(Un-)certainties in nuclear DFT

P.-G. Reinhard¹

¹ Institut für Theoretische Physik II, Friedrich-Alexander-Universität Erlangen-Nürnberg

UQNP-2024, Mainz, 29. June 2024

Outline

- Statistical aspects of empirical calibration of nuclear DFT
- 2 Variation of model and data
- 3 Isovector observables: dipole polarizability, neutron radius
- Isotopic radius differences
- 5 Conclusions

Acknowledgments:

J. Friedrich J. Erler, P. Klüpfel

W. Nazarewicz, V. Kejzlar, L. Neufcourt

J. O'Neal

S.M. Wild

X. Roca-Maza

J. Dobaczewski

Johannes Gutenberg University, Mainz/Germany formerly Friedrich-Alexander Univ., Erlangen/Germany Michigan State University, Eeast Lansing Argonne National Laboratory Lawrence Livermore Laboratory Universita degli Studi di Milano, Milano/Italy University of York, York/GB

1) Statistical aspects of empirical calibration of nuclear DFT

Strategy for adjusting the model parameters to phenomenological data

theoretical model: parameters $\theta = (\theta_1 ... \theta_{N_p})$ \implies observables $y^{(th)}(\theta)$

pool of fit data:
$$\mathbf{y}^{(\exp)} = (y_1^{(\exp)} ... y_{n_d}^{(\exp)})$$

Strategy for adjusting the model parameters to phenomenological data

Strategy for adjusting the model parameters to phenomenological data

variational formulation on the basis of a given energy functional

$$E_{\text{tot}} = E_{\text{kin}} + \int d^3 r \, \mathcal{E}_{\text{model}}(\rho_0, \rho_1, \tau_0, \tau_1, \mathbf{J}_0, \mathbf{J}_1, \xi_p, \xi_n) + E_{\text{Coulomb}} - E_{\text{c.m.}} - E_{\text{rot}}$$

variational formulation on the basis of a given energy functional

$$E_{\text{tot}} = E_{\text{kin}} + \int d^3 r \, \mathcal{E}_{\text{model}}(\rho_0, \rho_1, \tau_0, \tau_1, \mathbf{J}_0, \mathbf{J}_1, \xi_p, \xi_n) + E_{\text{Coulomb}} - E_{\text{c.m.}} - E_{\text{rot}}$$

$$\mathcal{E}_{\text{model}} \text{ is functional of local densities:}$$

$$\rho(r) = \text{particle}, \, \tau(r) = \text{kinetic, } \mathbf{J}(r) = \mathbf{I}^* \mathbf{s}, \, \xi(r) = \text{pairing}$$

indices: $T = 0 \equiv$ isoscalar, $T = 1 \equiv$ isovector, p = proton, n = neutron

variational formulation on the basis of a given energy functional

$$E_{\text{tot}} = E_{\text{kin}} + \int d^3 r \, \mathcal{E}_{\text{model}}(\rho_0, \rho_1, \tau_0, \tau_1, \mathbf{J}_0, \mathbf{J}_1, \xi_p, \xi_n) + E_{\text{Coulomb}} - E_{\text{c.m.}} - E_{\text{rot}}$$

$$\mathcal{E}_{\text{model}} \text{ is functional of local densities:}$$

$$\rho(r) = \text{particle}, \, \tau(r) = \text{kinetic}, \, \mathbf{J}(r) = \mathbf{I}^* \mathbf{s}, \, \xi(r) = \text{pairing}$$
indices: $T = 0 \equiv \text{isoscalar}, \, T = 1 \equiv \text{isovector}, \, p = \text{proton}, \, n = \text{neutron}$

often point couplings:	$C_{\rho} \rho * \rho$	volume	$c_{ ho} = c_{ ho}(ho)$ dens.dep.
	$\mathbf{C}_{\nabla} \nabla \rho * \nabla \rho$	surface	
	$c_{\tau} \rho * \tau$	kinetic	
	$\mathbf{C}_{l\!s} \ ho * abla \mathbf{J}$	spin orbit	
	$C_{pair} \xi * \xi$	pairing	$c_{pair} = V_{ m pair} + V_{ m pair}' ho$

 \longleftrightarrow low *q* expansion of effective interaction (*T*-matrix)

variational formulation on the basis of a given energy functional

$$E_{\text{tot}} = E_{\text{kin}} + \int d^3 r \, \mathcal{E}_{\text{model}}(\rho_0, \rho_1, \tau_0, \tau_1, \mathbf{J}_0, \mathbf{J}_1, \xi_p, \xi_n) + E_{\text{Coulomb}} - E_{\text{c.m.}} - E_{\text{rot}}$$

$$\mathcal{E}_{\text{model}} \text{ is functional of local densities:}$$

$$\rho(r) = \text{particle}, \, \tau(r) = \text{kinetic}, \, \mathbf{J}(r) = \mathsf{I}^*\mathsf{s}, \, \xi(r) = \text{pairing}$$

indices: $T = 0 \equiv \text{isoscalar}, \, T = 1 \equiv \text{isovector}, \, p = \text{proton}, \, n = \text{neutron}$

often point couplings:	$C_{\rho} \rho * \rho$	volume	$c_{ ho} = c_{ ho}(ho)$ dens.dep.
	$\mathbf{C}_{\nabla} \nabla \rho * \nabla \rho$	surface	
	$c_{\tau} \rho * \tau$	kinetic	
	$\mathbf{C}_{l\!s} \ \rho * \nabla \mathbf{J}$	spin orbit	
	$C_{pair} \xi * \xi$	pairing	$c_{pair} = V_{ m pair} + V_{ m pair}' ho$

 \longleftrightarrow low *q* expansion of effective interaction (*T*-matrix)

typically 11–15 model parameters volume by nuclear matter parameters: E/A, ρ_{eq} , K, m^*/m , $\kappa_{TRK} \equiv m_1^*/m$ surface T = 0&1, kinetic T = 0&1, spin-orbit T = 0&1pairing 1–4 parameters

variational formulation on the basis of a given energy functional

$$E_{\text{tot}} = E_{\text{kin}} + \int d^3 r \, \mathcal{E}_{\text{model}}(\rho_0, \rho_1, \tau_0, \tau_1, \mathbf{J}_0, \mathbf{J}_1, \xi_p, \xi_n) + E_{\text{Coulomb}} - E_{\text{c.m.}} - E_{\text{rot}}$$

typically 11–15 model parameters ↔ tuned to empirical data on nuclear bulk properties

The pool of fit data – nuclear ground state properties

P.-G. Reinhard (Inst. Theor. Physics, Erlangen)

(Un-)certainties in nuclear DFT

The pool of fit data - nuclear g.s. properties & radius differences

The basic probability distribution

$$p(\theta\sigma|\mathbf{y}) = \exp\left(-\frac{\chi^2(\theta|\mathbf{y})}{\sigma^2}\right) \approx \exp\left(-\frac{(\theta-\theta_0)\hat{H}(\theta-\theta_0)}{2\sigma^2}\right)$$

Gaussian process

- θ = model parameters
- θ_0 = model parameters at the best fit point

y = fit data

 σ = global scaling parameter, used in Bayesian formula

$$\begin{aligned} H_{\alpha\beta} &= \partial_{\theta_{\alpha}} \partial_{\theta_{\beta}} \chi^{2} \Big|_{\boldsymbol{\theta}_{0}} = \sum_{d} \frac{\partial \delta_{d}}{\partial_{\theta_{\alpha}}} \frac{\partial \delta_{d}}{\partial_{\theta_{\beta}}} = \text{Hessian matrix} \\ C_{\alpha\beta} &= \left(H^{-1}\right)_{\alpha\beta} = \text{covariance matrix} \end{aligned}$$

Distribution of model parameters (or: leeway of the model)

$$\sigma = 1 \Rightarrow probability of heta: \quad \mathcal{P}(heta|\mathbf{y}) \propto \exp\left(-\chi^2(heta|\mathbf{y})
ight) pprox \exp\left(-rac{(heta - heta_0)\hat{\mathcal{H}}(heta - heta_0)}{2}
ight)$$

Various statistical quantities can be deduced from that:

$$\begin{split} \overline{A} &= \int d\theta \mathcal{P}(\theta) A(\theta) = \text{expectation value of observable } A \\ \Delta A &= \sqrt{\int d\theta \mathcal{P}(\theta) (A(\theta) - \overline{A})^2} = \text{variance of } A \\ \overline{\Delta A \Delta B} &= \int d\theta \mathcal{P}(\theta) (A(\theta) - \overline{A}) (B(\theta) - \overline{B}) = \text{covariance } A \leftrightarrow B \\ r_{AB} &= \frac{\overline{\Delta A \Delta B}^2}{\overline{\Delta A \Delta B}} = \text{Coefficient of Determination (CoD)} \\ \mathcal{P}(A, B) &\propto \exp\left(-(A - \overline{A}) \frac{d\theta}{dA} \hat{H} \frac{d\theta}{dB} (B - \overline{B})\right) = \text{probability distr. for } A \text{ and } B \\ &\longrightarrow \text{error ellipsoid in plane of } A \text{ and } B \equiv \text{correlated uncertainties} \\ \delta \theta_{\alpha} &= \sqrt{H_{\alpha\alpha}} = \text{uncorrelated uncert. of } \theta_{\alpha} \leftrightarrow \text{vary } \theta_{\alpha} \text{ for all other } \theta_{\beta} \text{ fixed} \\ \Delta \theta_{\alpha} &= \sqrt{C_{\alpha\alpha}} = \text{correlated uncert. of } \theta_{\alpha} \leftrightarrow \text{vary } \theta_{\alpha} \text{ for other } \theta_{\beta} \text{ re-optimized} \end{split}$$

leeway of $heta \longleftrightarrow$ model & data exploration and development

Error estimates from Bayesian calculus

probability distribution for an observable y^* outside the given data **y**:

$$p(y^*|\mathbf{y}) \propto \int d\sigma \, d\theta \, p(y^*|\theta\sigma) p(\theta\sigma|\mathbf{y}) \pi(\theta)$$

$$\pi(\theta) = \text{prior}$$

$$p(\theta\sigma|\mathbf{y}) = e^{-\chi^2} = \text{model likelihood function}$$

$$p(y^*|\theta\sigma) = \exp\left(-\frac{(y^*(\theta) - y^*(\theta_0))^2}{\overline{\Delta_{\theta} y^{*^2} \sigma^2}}\right) = \text{probab. distribution of } y^* \text{ for given } \theta, \sigma$$

$$\Delta_{\theta} y^* = \text{variance} \quad \sqrt{\int d\theta \mathcal{P}(\theta)(y^*(\theta) - \overline{y^*})^2} =$$

for Gaussian processes evaluate σ integration by saddle-point approximation ($N_d \gg 1$)

Error estimates from Bayesian calculus

probability distribution for an observable y^* outside the given data **y**:

$$p(y^*|\mathbf{y}) \propto \int d\sigma \, d\theta \, p(y^*|\theta\sigma) p(\theta\sigma|\mathbf{y}) \pi(\theta)$$

$$= \text{prior}$$

$$p(\theta\sigma|\mathbf{y}) = e^{-\chi^2} = \text{model likelihood function}$$

$$p(y^*|\theta\sigma) = \exp\left(-\frac{(y^*(\theta) - y^*(\theta_0))^2}{\overline{\Delta_{\theta}y^{*^2}\sigma^2}}\right) = \text{probab. distribution of } y^* \text{ for given } \theta, \sigma$$

$$\Delta_{\theta}y^* = \text{variance} \quad \sqrt{\int d\theta \mathcal{P}(\theta)(y^*(\theta) - \overline{y^*})^2} =$$

for Gaussian processes evaluate σ integration by saddle-point approximation ($N_d \gg 1$)

having $p(y^*|\mathbf{y})$ one can compute: average $\overline{y^*}$ and Bayesian extraploated error $\Delta_B y^* = \sqrt{\int dy^* p(y^*|\mathbf{y})(y^* - \overline{y^*})^2}$ used here for extrapolations (e.g. exotic nuclei)

2) Variation of model and data

Impact of model parameters

Evolution of quality with size of model (Skyrme functional)

Singular Value Decomposition (SVD) of the Hessian matrix

dimensionles Hessian:

$$\tilde{H}_{ij} = \frac{H_{ij}}{\sqrt{H_{ii}H_{jj}}}$$

diagonalize $\tilde{H}_{ii'}$: eigenvectors \equiv effective parameters eigenvalues \tilde{h}_n

 \leftrightarrow impact of "eigen-parameter" *n*

spans 5 order of magnitude only 4-5 relevant parameters more data \Rightarrow more relev. parameters

The impact of fit data

The impact of fit data

"E only": fit only to E_B data \implies surprisingly good also for other observables $\Delta r, \Delta R, \Delta \sigma$ large \iff leeway to accomodate radii SV-min: fit with radius data \implies improved radii, small sacrifice E_B

(Un-)certainties in nuclear DF

Test: extrapolation to r-process nuclei – neutron rich Sn chain

- "E only": large extrapolation errors
- SV-min: more fit data \implies more reliable extrapolations, particularly radii
- ??? more data for smaller extrapolation errors, systematic errors

3) Isovector observables: dipole polarizability, neutron radius

Correlations between model paramaters and observables

Coefficients of Determination (CoD)

P.-G. Reinhard (Inst. Theor. Physics, Erlangen)

CoD: impact of model – frozen m^*/m

less model flexibility \longleftrightarrow more correlations rigid m^*/m overestimates correlations (\leftrightarrow RMF)

P.-G. Reinhard (Inst. Theor. Physics, Erlangen)

 \implies

CoD: impact of model – more ρ -dependence

L almost decoupled from r_{neut} , α_D

Coefficient of Determination(CoD)

P.-G. Reinhard (Inst. Theor. Physics, Erlangen)

Neutron radii and Pb/Ca Radius EXperiment (PREX/CREX)

Measuring the neutron radius

(ignore here proton and α scattering)

PREX = Pb Radius EXperiment / CREX = Ca Radius Experiment:

scattering of high-energy polarized electrons (beam energy $E_{in} = 953 \text{ MeV} / 2182 \text{ MeV}$)

⇒ Parity-Violating Asymmetry $A_{\rm PV}(q) \propto (\sigma_{\uparrow} - \sigma_{\downarrow})/\sigma_{\rm total}$ at transfered momentum q = 0.39/fm / 0.873/fm

isovector dipole polarizability α_D :

from photo-absorption strength σ_{γ} as $\alpha_D = \int$

$$\int_{0}^{\infty(E_{\max})} dE \, E^{-2} \, \sigma_{\gamma}(E)$$

 $\implies \text{measuring } A_{PV} \equiv \text{measuring } r_{neut} \qquad \text{formally equivalent} \\ \text{measuring } r_{neut} \text{ close to measuring } \alpha_D \qquad \text{statistical correlation} \\ \end{cases}$

Compatibility of A_{PV} and α_D measurements in ²⁰⁸Pb

uncertainty ellipsoids follow the trends along variation of symmetry energy *L* the trend avoids the matching point in plane of α_D and A_{PV} $A_{PV} \& \alpha_D$ cannot be tuned simultaneously

Compatibility of A_{PV} measurements in ²⁰⁸Pb and ⁴⁸Ca

again: error ellipsoids avoid the goal attempt to fit additionally both $A_{\rm PV}$ does not work

"Predictions" for slope of symmetry energy L

4) Isotopic radius diferrences

Isotopic shifts in Ca isotopes

The problem: trend of r.m.s. radii (isotopic shifts) in Ca chain

SVmin = fit of Skyrme functional with "traditional pairing" (contact force & density dep.) theory averages nicely, but fails to reproduce the trend mid-shell The problem: trend of r.m.s. radii (isotopic shifts) in Ca chain

SVmin = fit of Skyrme functional with "traditional pairing" (contact force & density dep.) \implies theory averages nicely, but fails to reproduce the trend mid-shell deviation far outside uncertainty \iff correlations or functional?

(Un-)certainties in nuclear DF

Impact of collective ground-state corrrelations

g.s. vibrations from low-lying 2⁺ states contribute to radii

the effect is visible, but too small \Rightarrow the problem is the functional

Find most promising feature of functional

look at statistical correlations to find strongest lever correlation with iso.-shift $\delta r^{2}(^{44-40}Ca)$ for SV-min correlation coefficient 0.3 0.25 0.2 0.15 0.1 0.05 0 incompress sym.energy eff. masses spin-orbit pairing surface fixed by polarizability

symmetry energy: spin-orbit splittings: pairing:

conceivable but limited changeability least well known, least well fixed

\Rightarrow try Fayans pairing

Fit isotopic trend with Fayans functional: $Fy(\Delta r, HFB)$ the solution

Fayans pairing: $\mathcal{E}_{\text{pair}} = \xi^2 \left(V_{\text{pair}} + V'_{\text{pair}} \rho + V''_{\text{pair}} (\nabla \rho)^2 \right)$

P.-G. Reinhard (Inst. Theor. Physics, Erlangen)

Fit isotopic trend with Fayans functional: $Fy(\Delta r, HFB)$ the solution

Fayans pairing: $\mathcal{E}_{\text{pair}} = \xi^2 \left(V_{\text{pair}} + V'_{\text{pair}} \rho + V''_{\text{pair}} (\nabla \rho)^2 \right)$

 \implies Fy(Δr ,HFB) reproduces trend for Ca isotopes almost perfectly larger uncertainties \leftrightarrow more flexible model

Isotopic shifts in Sn & Pb isotopes

The problem: trends in Sn & Pb isotopes, odd-even staggerings

Fy(Δr ,HFB) fails in: isotopic trends Sn & Pb, kinks at ¹³²Sn & ²⁰⁸Pb, odd-even staggering

The problem: trends in Sn & Pb isotopes, odd-even staggerings

extend Fayans functional by isovector pairing (IVP) add fit data on odd-even staggering and isotopic trends in Sn&Pb

 \implies Fy(IVP): considerable improvement, fair isotopic differences over a wide range

Conclusions

Nuclear DFT uses empirical input \leftrightarrow statistical methods

→ Bayesian calculus: reliable extrapolation errors,...

Headaches

UQ:

non Gaussian regimes/observables - DFT emulators

DFT development:

systematic expansion $\mathcal{O}\{\nabla^2\}$, what about density dependence? – no systematics, not enough data decisive isovector observables?

extrapolation:

infer $\Delta_B E(\text{exotic})$ from $\Delta_B E(\text{known})$ infer $\Delta_B r(\text{exotic})$ from $\Delta_B r(\text{known})$ what about an observable *A* for which *A*(known) does not exist? (e.g. r_{neut})

systematic errors:

which ground-state correlations are incorporated in DFT?

– e.g.: short-range = yes, long-range = no effective operators? reliable mean-field operators? formal structure of the functional (see above "density dependence")

P.-G. Reinhard (Inst. Theor. Physics, Erlangen)