right) & \cdots & \phi_{N}\left(\mathbf{x}_{N}\right)
\end{array}\right]
$$

COLD FERMI GASES

Periodic-NQS to solve the two-components Fermi gas in the BCS- BEC crossover region

$$
\begin{gathered}
H=\sum_{i} \frac{p_{i}^{2}}{2 m}+\sum_{i<j} v_{i j} \\
v_{i j}=\left(\delta_{s_{i}, s_{j}}-1\right) v_{0} \frac{2 \hbar^{2}}{m} \frac{\mu^{2}}{\cosh ^{2}\left(\mu r_{i j}\right)}
\end{gathered}
$$

NEURAL PFAFFIAN

Pfaffian-Jastrow ansatz

$$
\Phi_{P J}(X)=\operatorname{pf}\left[\begin{array}{cccc}
0 & \phi\left(x_{1}, x_{2}\right) & \cdots & \phi\left(x_{1}, x_{N}\right) \\
\phi\left(x_{2}, x_{1}\right) & 0 & \cdots & \phi\left(x_{2}, x_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi\left(x_{N}, x_{1}\right) & \phi\left(x_{N}, x_{2}\right) & \cdots & 0
\end{array}\right]
$$

In order for the above matrix to be skew-symmetric, the neural pairing orbitals are taken to be

$$
\phi\left(x_{i}, x_{j}\right)=\eta\left(x_{i}, x_{j}\right)-\eta\left(x_{j}, x_{i}\right)
$$

$$
\text { Example: } \quad \mathrm{pf}\left[\begin{array}{cccc}
0 & \phi_{12} & \phi_{13} & \phi_{14} \\
-\phi_{12} & 0 & \phi_{23} & \phi_{24} \\
-\phi_{13} & -\phi_{23} & 0 & \phi_{34} \\
-\phi_{14} & -\phi_{24} & -\phi_{34} & 0
\end{array}\right]=\phi_{12} \phi_{34}-\phi_{13} \phi_{24}+\phi_{14} \phi_{23}
$$

NEURAL BACKFLOW CORRELATIONS

The nodal structure is improved with neural back-flow transformations

$$
\mathbf{x}_{i} \longrightarrow \mathbf{y}_{i}\left(\mathbf{x}_{i} ; \mathbf{x}_{j \neq i}\right)
$$

COLD FERMI GASES

$$
\left(\frac{E}{E_{F G}}\right)_{\exp }=\xi=0.376(5)
$$

BACK TO NUCLEAR PHYSICS

"ESSENTIAL" HAMILTONIAN

Input: Hamiltonian inspired by a LO pionless-EFT expansion

$$
H_{L O}=-\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2 m_{N}}+\sum_{i<j} v_{i j}+\sum_{i<j<k} V_{i j k}
$$

- NN potential fit to s-wave np scattering lengths and effective ranges

$$
\begin{aligned}
v_{i j}^{\mathrm{CI}} & =\sum_{p=1}^{4} v^{p}\left(r_{i j}\right) O_{i j}^{p} \\
O_{i j}^{p=1,4} & =\left(1, \tau_{i j}, \sigma_{i j}, \sigma_{i j} \tau_{i j}\right)
\end{aligned}
$$

"ESSENTIAL" HAMILTONIAN

Input: Hamiltonian inspired by a LO pionless-EFT expansion

$$
H_{L O}=-\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2 m_{N}}+\sum_{i<j} v_{i j}+\sum_{i<j<k} V_{i j k}
$$

- 3NF adjusted to reproduce the energy of 3 H .

$$
V_{i j k} \propto c_{E} \sum_{\mathrm{cyc}} e^{-\left(r_{i j}^{2}+r_{j k}^{2}\right) / R_{3}^{2}}
$$

"ESSENTIAL" HAMILTONIAN

Our "essential" Hamiltonian reproduces well the spectrum of different nuclei

DILUTE NUCLEONIC MATTER

DILUTE NUCLEONIC MATTER

DILUTE NUCLEONIC MATTER

14 Neutrons, 14 Protons @ $\rho=0.01 \mathrm{fm}^{-3}$

DILUTE NUCLEONIC MATTER

14 Neutrons, 14 Protons @ $\mathbf{\rho}=\mathbf{0 . 0 1} \mathrm{fm}^{-3}$

CONCLUSIONS

Tremendous progress in estimating uncertainties in theoretical calculations

- Relevant for meaningful "nuclear structure" experiments;
- Essential for Nuclear Astrophysics and Fundamental Physics

CONCLUSIONS

Tremendous progress in estimating uncertainties in theoretical calculations

- Relevant for meaningful "nuclear structure" experiments;
- Essential for Nuclear Astrophysics and Fundamental Physics

Rumsfeld: as we know, there are known knowns[...] We also know there are known unknowns [...] But there are also unknown unknowns-the ones we don't know we don't know. [...] it is the latter category that tends to be the difficult ones.

CONCLUSIONS

NQS successfully applied to study:
\Rightarrow Ultra-cold Fermi gases, outperforming state-of-the-art continuum DMC;
\Rightarrow Dilute nucleonic matter, including the self-emergence of nuclei;
\Rightarrow Essential Elements of nuclear binding (including magnetic moments)

Ongoing efforts:
\Rightarrow Medium-mass nuclei
= Excited states
= Chiral-EFT potentials
= Real-time dynamics
\Rightarrow UQ in NQS

 \section*{
 \section*{\section*{THANK YOU

 \section*{
 \section*{\section*{THANK YOU

 \section*{
 \section*{\section*{THANK YOU

 THANK YOU

 THANK YOU

 ．

 ． ，} ，} ，} ，}

 \begin{tabular}{l}
m

\hline

m

\hline

m

\hline

m

\hline

m

\hline
\end{tabular}

\square

－

 \square \square \square

 ？

[^1]

正

者

[^0]:

[^1]: 再

