UNCERTAINTY QUANTIFICATION IN NUCLEAR MANY-BODY THEORY

ALESSANDRO LOVATO

PRISMA+ Colloquium University of Mainz

June 26, 2024

CAREER RECAP

2006: Bachelor in Physics from "Sapienza" University (Rome, Italy)

2008: Master in Particle Physics from "Sapienza" University (Rome, Italy)

2012: *PhD in Astro-Particle Physics from "SISSA" (Trieste, Italy)*

2012 - 2014: *Postdoc in the ALCF Division at Argonne*

2014 - present: Staff Scientist in the Physics Division at Argonne

2018 - present: (on leave) Researcher at INFN-TIFPA in Italy

HISTORICAL INTRODUCTION

Voltaire (attributed to): Uncertainty is an uncomfortable position. But certainty is a ridiculous one.

Information and Statistics in Nuclear Experiment and Theory (ISNET) News Article

HISTORICAL INTRODUCTION

Plato, The Apology of Socrates: Although I do not suppose that either of us knows anything really beautiful and good, I am better off than he is – for he knows nothing, and thinks he knows. I neither know nor think I know.

HISTORICAL INTRODUCTION

June 2008

Policy Statement on the Inclusion of Uncertainty Estimates for Theoretical Papers in *Physical Review A*

The following policy statement was discussed and approved by the Editorial Board of Physical Review A in May 2008.

Papers presenting the results of theoretical calculations are expected to include uncertainty estimates for the calculations whenever practicable, and especially under the following circumstances:

- a. If the authors claim high accuracy, or improvements on the accuracy of previous work.
- b. If the primary motivation for the paper is to make comparisons with present or future high precision experimental data.
- c. If the primary motivation is to provide interpolations or extrapolations of known experimental data.

The Editors

"AB-INITIO" NUCLEAR THEORY

$$H |\Psi_n\rangle = E_n |\Psi_n\rangle$$
 ; $M_{mn} = \langle \Psi_m | J |\Psi_n\rangle$

$$H|\Psi_n\rangle = E_n |\Psi_n\rangle$$
 ; $M_{mn} = \langle \Psi_m | J | \Psi_n \rangle$

• Modeling the Hamiltonian and currents is a long-standing problem of Nuclear Physics

$$H|\Psi_n\rangle = E_n |\Psi_n\rangle$$
 ; $M_{mn} = \langle \Psi_m | J |\Psi_n\rangle$

- Modeling the Hamiltonian and currents is a long-standing problem of Nuclear Physics
- Solving the quantum many-body problems entails approximations

$$\left(H \left| \Psi_n \right\rangle = E_n \left| \Psi_n \right\rangle \right) \quad ; \quad \left(M_{mn} = \left\langle \Psi_m \right| J \left| \Psi_n \right\rangle \right)$$

- Modeling the Hamiltonian and currents is a long-standing problem of Nuclear Physics.
- Solving the quantum many-body problems entails approximations.
- These two sources of uncertainties can be correlated.

HAMILTONIAN

K. Hebeler et al., Phys. Rept. 890 (2021) 1-116

UQ FOR THE TWO-BODY FORCE

• Bayes's theorem to include prior information in a transparent way

$$\operatorname{pr}(\vec{\alpha}|D, I) = \frac{\operatorname{pr}(D|\vec{\alpha}, I) \cdot \operatorname{pr}(\vec{\alpha}|I)}{\operatorname{pr}(D|I)}$$

• Keep track of both experimental and theory uncertainties

$$y_{\text{exp}} = y_{\text{true}} + \delta y_{\text{exp}}$$
 $y_{\text{true}} = y_{\text{th}} + \delta y_{\text{th}}$

Theory uncertainties dominated by EFT truncation

$$y_{\rm th}^{(k)} = y_{\rm ref} \sum_{\nu=0}^{k} c_{\nu} Q^{\nu}$$
; $Q = \frac{\max(m_{\pi}, p)}{\Lambda_b}$; $\delta y_{\rm th}^{(k)} = y_{\rm ref} \sum_{\nu=k+1}^{\infty} c_{\nu} Q^{\nu}$

D. Furnstahl, Phys. Rev. C 92, 024005 (2015)

- S. Wesolowski, J. Phys. G 46, 045102 (2019)
- I. Svensson et al., Phys.Rev.C 105, 014004 (2022) 12

UQ FOR THE TWO-BODY FORCE

R. Somasundaram, Phys.Rev.C 109 (2024) 3, 3

I. Svensson et al., Phys.Rev.C 105 (2022), 014004

UQ FOR THE THREE-BODY FORCE

15

S. Wesolowski et al., Phys.Rev.C 104 (2021) 6, 064001

THE MEAN-FIELD APPROXIMATION

The mean field ground-state wave function is a Slater determinant

$$\Phi_0(x_1, \dots, x_A) = \mathcal{A}[\phi_{n_1}(x_1), \dots, \phi_{n_A}(x_A)]$$

$$\Phi_0(x_1, x_2) = \phi_1(x_1)\phi_2(x_2) - \phi_2(x_1)\phi_1(x_2)$$

CONFIGURATION-INTERACTION METHODS

Image courtesy of Patrick Fasano

UQ IN CONFIGURATION-INTERACTION METHODS

M. Knöll et al., Phys. Lett.B 839 (2023) 137781

T. Wolfgruber et al., arXiv:2310.05256

UQ IN CONFIGURATION-INTERACTION METHODS

T. Wolfgruber et al., arXiv:2310.05256

TACKLE LARGER SYSTEMS

Polynomially-scaling methods reach (much) larger systems with controlled approximations

B. S. Hu et al., Nature Phys. 18 (2022) 10, 1196

TACKLE LARGER SYSTEMS

A. Tichai et al., Phys. Lett. B 851 (2024) 138571

CONTINUUM QUANTUM MONTE CARLO

The GFMC projects out the lowest-energy state using an imaginary-time propagation

$$\begin{aligned} |\Psi_{V}\rangle &= \sum_{n} c_{n} |\Psi_{n}\rangle \\ &\lim_{\tau \to \infty} e^{-(H-E_{0})\tau} |\Psi_{V}\rangle = \\ &= \sum_{n} c_{n} e^{-(E_{n}-E_{0})\tau} |\Psi_{n}\rangle = c_{0} |\Psi_{0}\rangle \end{aligned} \qquad \begin{array}{c} -27.4 \\ -27.4 \\ -27.4 \\ -27.4 \\ -27.4 \\ -27.4 \\ -27.4 \\ -28.4$$

UQ IN CONTINUUM QUANTUM MONTE CARLO

The fermion ground state is (typically) an excited state of the Hamiltonian

$$E_0^S \le E_0^A \quad \longleftrightarrow \quad \lim_{\tau \to \infty} e^{-(H - E_0^A)\tau} |\Psi_V\rangle = \sum_n c_n^S e^{-(E_n^S - E_0^A)\tau} |\Psi_n\rangle + c_0^A |\Psi_0^A\rangle + \dots$$

The boson ground-state component does not affect the Hamiltonian expectation value

$$\langle H \rangle = \int dR_N \langle \Psi_V | H | R_N \rangle \langle R_N | e^{-(E_n^S - E_0^A)\tau} | \Psi_n \rangle = 0$$

Problem: The variance diverges exponentially

$$\langle H^2 \rangle = \int dR_N \langle \Psi_V | H | R_N \rangle^2 \langle R_N | e^{-(E_n^S - E_0^A)\tau} | \Psi_n \rangle$$

UQ IN CONTINUUM QUANTUM MONTE CARLO

SELECTED APPLICATIONS

UQ FOR THE NUCLEAR EQUATION OF STATE

S. Huth, et al., Phys. Rev. C, **103**, 025803 (2021)

NEUTRON-MATTER EQUATION OF STATE

We benchmarked three many-body methods using the AV18 and chiral-EFT interactions

NEUTRON-MATTER EQUATION OF STATE

Extended the benchmark calculations to phenomenological and chiral-EFT three-body forces

AL et al., Phys.Rev.C 105 (2022) 5, 055808

Image courtesy of Noemi Rocco

Accurate neutrino-nucleus scattering calculations critical for the success of the experimental program

$$R_{\alpha\beta}(\omega,\mathbf{q}) = \sum_{f} \langle \Psi_{0} | J_{\alpha}^{\dagger}(\mathbf{q}) | \Psi_{f} \rangle \langle \Psi_{f} | J_{\beta}(\mathbf{q}) | \Psi_{0} \rangle \delta(\omega - E_{f} + E_{0})$$

$$I_{\alpha\beta}(\tau,\mathbf{q}) \equiv \int d\omega e^{-\omega\tau} R_{\alpha\beta}(\omega,\mathbf{q}) = \langle \Psi_{0} | J_{\alpha}^{\dagger}(\mathbf{q}) e^{-(H-E_{0})\tau} J_{\beta}(\mathbf{q}) | \Psi_{0} \rangle$$

UQ IN THE MANY-BODY METHOD

 $E_{\alpha\beta}(\tau,\mathbf{q})$ $R_{\alpha\beta}(\omega,\mathbf{q})$

UQ IN THE MANY-BODY METHOD

K. Raghavan, AL, al., arXiv:2310.18756

UQ IN THE MANY-BODY METHOD

UQ IN THE INPUT CURRENT

We employed z-expansion parameterizations of axial form factors, consistent with experimental or LQCD data

D. Simons, et al, arXiv:2210.02455

NEUTRINOLESS DOUBLE-BETA DECAY

- Lepton number not conserved.
- Neutrino mass has a Majorana component.
- Provide crucial information about neutrino mass generation.
- Suggest that the matter-antimatter asymmetry in the universe originated in leptogenesis.

NEUTRINOLESS DOUBLE-BETA DECAY

$$[T_{1/2}]^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\beta\beta} \rangle^2 \quad ; \quad m_{\beta\beta} = \left| \sum_k m_k U_{ek} \right|^2 \quad ; \quad M^{0\nu} = \langle \Psi_f | O^{0\nu} | \Psi_i \rangle$$

V. Cirigliano et al., J.Phys. G 49 (2022) 12, 120502

NEURAL NETWORK QUANTUM STATES

NEURAL-NETWORK QUANTUM STATES

NQS are now widely and successfully applied to study condensed-matter systems

NEURAL-NETWORK QUANTUM STATES

NEURAL-NETWORK QUANTUM STATES

Nucleons are fermions

$$\Psi_V(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_A) = -\Psi_V(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_A)$$

Slater-Jastrow ansatz

$$\Psi_{V}(X) = e^{J(X)}\Phi(X) \quad ; \quad \Phi(X) = \det \begin{bmatrix} \phi_{1}(\mathbf{x}_{1}) & \phi_{1}(\mathbf{x}_{2}) & \cdots & \phi_{1}(\mathbf{x}_{N}) \\ \phi_{2}(\mathbf{x}_{1}) & \phi_{2}(\mathbf{x}_{2}) & \cdots & \phi_{2}(\mathbf{x}_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{N}(\mathbf{x}_{1}) & \phi_{N}(\mathbf{x}_{2}) & \cdots & \phi_{N}(\mathbf{x}_{N}) \end{bmatrix}$$

J. Stokes et al., PLB, **102**, 205122 (2020) Pfau et al., PRR **2**, 033429 (2020) Hermann et al., Nature Chemistry, **12**, 891 (2020)

COLD FERMI GASES

Periodic-NQS to solve the two-components Fermi gas in the BCS- BEC crossover region

NEURAL PFAFFIAN

Pfaffian-Jastrow ansatz

$$\Phi_{PJ}(X) = pf \begin{bmatrix} 0 & \phi(x_1, x_2) & \cdots & \phi(x_1, x_N) \\ \phi(x_2, x_1) & 0 & \cdots & \phi(x_2, x_N) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(x_N, x_1) & \phi(x_N, x_2) & \cdots & 0 \end{bmatrix}$$

In order for the above matrix to be skew-symmetric, the neural pairing orbitals are taken to be

$$\phi(x_i, x_j) = \eta(x_i, x_j) - \eta(x_j, x_i)$$

Example:
$$pf \begin{bmatrix} 0 & \phi_{12} & \phi_{13} & \phi_{14} \\ -\phi_{12} & 0 & \phi_{23} & \phi_{24} \\ -\phi_{13} & -\phi_{23} & 0 & \phi_{34} \\ -\phi_{14} & -\phi_{24} & -\phi_{34} & 0 \end{bmatrix} = \phi_{12}\phi_{34} - \phi_{13}\phi_{24} + \phi_{14}\phi_{23}$$

NEURAL BACKFLOW CORRELATIONS

The nodal structure is improved with neural back-flow transformations $\mathbf{x}_i \longrightarrow \mathbf{y}_i(\mathbf{x}_i; \mathbf{x}_{j \neq i})$

G. Pescia, et al., 2305.08831 [cond-mat.quant-gas]

COLD FERMI GASES

 $\left(\frac{E}{E_{FG}}\right)_{\exp} = \xi = 0.376(5)$

J. Kim, B. Fore, AL, et al. Commun.Phys. 7 (2024) 1, 148

BACK TO NUCLEAR PHYSICS

"ESSENTIAL" HAMILTONIAN

Input: Hamiltonian inspired by a LO pionless-EFT expansion

$$H_{LO} = -\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2m_{N}} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

 NN potential fit to s-wave np scattering lengths and effective ranges

$$v_{ij}^{\text{CI}} = \sum_{p=1}^{4} v^p(r_{ij}) O_{ij}^p,$$
$$O_{ij}^{p=1,4} = (1, \tau_{ij}, \sigma_{ij}, \sigma_{ij}\tau_{ij})$$

R. Schiavilla, AL, PRC 103, 054003 (2021)

"ESSENTIAL" HAMILTONIAN

Input: Hamiltonian inspired by a LO pionless-EFT expansion

$$H_{LO} = -\sum_{i} \frac{\vec{\nabla}_{i}^{2}}{2m_{N}} + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk}$$

• 3NF adjusted to reproduce the energy of ³H.

$$V_{ijk} \propto c_E \sum_{\text{cyc}} e^{-(r_{ij}^2 + r_{jk}^2)/R_3^2}$$

R. Schiavilla, AL, PRC 103, 054003 (2021)

"ESSENTIAL" HAMILTONIAN

Our "essential" Hamiltonian reproduces well the spectrum of different nuclei

B. Fore, AL, et al. in preparation

14 Neutrons, 14 Protons @ ρ =0.01 fm⁻³

14 Neutrons, 14 Protons @ ρ =0.01 fm⁻³

CONCLUSIONS

Tremendous progress in estimating uncertainties in theoretical calculations

- Relevant for meaningful "nuclear structure" experiments;
- Essential for Nuclear Astrophysics and Fundamental Physics

CONCLUSIONS

Tremendous progress in estimating uncertainties in theoretical calculations

- Relevant for meaningful "nuclear structure" experiments;
- Essential for Nuclear Astrophysics and Fundamental Physics

Rumsfeld: as we know, there are known knowns[...] We also know there are known unknowns [...] But there are also unknown unknowns—the ones we don't know we don't know. [...] it is the latter category that tends to be the difficult ones.

CONCLUSIONS

NQS successfully applied to study:

- Ultra-cold Fermi gases, outperforming state-of-the-art continuum DMC;
- ➡ Dilute nucleonic matter, including the self-emergence of nuclei;
- Essential Elements of nuclear binding (including magnetic moments)

Ongoing efforts:

- Medium-mass nuclei
- Excited states
- Chiral-EFT potentials
- Real-time dynamics
- UQ in NQS

THANK YOU