

Established by the European Commission

TECHNISCHE UNIVERSITÄT DARMSTADT

Uncertainty quantification for the nuclear equation of state

Hannah Göttling, Kai Hebeler, Achim Schwenk and Ingo Tews

June 27, 2024 | MITP | Hannah Göttling | 0

From nuclei to neutron stars

connect microscopic calculations of dense matter to astrophysical observations

The equation of state (EOS) is ...

- ... given by pressure as a function of density and temperature
- ... key to neutron stars and mergers
 - compact objects under extreme conditions of density and temperature
 - observations yield novel insights into nature of strongly interacting matter

Huth et al., PRC (2021)

provide microscopic information with quantified uncertainties

see also Drischler et al., PRC (2020)

Newest EOS developments Keller et al., PRL (2023)

nucleonic matter results for different proton fractions (x) and temperatures (T)

- Gaussian process (GP) emulator used to access arbitrary conditions
- effective field theory (EFT) uncertainties using pointwise predictions from Epelbaum et al., (2015)

State-of-the-art uncertainty quantification Drischler et al., PRC (2020)

Correlated EFT uncertainties

implemented using GP-Bayes approach

 explored for pure neutron matter (PNM) and symmetric nuclear matter (SNM)

Gaussian processes following Rasmussen & Williams (2006)

sample

m(x)

0.4

v

0.6

0.8

GP-Bayes uncertainty quantification Melendez et al. PRC (2019)

consider EFT expansion for observable

 $E(x) = E_{\text{ref}}(x) \sum_{i=0}^{k} c_i(x) Q^i(x)$

ightarrow reference energy $E_{\rm ref}$ and expansion parameter $Q = rac{k_F}{\Lambda_{\rm b}}$

- order-by-order convergence with natural size of coefficients
- coefficients are random variables

 $|\mathbf{c}_n(\mathbf{x})| \theta \sim GP[m(\mathbf{x}), \kappa(\mathbf{x}, \mathbf{x}'; \theta)]$

\Rightarrow hyperparameters are determined from expansion coefficients

GP-B for pure neutron matter

■ apply GP-B to results from Keller et al. PRL (2023) (colored)

check our implementation against BUQEYE package Drischler et al. (2020) (GPBQ)

0.05

= 0= 10 MeV = 20 MeV

0.1 0.15 0.2

 $n \, [{\rm fm}^{-3}]$

Goals

PNM

20

.96

-40

-60

F/A [MeV]

investigate sensitivities of uncertainty bands to GP choices

• explore nonlocal and local chiral EFT and Δ -full results

decscribe the EOS (n,x,T) with one GP

Reference and prior choices Melendez et al. PRC (2019)

Results for \triangle -full chiral EFT interactions

- 3N forces enter already at NLO
- 3N density dependence comes in earlier
 → expect better EFT convergence

Ekström et al., PRC (2018)

TECHNISCHE

LINII/FRS

GP-B uncertainties for \triangle -full interactions

June 27, 2024 | MITP | Hannah Göttling | 10

GP-B uncertainties for \triangle -full interactions

- MBPT results from Yannick Dietz for $\Delta N2LO_{Go}$ interaction
- GP-B calculated with $E_{
 m ref}=E_{BQ}$ and $pr(ar{c}^2)\propto\chi^{-2}$

QMC results with new local interactions

from Ingo Tews and Rahul Somasundaram

- using quantum Monte Carlo (QMC) as many-body method
- using new local chiral N2LO interactions with large cutoff as input
 Somasundaram et al., PRC (2024)

QMC results with new local interactions from Ingo Tews and Rahul Somasundaram

- using quantum Monte Carlo (QMC) as many-body method
- using new local chiral N2LO interactions with large cutoff as input
 Somasundaram et al., PRC (2024)

• GP-B calculated with $E_{
m ref}=E_{BQ}$ and $pr(ar{c}^2)\propto\chi^{-2}$

Comparison of GP-B uncertainties

- similar uncertainties for different interactions
- difference at subnuclear densities probably from different NN phaseshifts

Multidimensional GP following Melendez et al., PRC (2019)

extending the input space to multiple dimensions

$$ND$$

$$x = [n, x_{\rho}]^{T} \rightarrow [k_{\rho}, k_{n}]^{T}$$

$$\kappa(x, x'; \theta) = \overline{c}^{2} e^{-\frac{1}{2}(x-x)^{T} L(x-x)}$$

$$L = \begin{pmatrix} l_{k_{\rho}}^{-2} & 0\\ 0 & l_{k_{n}}^{-2} \end{pmatrix}$$

 $\Rightarrow \bar{c}^2$ is the same for the whole system

Observable expansion for multiple variables

use reference energy:

consider relevant momentum scale:

$$Q = rac{\max(k_{
ho}, k_n)}{\Lambda_{
m b}}$$

 $E_{\rm ref} = 16 \,\,{
m MeV} \left(\frac{n}{n_0}\right)^{2/3} \rightarrow - \frac{16 \,\,{
m MeV}}{(3\pi^2 n_0)^{2/3}} \,\,(k_p^3 + k_n^3)^{2/3}$

nuclear matter calculations from Keller et al. PRL (2023)

Consistency check

- include proton fractions *x* = 0, 0.1, 0.2, 0.3, 0.4, 0.5
- compare GP-ND with GP-1D PNM and SNM bands

 $\rightarrow~$ bands are similar

GP-bands for the EOS as function of proton fraction Preliminary

• provide uncertainties for finite x and β -equilibrium

Summary and outlook

TECHNISCHE UNIVERSITÄT DARMSTADT

GPs ...

- ... provide an excellent emulator
- ... can access arbitrary points in n,x,T
- ... quantify correlated EFT uncertainties
- next: other thermodynamic properties

thoughts and questions

- Do we need a more physically informed reference scale? (e.g. at higher densities)
- Can the EOS (n,x,T) be described by a single GP?

Summary and outlook

GPs ...

- ... provide an excellent emulator
- ... can access arbitrary points in n,x,T
- ... quantify correlated EFT uncertainties
- next: other thermodynamic properties

thoughts and questions

- Do we need a more physically informed reference scale? (e.g. at higher densities)
- Can the EOS (n,x,T) be described by a single GP?

Thank you

for your attention!

