

Skyrme EDFs with pions PRC 109, 014319 (2024)

Lars Zurek

Mainz UQ workshop, June 28, 2024

Ab initio calculations with chiral EFT

- Chiral effective field theory: expansion of nuclear interaction in typical momenta over breakdown scale
 - Systematically improvable
 - Uncertainty estimates "built-in"

Ekström et al., PRC 97 (2018)

Ab initio calculations with chiral EFT

• Computationally expensive

Ab initio calculations with chiral EFT

- Computationally expensive
- Challenging to achieve similar accuracies as energy density functionals

Some EDF issues

• Extrapolation outside fitting region potentially uncontrolled

- How to assess model uncertainties?
- Have standard EDFs reached their accuracy limit?

McDonnell et al., PRL 114 (2015)

• Phenomenological construction of EDFs

Quest for ab initio energy density functionals

 How to obtain EDFs from first principles or at least meaningfully connect EDFs and the ab initio approach?

Furnstahl, EPJA **56** (2020) Marino et al., PRC **104** (2021) Duguet et al., EPJA **59** (2023) Fraboulet, Ebran, EPJA **60** (2024)

- Semi-phenomenological hybrid EDFs
 - Skyrme + pions from chiral EFT

Drut et al., PPNP **64** (2010) Gebremariam et al., PRC **82** (2010) Navarro Pérez et al., PRC **97** (2018) LZ et al., PRC **109** (2024)

Idea

- Schematic of ab initio calculations:
 - Potential from chiral EFT
 - Solve on mean-field level
 - Build correlations on top via correlation expansion method
- \rightarrow Adjust short-range part of potential instead of using correlation expansion
 - cf. encapsulate triples from CCSD(T) in CCSD by adjusting 3N contact Sun et al., PRC 106 (2022)

Idea

Skyrme EDF ~ effective HF contact interactions

$$\begin{split} E_{\text{Skyrme}} &= \sum_{t=0,1} \int \mathrm{d} \mathbf{R} \left[\left(C_{t0}^{\rho\rho} + C_{tD}^{\rho\rho} \rho_0^{\gamma} \right) \rho_t^2 + C_t^{\rho\tau} \rho_t \tau_t \right. \\ &+ \left. C_t^{\rho\Delta\rho} \rho_t \Delta \rho_t + \left. C_t^{\rho\nabla J} \rho_t \nabla \cdot \mathbf{J}_t \right. \\ &+ \left. C_t^{JJ} J_{t,ab} J_{t,ab} \right], \end{split}$$

- Correlations and missing interactions implicitly included via fitting to data
- Increase resolution: add pions from chiral EFT

Ekström et al., PRC 97 (2018)

GUDE [guːdə]

Germany-USA Density-matrix expansion Energy density functionals

LZ et al., PRC 109 (2024)

- Semi-phenomenological hybrid EDFs
- Skyrme + HF long-range pions
 - At different chiral orders up to N²LO, with and without Δs and 3N forces
 - No additional fit parameters
 - Refit 14 Skyrme parameters

Skyrme parameter optimization

- Fit to 81 even-even nuclei
 - Binding energies, charge radii, odd-even mass staggerings, fission isomer energies
- Weights for observables from Bayesian posterior estimate for UNEDF1 Schunck et al., JPG 47 (2020)

Skyrme parameter optimization

Infinite nuclear matter parameters are constrained to physically plausible region in fit

GUDE results

• We group EDFs in 3 classes

Class	0	1	2
Variants	no chiral	LO, NLO	NLO Δ (+3N), N ² LO(Δ ,+3N)
χ ²	122	145	86-91
Binding energy rms deviation (MeV)	2.11	2.09 - 2.13	1.41 – 1.56

- •Terms beyond NLO move global minima "closer" towards region allowed by nuclear matter parameter bounds
- •Significant improvement beyond NLO: rms deviation reduced by 30%

GUDE results

Analysis of pion contributions

- 3N pion exchanges have no effect
 - Already effectively incorporated via density-dependent Skyrme contact

Analysis of pion contributions

- Min. chiral EDF: minimal set of chiral terms that yield improvement
 - isoscalar N²LO Hartree + LO Fock (in Slater approximation)

Analysis of pion contributions

- Chiral power counting does not carry over
 - Here: structure of contacts does not change with chiral order

$$\begin{split} E_{\text{Skyrme}} &= \sum_{t=0,1} \int \mathrm{d} \mathbf{R} \left[\left(C_{t0}^{\rho\rho} + C_{tD}^{\rho\rho} \rho_0^{\gamma} \right) \rho_t^2 + C_t^{\rho\tau} \rho_t \tau_t \right. \\ &+ \left. C_t^{\rho\Delta\rho} \rho_t \Delta \rho_t + C_t^{\rho\nabla J} \rho_t \nabla \cdot \mathbf{J}_t \right. \\ &+ \left. C_t^{JJ} J_{t,ab} J_{t,ab} \right], \end{split}$$

• Only mean-field contributions

(Not so) GUDE uncertainties

• First-order approximation of covariance matrix

$\operatorname{Cov} \approx \frac{\chi^2(\mathbf{x})}{n_d - n_x} \left(J(\mathbf{x})^T J(\mathbf{x}) \right)^{-1}$		
with $\chi^2(\mathbf{x}) = \ \mathbf{R}(\mathbf{x})\ ^2$, $J(\mathbf{x})^T = \mathbf{\nabla} \otimes \mathbf{R}(\mathbf{x})$		
Kortelainen et al., PRC 82 (2010) Donaldson, Schnabel, Technometrics 29 (1987)		
Parameters at bound fixed		

• Isovector parameters unconstrained

•

- a_{sym} uncertainty underestimated because L_{sym} at bound

X	min.	chiral	
	parameter	X	\pm σ
	$\rho_c \; (\mathrm{fm}^{-3})$	0.15832	0.00088
	$E ({\rm MeV})$	-15.830	0.017
	$K \ ({ m MeV})$	223.6	6.8
	$M_{ m s}^{*-1}$	0.9173	0.0033
	$a_{\rm sym} \ ({\rm MeV})$	28.58	0.33
	$L_{\rm sym}$ (MeV)	30	
	$C_0^{\rho\Delta\rho}$ (MeV fm ⁵)	22.5	1.0
	$C_1^{\rho\Delta\rho} \ ({\rm MeV} \ {\rm fm}^5)$	-38.8	19.2
	$C_0^{\rho \nabla J} $ (MeV fm ⁵)	-61.4	5.3
	$C_1^{\rho \nabla J} $ (MeV fm ⁵)	3.4	14.6
	C_0^{JJ} (MeV fm ⁵)	-38.8	14.7
	C_1^{JJ} (MeV fm ⁵)	-4.2	24.2
	$V_0^{\rm n} \; ({\rm MeV} \; {\rm fm}^3)$	-206.5	1.2
	$V_0^{\rm p} \; ({\rm MeV} \; {\rm fm}^3)$	-249.4	2.0

Parameter correlations

• Correlation coefficients

$$R_{k,l} = \frac{\operatorname{Cov}_{k,l}}{\sigma_k \sigma_l}$$

• Exclude E, $M_{\rm s}^{*-1}$, $L_{\rm sym}$ from calculation to be able to compare different GUDE variants

Parameter correlations

• Correlations depend little on the GUDE variant

N²LO+3N

min. chiral

Parameter correlations

• Correlations depend little quite a lot (?) on the GUDE variant

N²LO+3N

1.00- 0.75 ho_c : $K \cdot$ - 0.50 $a_{ m sym}$ $M_{\rm s}^{*-1}$ - 0.25 $C_0^{\rho\Delta\rho}$ $C_1^{\rho\Delta\rho}$ - 0.00 V_0^{n} . V_0^{p} -0.25 $C_0^{\rho \nabla J}$ $C_1^{\rho \nabla J}$ -0.50 C_0^{JJ} C_1^{JJ} -0.75

min. chiral

Summary

- Towards ab initio EDFs: add parameter-free pion exchanges to Skyrme EDF
 - GUDE systematics largely understood
 - Significant improvement beyond NLO: binding energy rms deviation decreased by 30%
- \rightarrow Pions help with simultaneous description of finite nuclei and infinite matter
- Simple uncertainty analysis to be interpreted with caution because of parameters at bounds

Outlook

- Better uncertainty quantification
- Do pions help other EDF forms?

Outlook & Question

- Better uncertainty quantification
- Do pions help other EDF forms?

• GUDE functionals were fitted in a basis of 20 HO shells

# of HO shells	χ^2 for fixed parameters
18	759
20	87
22	?

Outlook & Question

- Better uncertainty quantification
- Do pions help other EDF forms?

• GUDE functionals were fitted in a basis of 20 HO shells

# of HO shells	χ^2 for fixed parameters
18	759
20	87
22	441

Questions

- Does it make sense to use nonconverged calculations? Should we extrapolate?
- How to power-count mean field contributions?
- How can we investigate reasons for improving description at shell closures?

Thanks

for your attention, to my collaborators Scott Bogner, Dick Furnstahl, Rodrigo Navarro Pérez, Nicolas Schunck, and Achim Schwenk, and to the organizers of the workshop!