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Actually, I never made it beyond ONE nucleon …
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UQ - in FF from LQCD
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• Topic of this talk is plots like on the left
• Recent results from Mainz (for more details)

DD, von Hippel, Meyer, Ottnad, Wittig, „Improved analysis of isovector nucleon 
matrix elements with Nf=2+1 flavors of O(a)improved Wilson fermions“, 
Phys.Rev.D 109 (2024) 7, 074507
DD, von Hippel, Meyer, Ottnad, Salg, Wittig, „Zemach and Friar radii of the proton 
and neutron from lattice QCD,“ to appear in PRD
DD, von Hippel, Meyer, Ottnad, Salg, Wittig, „Precision Calculation of the 
Electromagnetic Radii of the Proton and Neutron from Lattice QCD“, 
Phys.Rev.Lett. 132 (2024) 21, 21
DD, von Hippel, Meyer, Ottnad ,Salg, Wittig, „Electromagnetic form factors of the 
nucleon from Nf=2+1 lattice QCD“, Phys.Rev.D 109 (2024) 9, 9
Agadjanov, DD, von Hippel, Meyer, Ottnad, Wittig, „Nucleon Sigma Terms 
with Nf=2+1 Flavors of O(a)-Improved Wilson Fermions“, 
Phys.Rev.Lett. 131 (2023) 26, 26
DD, von Hippel, Kopoonen, Meyer, Ottnad Wittig, „Isovector axial form factor of the 
nucleon from lattice QCD“, Phys.Rev.D 106 (2022) 7, 074503
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UQ - Sources of Errors

Rumsfeld-Classification Knowns Unknowns

Known ME can be calculated using 
Lattice - Pathintegral

Statistical Errors, Dealing 
with Correlations

Unkknown Systematics – excited 
states, finite lattice 
spacing, finite volume

?

25.06.24

„There are known knowns ... But there are 
also unknown unknowns“

UQ may mean one of two things in this talk (keep count tell me later):
• Uncertainty Quantification
• Un Qualified comment
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Impact of Form Factors 

• Proton Radius Puzzle
» Provide ab-initio calculation 

• Precision Tests of SM
» Via strangeness FF → Parity Violation Experiments

• Lattice determinations of strange FF very precise

» Via axial FF → Vital input to neutrino-nucleus 
scattering
• Lattice competitive to z-exp extractions 

of experiments 
» Via Charges → Constraining BSM EFT couplings

25.06.24

Taken from T. Bhattacharya et al.,
 Phys. Rev. D85, 054512 (2012) 

Taken from A. Kronfeld, et al. 
Eur. Phys. J. A 55, 196 (2019)

lattice QCD lands in the middle, 0.3% precision is needed. In this scenario, we would also
need 1+1+1(+1)-flavor ensembles, since the isospin symmetry would play an important role
at such precision; it would take 5–10 years to account for full systematics.3

The right plot [59], for r2
A, shows significant problems: the analysis with the z expan-

sion [58] debunks the uncertainty estimates of determinations predicated on the dipole form.
The model independent results (red; between the horizontal lines) illustrate the best estimate
of r2

A without such strong assumptions. One should bear in mind that the “experimental”
determinations all make assumptions: without new ⌫d and ⌫̄p experiments [30], it seems
nearly impossible to improve the situation via experiment. On the other hand, lattice gauge
theory can provide an ab initio result from QCD. Indeed, lattice QCD is beginning to play
a role, but another generation of calculations is needed before fully definitive results with
uncertainties small enough to make an impact on cross section calculations are achieved.

For the full energy range of LBNF/DUNE, it will be necessary to trace out the full q2
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FIG. 5. Status of lattice-QCD calculations of gA (left) and r2
A (right), together with non-lattice de-

terminations. Left: Filled green (unfilled red) lattice-QCD results have (in)complete error budgets.
The violet line in the upper panel is the PDG average of the results in the bottom panel, in which
the scale is blown up by a factor of 10. Right: As discussed in the text, the error bars on r2

A from
dipole fits are underestimated and the two small lattice-QCD error bars stem from incomplete
error analyses (critiqued below). The references for r2

A from top to bottom are as follows: “⌫d
and eN ! eN 0⇡ (dipole)” [50], “⌫d (z exp.)” [58], “MuCap this work” [59], LHPC [62] (NB: one
lattice spacing and M⇡ = 317 MeV), ETMC [63] (NB: no strange sea and a small volume such that
M⇡L < 3), CLS [64], PNDME[65]. From Refs. [77] (left) and [59] (right, adapted with permission).

3 Note that the normalization of the matrix element can be blinded with an multiplicative o↵set [82], to

guard against analyst bias. The results in Fig. 5 (left) have not, however, employed this technique.
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Taken from D.D. et al. 
Phys.Rev.Lett. 123 (2019) 21, 212001
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Figure 9: Combined 90% C.L. allowed regions in the ✏S-✏T plane based on: (i) existing
limit on b0+ from 0+ ! 0+ nuclear decays; (ii) future neutron decay measurements
with projected sensitivity of 10�3 in b and b⌫ � b. The four curves correspond to four
di↵erent scenarios for the hadronic matrix elements: 0.25 < gS < 1.0, 0.6 < gT < 2.3
as quoted in Ref. [20]; lattice results with current central values from Eq. (38) and
�gS/gS = 50%, 20%, 10% with �gT/gT = 2/3 �gS/gS (this choice assumes that the ratio
of fractional uncertainties in gS and gT will remain approximately constant as these
uncertainties decrease). The e↵ective couplings ✏S,T are defined in the MS scheme at
2 GeV.

7 Collider limits

The contact interactions probed at low energy can also be directly probed at high-energy
colliders. The rate, however, depends on whether the particles that generate the 4-fermi
interaction are kinematically accessible at the collider energies. We begin in Section 7.1
under the assumption that the scalar and tensor interactions remain point-like at TeV
scale energies. Then in Section 7.2 we derive a relation between ✏S and the production
cross-section, Eq. 54 , when the scalar interaction is generated by the exchange of a
resonance that is kinematically accessible at the LHC.

7.1 Model-independent limits

Assuming that the scalar and tensor interactions remain point-like at TeV-scale en-
ergies, we can employ the operator formalism to put bounds on ✏S,T,P from collider
physics. SU(2) gauge invariance implies that ✏S,T,P control not only charged-currrent
processes but also the corresponding neutral-current versions, as the weak-scale e↵ective
Lagrangian includes terms proportional to (✏S � ✏P )ēReLd̄LdR, (✏S + ✏P )ēReLūRuL, and

34
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Figure 1. Collection of experimental results on the proton charge radius, and a (small) selection of fits by other authors. CODATA
values (dark blue) [3, 46] are global fits, using electron spectroscopy and scattering data as input. Bernauer [2], Zhan [47], Mihovilovič
[44] and Xiong [45] (black) are results from scattering experiments, sometimes including the world data set. Sick [21] and Alarćon
[17] (purple) are refits of existing data, in the latter case based on dispersion relations. Beyer, Fleurbaey and Bezignov [40–42] (green)
are electron spectroscopy results, Pohl and Antognini [1, 5] (orange) are the results from the muon spectroscopy experiment.

measurement, several systematics can be avoided or re-
duced. The main improvement is the new target system,
which will exchange the cryogenic cell with a hydrogen
cluster-jet target [50], which puts no extraneous material
in the main beam trajectory. In combination with an up-
stream collimator and and active veto to suppress electrons
in the beam halo, the experiment aims for a completely
background-free measurement. Additionally, the point-
like intersection of electron and hydrogen beam simplify
track reconstruction, and the comparatively thin target re-
duces external radiation drastically.

With the smaller beam energies of MESA, the exper-
iment will be able to measure not only cross section data
relevant for the proton charge radius, but will also achieve
an order of magnitude better precision on the magnetic
form factor in the region most interesting for the determi-
nation of the magnetic radius (see Fig. 3), and from that,
the Zemach radius, which is another connection point to
atomic physics.

5.2 MUSE

MUSE [51], to take place at the Paul Scherrer Institute,
CH, will measure e

±, µ± and ⇡± scattering using a com-
bined beam. Particle separation will be performed using
Time-Of-Flight. Due to the simultaneous measurement
of all three species, many systematic e↵ects cancel, and
MUSE can probe lepton universality. In combination with
the charge-reversed beam, these data further allow to ex-
tract the two-photon exchange (TPE) contribution in the
radiative corrections for comparison with theory, and to
cancel this e↵ect in the analysis without theory input.

The experiment will measure at three beam momenta
(115, 153 and 210 MeV/c) with statistical uncertainties

on the cross section of better than 1% for most of the data
points, and few per mill systematic uncertainties.

5.3 COMPASS++/AMBER

As one of the planned measurements, COM-
PASS++/AMBER [52] will employ a similar hydrogen
TPC to measure the muon-proton cross section in the
Q

2 range of 0.001 to 0.037 (GeV/c)2. The experiment
aims to measure both outgoing lepton as well as the
recoiling proton, and will use both muon charges. From
the kinematics, it is very similar to PRad, with even more
extreme forward scattering using a multiple tens of GeV/c
beam. The radiative corrections for muons are smaller,
and, similar to MUSE, the measurement of both charges
allows to extract and cancel TPE.

5.4 ULQ2

The ULQ2 project at Tohoku University, Sendai, Japan,
aims to measure the electron proton cross section in the
Q

2 range of 0.0003 to 0.008 (GeV/c)2 using beam en-
ergies between 20 and 60 MeV. The experimenters plan
to use a CH2 target to achieve an absolute measurement
on the 3 per mill level, by measuring relative to the well
known carbon cross section. This unique approach will
produce di↵erent systematic errors than those employed
by the other experiments.

An overview of the Q
2 ranges and projected errors is

given in Fig. 4.

6 Conclusion

After almost a full decade, the proton radius puzzle is
still not resolved, but it has motivated uncounted work

4

EPJ Web of Conferences 234, 01001 (2020) https://doi.org/10.1051/epjconf/202023401001
FCCP2019

Taken from Bernauer, 
EPJ Web Conf. 234 (2020)
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Evidence for dark matter II

Large scale structure: N-body simulations only match galaxy surveys with a

sufficient amount of cold dark matter 1980s

Cosmic microwave background: temperature variations �T/T ⇠ 10�5 too

small for a purely baryonic universe 1990s

Microlensing searches: dark matter cannot be in form of compact objects 1990s

Baryon content of the Universe: light element abundances imply ⌦b . 5% 1990s

M. Hoferichter (Institute for Theoretical Physics) EFT for dark matter July 27/29, 2021 5

UQ - Motivation Dark Matter

Planck Collaboration: The cosmological legacy of Planck

-160 160 µK0.41 µK

Fig. 6. Planck CMB sky. The top panel shows the 2018 SMICA temperature map. The middle panel shows the polarization field
as rods of varying length superimposed on the temperature map, with both smoothed to 5�. This smoothing is done for visibility
purposes; the enlarged region presented in Fig. 7 shows that the Planck polarization map is still dominated by signal at much smaller
scales. Both CMB maps have been masked and inpainted in regions where residuals from foreground emission are expected to be
substantial. This mask, mostly around the Galactic plane, is delineated by a grey line in the full resolution temperature map. The
bottom panel shows the Planck lensing map (derived from r�, that is, the E mode of the lensing deflection angle), specifically a
minimum variance, Wiener filtered, map obtained from both temperature and polarization information; the unmasked area covers
80.7 % of the sky, which is larger than that used for cosmology.
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Gravitational Lensing

Rotation Curves of Galaxies
Plot from arXiv:2104.11488

Cosmic Microwave Background 

Simulation of Galaxy Structures

Evidence 
for

Dark Matter

Plot from V. Springel, C. S. Frenk, S. D. White, 
The large-scale structure of the Universe, 
Nature, 440 (2006) 1137. 
arXiv:astro-ph/0604561 

Credit: NASA/CXC/CfA/M. Markevitch et al.; NASA/STScI; Magel- lan/U.Arizona/D. 
Clowe et al.; NASA/STScI; ESO WFI 

Plot from Y. Akrami, et al., Planck 2018 results. I. Overview
 and the cosmological legacy of Planck, 
arXiv:1807.06205. 

Figure 2: Average rotation velocity of spiral galaxies as a function of the reduced radius for
di↵erent luminosities. The plain lines correspond to the best fits to the observational data,
the dotted lines to the contribution from the disc and the dashed lines to the contribution
from the halo. From [8].

where ✓E is the Einstein angular radius, M the mass of the lens, DL the distance to the
lens and DS the distance to the source.

Gravitational lensing is therefore often used to weigh galaxy clusters, and numerous
studies are consistent and tend to demonstrate that the visible mass represents only 10-

11



www.hi-jena.de
www.hi-mainz.de 

UQ - DM Direct Searches 
• DM Candidate: WIMP
• WIMP-Nucleus-Scattering

• Rate WIMP-Nucleus 
Scattering

•          depends on Sigma-Term 
• Crucial input for interpretation of experiments
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How to search for dark matter?

Assume dark matter exists and is a weakly

interacting massive particle (WIMP)

Search strategies: direct, indirect, collider

Direct detection: search for WIMPs scattering

off nuclei in the large-scale detectors

Ingredients for interpretation:

Dark matter halo: velocity distribution

Nucleon matrix elements: WIMP–nucleon

couplings

Nuclear structure factors: embedding into

target nucleus

direct

c
o
llid

e
rin

d
ir
e
c
t

X X

� �

N N
M. Hoferichter (Institute for Theoretical Physics) EFT for dark matter July 27/29, 2021 7
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Direct detection of dark matter: schematics

XENON1T 2018
Rate for WIMP–nucleus scattering

dR
dEr

=
�SI
�N

m�µ2
N| {z }

particle + hadronic physics

⇥ |F
M
+ (q2)

��2
| {z }

nuclear physics

⇥ ⇢0

Z vesc

vmin

f (v, t)
v

d3v

| {z }
astrophysics

Decomposition into the three terms follows from EFT

M. Hoferichter (Institute for Theoretical Physics) EFT for dark matter July 27/29, 2021 9
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Assume dark matter exists and is a weakly

interacting massive particle (WIMP)

Search strategies: direct, indirect, collider

Direct detection: search for WIMPs scattering

off nuclei in the large-scale detectors

Ingredients for interpretation:
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R ⇠ �SI

M�µ2
N

⇥ (Nuclear Physics)⇥ (Astrophysics) (1)

1

R ⇠ �SI

M�µ2
N

⇥ (Nuclear Physics)⇥ (Astrophysics) (1)

1

Plot from E. Aprile et al,
Dark Matter Search Results from a One Tonne×Year 
Exposure of XENON1T 
arXiV:1805.12562



www.hi-jena.de
www.hi-mainz.de 

Nucleon Form Factors

25.06.24
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Parity Violation

25.06.24
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• Sensitive to the Weak 
Charge
Test of SM at low 
energies

• Need e/m FF (strange) 
• Need axial FF (strange)
   (Decomposition assuming Isospin 
Symmetry) 

Taken from arxiv:1802.04759

8 Dominik Becker et al.: The P2 Experiment

In the following it is assumed that the uncertainties
of Gs

E and Gs
M can be reduced by factors of 4 and 12,

respectively, in the Q2 region of relevance to the P2 ex-
periment. This reduction can be achieved by an additional
backward-angle measurement, see Sect. 7.3.

Axial form factor of the proton. The axial form factor of
the proton Gp,Z

A can be determined from results of parity-
violation electron scattering experiments with `H2- and
`D2-targets, which have been carried out at backward
scattering angles at the same values of Q2. Appropriate
measurements have been done by the SAMPLE, G0 and
A4 Collaborations [15,35,37,25].

For the purpose of the error propagation calculations
presented in this section, Gp,Z

A has been parametrized as
suggested by Musolf et al. in Ref. [41]:

Gp,Z
A (Q2) = 0 ·

✓
1 +

Q2

2
1

◆�2

(35)

This parametrization is used together with the parameter
values given in [41] and listed in Tab. 23.

For the error propagation calculations presented in this
section it has been assumed that the global uncertainty
of the parametrization given by Eq. (35) can be reduced
by a factor of 10. This reduction can be achieved by a
backward-angle measurement of Gp,Z

A (see Sect. 7.3).
The requirement of reducing the uncertainties of Gs

E,

Gs
M and Gp,Z

A in order to achieve the envisaged precision in
the determination of sin2 ✓W renders the form factor mea-
surement within the scope of the P2 experiment manda-
tory.

Isospin breaking electromagnetic form factors. The para-
metrizations of the isospin-breaking form factors Gud

E and
Gud

M have been done using the dataset quoted in the bach-
elor thesis of P. Larin [62]. Larin has extracted data from
the predictions for the Q2-dependence of the form factors
given in [63]. In order to parametrize Gud

E and Gud
M , poly-

nomials of degree 4 have been used such that

Gud
E,M =

4X

i=0

E,M
i · Q2i. (36)

The fits of these functions to the data given in Ref. [62]
result in the parameter values collected in Tabs. 24 and
25.

2.2.3 Results of the error propagation calculations

An extensive scan in the mean values of Ebeam, ✓̄f and �✓f
has been performed using the input parameters discussed
in the preceding section in order to determine suitable
values of these variables to carry out the P2 experiment. In
this section, selected results are presented and discussed.

/degfθ 
15 20 25 30 35 40 45 50 55 60

2 Ws
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p,ZG Zγ

Fig. 6. Dependence of �s
2

W on the central scattering angle
✓̄f for Ebeam = 155MeV and �✓f = 20�. The total uncertainty
�s

2

W of the electroweak mixing angle is shown in black and
other dominating error contributions in color.

Figure 6 shows the dependence of �s2W on the cen-
tral electron scattering angle ✓̄f for Ebeam = 155MeV and
�✓f = 20�. For 17�  ✓̄f  55�, the total uncertainty is
dominated by the statistical uncertainty of the measured
asymmetry Aexp. For scattering angles ✓̄f � 40� the contri-
butions from Gs

E,M and Gp,Z
A become more significant, be-

cause the form factors’ contribution to the asymmetry in-
creases with Q2. The increase of the form factor contribu-
tions and the decrease of the statistical error and the con-
tribution stemming from Aapp with increasing ✓̄f lead to a
minimum of �s2W at ✓̄f ⇡ 35�, where �s2W ⇡ 3.4 ⇥ 10�4.

Figure 7 shows the dependence of �s2W on ✓̄f for Ebeam =
155 MeV and di↵erent choices of �✓f. In general, a larger
value of �✓f leads to a larger N and therefore to a smaller
statistical uncertainty of Aexp. Since the statistical un-
certainty of Aexp is the dominant contribution to �s2W,
the achievable uncertainty in the electroweak mixing an-
gle decreases with rising �✓f. The larger the acceptance,
the smaller is the e↵ect of increasing �✓f on �s2W, be-
cause contributions by the nucleon form factors become
more significant at larger scattering angles. To keep the
nucleon form factors’ contributions reasonably small, we
have decided to use �✓f  20�.

Figure 8 shows the dependence of �s2W on Ebeam and
✓̄f for �✓f = 20�. Values of �s2W  3.4 ⇥ 10�4 can be
achieved in the region marked by a black curve.

To carry out the P2 experiment within the envisaged
measurement time of T = 10 ⇥ 104 h, we have decided to
use a beam energy of Ebeam = 155MeV, a central scatter-
ing angle of ✓̄f = 35� and a detector acceptance �✓f = 20�.
Table 2 lists the results of an error propagation calcula-
tion for this choice of kinematic parameters along with the
error contributions stemming from the statistical uncer-
tainty of Aexp, the contribution of the beam polarization
as well as the contribution from helicity correlated beam
fluctuations. In order to extract the electroweak mixing
angle from the measured uncertainty, one has to take the

Projected Error Budget for P2:
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Lattice – Oneslide Intro

26.06.24

Hartmut Wittig 5

Current Status
H dibaryon not firmly established experimentally

“Clover” @ Mainz

Is a bound H dibaryon a consequence of QCD?

Try “ab ini6o” technique: La`ce QCD

• Discretize Space Time
• Lattice action 

𝑆!"# 𝑈,Ψ, %Ψ = 𝑆$!"# 𝑈 + 𝑆%!"# 𝑈,Ψ, %Ψ
Ω = &

'
∫ ∏(,* 𝑑𝑈* 𝑥 Ω∏+,-,.,/ det 𝐷 + 𝑚+ 𝑒01!

• Ω  evaluated stochastically (MC-HMC)
• Challenges

• Need to extrapolate to continuum
 In lattice spacing
 In lattice Volume

• Need to extrapolate to physical quark masses (Chiral EFT)

• Need to control excited states

Source: JICFuS, Tsukuba
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Sources of Uncertainty 

o Statistical Accuracy
o Excited State Contamination
o Model Dependence 
o Extrapolations 

o Chiral
o Continuum
o Finite Size

27.06.24
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For convenience we attach the supplemental material to the published Letter in the following sections.

Finite-Volume Dependence

In this section we derive the finite-volume dependence of the strange magnetic moment µs of the nucleon in HBChPT
to order O(q3). We will show that the form of the finite-volume correction is the same as in the SU(2) case for the
isovector magnetic moment [33] after substituting the kaon for the pion mass. To this end we analyze the relevant
diagram in HBChPT [32]. Only one diagram contributes to the magnetic moment at one loop to order O(q3), see
Fig. 6.

FIG. 6. One-loop contribution to the strange magnetic moment.

The relevant meson-baryon Lagrangian is [29]

L = D
⌦
BSµ

{uµ, B}
↵

+ F
⌦
BSµ[uµ, B]

↵
. (22)

Expanding the Lagrangian in terms of the meson fields we obtain

L =
1

2F�
D

⌦
Bc�cS

µi@µ�a{�a, �b}Bb

↵
+

1

2F�
F
⌦
Bc�cS

µi@µ�a[�a, �b]Bb

↵
+ . . .

= 2DdabcBcS
µi@µ�aBb + 2FifabcBcS

µi@µ�aBb + . . . (23)

where we only show the terms necessary for the discussion of the finite-volume e↵ects. The �i are the Gell-Mann
matrices and the d and f are the usual SU(3) structure functions. This leads to the Feynman rule

2ip · S(Ddabc + iFfabc)

F�
, (24)

for the meson-baryon interaction, where p is the incoming momentum of the meson with isospin index a, and b, c are
the isospin indices of the incoming and outgoing baryon, respectively. The baryon propagator is given by

i

v · p
(25)

∼?𝑒?)# 9

a) b) c) d)

e) f) g) h)

i) j) k) l)

Saturday, May 14, 16

Saturday, May 14, 16

Saturday, May 14, 16
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m) n) o) p)

FIG. 2: Feynman diagrams for the leading N⇡ contribution in the vector current 3-pt function. Circles
represent a vertex insertion at an intermediate space-time point, and an integration over this point is
implicitly assumed. The dashed lines represent pion propagators.

D
1(~q, ~p) gives the value if the nucleon mass were infinite, Dcorr(~q, ~p) the O(1/MN ) correction.

Both were calculated in Ref. [3] with the following results

D
1(~q, ~p) = 3g2A

p
2

E2
⇡,~p

, (4.4)

D
corr(~q, ~p) = 3gA

gAM
2
⇡(p

2 + 2pq)� E
2
⇡,~p(p

2 + pq)

E4
⇡,~p

, (4.5)

where we used the abbreviations

p
2 = ~p

2
, pq = ~p · ~q . (4.6)

The main new results of this paper are the coe�cients stemming from the vector current 3pt
function. For the index µ = 4 our results for the leading NR limit coe�cients read

B
re,1
4 (~q, ~p) = 4g2A

 
p
2

E2
⇡,~p

� p
2 � pq

E2
⇡,~s

!
, (4.7)

B̃
re,1
4 (~q, ~p) = 4g2A

 
p
2

E2
⇡,~p

� p
2 + pq

E2
⇡,~r

!
, (4.8)

C
re,1
4 (~q, ~p) = �g

2
A

p
2

E2
⇡,~p

, (4.9)

C̃
re,1
4 (~q, ~p) = 2g2A

(E⇡,~p + E⇡,~s)(p
2 � pq)

E⇡,~pE
2
⇡,~s

. (4.10)

Two di↵erent pion energies appear in these results, in particular the energies of a pion carrying
the sum and the di↵erence of ~p and ~q,

~r = ~p+ ~q, ~s = ~p� ~q . (4.11)

12

Aside: Can calculate Excited States directly in ChPT even for FF (reliable for large 𝑡CDA)

Taken from O. Bär, H.Colic, Phys.Rev.D 103 (2021) 11, 114514
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physical result‰2/Ndof = 1.608, p = 0.097

FIG. 4. Examples for the physical extrapolation of gu�d
A using lattice data from the two-state summation fit model ansatz in

Eq. (28) with tmin
sep ⇡ 0.3 fm. Upper row: chiral extrapolation as a function of M2

⇡ fitting the full set of data to the NNLO
model in Eq. (30) (left panel) and with a cut in M⇡ < 300MeV using the simplified model in Eq. (37) (right panel). Lower
row: continuum (left panel) and infinite volume (right panel) extrapolations fitting the full set of data to the NNLO fit model
in Eq. (30). The red data points are obtained by correcting the original lattice data for the extrapolations in all variables but
the one on the x-axis, using the parameters from the fit. Therefore, the resulting point errors are highly correlated. Errors are
statistical only.

i.e. the fit still resolves the curvature albeit with larger errors. At any rate, it is reassuring to observe that the most
chiral ensemble E250, which also exhibits the largest physical volume corresponding to L ⇡ 6.1 fm, clearly confirms
the result of the infinite-volume extrapolation within the statistical accuracy.

B. Twist-2 matrix elements

Results for the physical extrapolations of the twist-2 isovector NMEs are displayed in Figs. 7, 8 and 9. The most
striking feature of these extrapolations is the observed similarity between the three different operators insertions, i.e.
their chiral behavior is always characterized by a positive slope and a very similar curvature. Corrections towards the
physical point limit due to the chiral extrapolation roughly reach the ⇠ 10% level for ensembles at the light quark
masses corresponding to M⇡ ⇡ 250MeV. Generally, a fit of the NNLO model in Eq. (30) to the full set of data for
the twist-2 NMEs results in a more pronounced nonlinear curvature as a function of M2

⇡
than for the local charges.

However, the chiral behavior of the twist-2 NMEs is also not incompatible with a linear extrapolation in M
2
⇡
. This is

particularly true when applying a cut in M⇡ as shown in the upper right panels of Figs. 7–9. Still, for the full set of
data including ensembles with M⇡ > 300MeV the simplified model in Eq. (37) leads to worse p-values as compared
to fitting the NNLO model in Eq. (30), i.e. p = 0.005, p = 0.106 and p = 0.207 for hxiu�d, hxi�u��d and hxi�u��d,
respectively. Again, the physical results for the twist-2 NMEs are found to be in good agreement with the results of
the old analysis with significantly reduced statistical errors. We note that for all three twist-2 NMEs there is also
broad agreement for the ground-state NMEs data on the individual ensembles that enter the CCF fits between the
old and the new analysis for the common subset of ensembles. The statistical error for the NMEs on the individual
ensembles is typically reduced by a factor ⇠ 2 to ⇠ 10 in the present study.

12



www.hi-jena.de
www.hi-mainz.de 

Lattice 
• Discretization not unique:

Wilson, DWF, HISQ …
• 𝑁3 = 2 + 1 (2 degenerate u/d + s)
• Gauge ensembles produced within 

Coordinated Lattice Simulations
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Landscape of CLS ensembles
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Taken from:
D.Mohler et al,  EPJ Web of Conferences 175, 02010 (2018) 

Red = 𝑚2 𝐿 < 4
Yellow = 4 < 𝑚2𝐿 < 5
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Figure 2: Landscape of CLS 2+1-flavor ensembles with Tr(M) = const (left pane) and ms = const
(right pane). The area of the circles in this plot is proportional to the number of MDU divided by the
largest integrated autocorrelation time ⌧int
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Figure 3: Landscape of CLS 2+1-flavor ensembles with Tr(M) = const (left pane) and ms = const
(right pane). The spatial extent L of the ensemble is used as the x-axis value. The region of the plot
with m⇡L  4 is colored red, the region with 4  m⇡L  5 is colored yellow and the region with
5  m⇡L is colored green.

Figure 4 shows the MD history of the YM action density at flow time t0 for fixed pion mass
m⇡ ⇡ 340 MeV and for three lattice spacings. The corresponding integrated autocorrelation time ⌧int
is given above each subfigure. Even with chains longer than 3000 MDU the statistical uncertainty on
⌧int is large. The current results are consistent with the expected increase of the autocorrelation time
[3]. Figure 5 shows the MD history of the YM action density at flow time t0 for three di↵erent pion
masses along the trajectory with Tr(M) = const. Unlike in simulations by the MILC collaboration at
fixed strange-quark mass [12], no clear pattern is seen with our current statistics.
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Figure 1: Landscape of CLS 2+1-flavor ensembles with Tr(M) = const (left pane) and ms = const
(right pane). In both cases the lattice spacing squared is displayed on the x-axis, while the y axis
shows the pion mass. Ensembles still in production are shown in yellow, while ensembles considered
complete are shown in green. The physical light-quark mass ensemble E250 discussed in these pro-
ceedings is shown in both plots. Multiple ensemble names next to a single dot indicate ensembles
with di↵erent volumes at the (otherwise) same set of simulation parameters.

Figure 1 shows the current set of ensembles for both Tr(M) = const (left pane) and ms = const
(right pane). The ensembles are labeled by a letter (denoting the aspect ratio T/L) and three numer-
ical digits (the first digit encodes � and therefore the lattice spacing). Our current library features
ensembles at 5 lattice spacings (ranging from 0.039 fm to 0.086 fm) and with a range of pion masses
M⇡  420 MeV. For some sets of parameters, multiple lattice volumes exist, enabling us to control
finite volume e↵ects. Figure 2 shows the same set of ensembles, now highlighting the current set of
statistics. We typically generate chains of roughly 4000 molecular dynamics units (MDU), and save
a gauge configuration every 4 MDU. The choice of target statistics is made considering the largest
integrated autocorrelation time ⌧int (often given by the Yang Mills action density at finite flow time).

Finally, Figure 3 shows the spatial extent L of the ensembles. Most production ensembles feature
m⇡L � 4, ensuring that exponentially suppressed volume e↵ects are small. For some parameter sets,
smaller volumes to check for and control finite size e↵ects have also been generated.

2 Autocorrelation times towards the physical point

In this section we will provide a brief update on estimated autocorrelation times for the Yang-Mills
action density at flow time t0 determined by the condition t2hEi = 0.3 [11]. While the open bound-
ary conditions in time [1] avoid topological freezing at fine lattice spacing a, it is expected that the
autocorrelation time in this observable increases significantly as the lattice spacing is decreased. In
a previous global fit [3] of data from the initial set of 2+1 flavor CLS ensembles, the autocorrelation
time was determined to be well described by ⌧exp = 14(3) t0

a2 .
?Speaker, e-mail: damohler@uni-mainz.de
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Lattice Setup

• Enlarged range in 𝑡!"#
→ Monitor excited state contribution

• Roughly same statistics at every 𝑡!"#
→ Number of sources adapted to 𝑡!"#

• Chiral/Continuum/Finite-Size extrapolation possible

ID a [fm] T/a L/a M⇡[MeV] M⇡L tsep[fm] Ncfg

H102

0.086

96 32 354 4.96
0.35, 0.43, 0.52, 0.6, 0.69,

0.78, 0.86, 0.95, 1.04, 1.12,

1.21, 1.3, 1.38, 1.47

2005

H105 96 32 280 3.93 1027

C101 96 48 225 4.73 2000

N101 128 48 281 5.91 1596

S400

0.076

128 32 350 4.33

0.31, 0.46, 0.61, 0.76, 0.92,

1.07, 1.22, 1.37, 1.53

2873

N451 128 48 286 5.31 1011

D450 128 64 216 5.35 500

D452 128 64 153 3.79 1000

N203

0.064

128 48 346 5.41

0.26, 0.39, 0.51, 0.64, 0.77,

0.9, 1.03, 1.16, 1.29, 1.41

1543

N200 128 48 281 4.39 1712

D200 128 64 203 4.22 2000

E250 192 96 129 4.04 400

S201 128 32 293 3.05 2093

N302

0.050

128 48 348 4.22
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1., 1.1, 1.2, 1.3, 1.39

2201

J303 192 64 260 4.19 1073

E300 192 64 174 4.21 570

2
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Physics from the Lattice
• Physics contained in correlation functions

!𝑒$𝒑(𝒚(𝒙) 𝒪+ 𝑥 𝒪+ 𝑦 , =!𝑎- 𝒑 𝑒(.3 # (/4(04)

(14(04)→3 𝑎4 𝒑 𝑒(.4(/4(04)

• 𝒪+: Nucleon interpolating operator
• Ground state dominates for large Euclidean time
• Challenges:

– Signal to noise deteriorates for large times
– Need to control excited states 

26.06.24

8 Konstantin Ottnad: Excited states in nucleon structure calculations

Fig. 5. Multi-particle energy spectra of finite volume states as a function of M⇡L. Left panel: Non-interacting states with
quantum numbers of a single nucleon at rest. The black solid line corresponds to the nucleon mass and the dashed line to the
threshold for the N⇡ state with opposite parity. The blue, green and magenta lines correspond to N⇡ states with back-to-back
momentum, first few N⇡⇡ states with one pion at rest and first few N⇡⇡ states with the nucleon at rest, respectively. Right
panel: Interacting N⇡ states with quantum numbers I(JP ) = 1/2(1/2+) (blue, solid curves) and corresponding non-interacting
levels (black, dashed curves). Both figures are reproduced from ref. [63] under the Creative Commons CC-BY license.
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Fig. 6. Examples for the ground state convergence in the nu-
cleon e↵ective masses. The relative excited state contamina-
tion in the nucleon e↵ective mass MN (t) defined as the ratio of
MN (t) and its fitted (asymptotic) value MN is shown as a func-
tion of t computed on four CLS ensembles (E250, D200, N200,
N203) at a common value of the lattice spacing a = 0.06426 fm.
The pion masses on these ensembles cover a range of roughly
[135 MeV, 350 MeV] corresponding to M⇡L = 4.2, 4.2, 4.4, 5.4.

of �PT results to lattice data remain. This concerns e.g.
the size of the available source-sink separations in case of
three-point functions. Regarding the use of smeared inter-
polating operators it has been pointed out in ref. [66] that
they are mapped onto the point-like nucleon field in the ef-
fective theory, provided that the smearing radius is small
compared to the Compton wavelength of the pion. The
resulting e↵ective operators containing the pion-nucleon

coupling in the second term

�e↵(x) = ↵̃

✓
 (x) +

i

2f
⇡(x)�5 (x)

◆
, (37)

then only di↵er by the value of a low energy constant
(LEC) ↵̃ for di↵erent smearings. Furthermore, at leading
order this LEC is canceled in ratios, hence �PT predic-
tions for excited state corrections are independent of the
actual choice of smearing at leading order. At the very
least, these studies provide qualitative insight into the be-
havior of excited state contamination, but in more recent
work �PT predictions have also been used to system-
atically remove excited state contamination from lattice
data; see e.g. ref. [50].

Excited states in nucleon two-point functions have been
studied in refs. [64–66,69]. For the nucleon e↵ective mass
it was found that the excited state correction due to N⇡
contributions are expected to be below 2% at t � 0.5 fm
and to become a sub-percent e↵ect for t � 1 fm. This is
roughly consistent with empirical findings in lattice stud-
ies e.g. considering the behavior of the (total) relative ex-
cited state contribution in fig. 6 as a function of t. In the
most recent ref. [69] the study has been extended to three-
particle (N⇡⇡) states which where found to contribute at
most at the permille level and thus considered to be neg-
ligible for all practical purposes in the foreseeable future.

For three-point functions and the resulting matrix ele-
ments the situation is more complicated. In the past, the
main focus has been on N⇡ contributions in the three-
point function with an axial vector insertion relevant for
gu�d

A
[64,65,67,68]. The predicted e↵ect on gu�d

A
is an

overestimation of at least several percent at typical val-
ues of tsep . 1.5 fm that are accessible in lattice simula-
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UQ - Infamous S/N Nucleons 
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Nucleon interpolating operators
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Wick Contraction 
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Part of Variance is  
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Noise wins at large timesAt early times excited states contribute significantly
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3pt Functions Distances

S ⌃

tsep

t

26.06.24

• In 3pt-functions we have two distances between
• Source and current insertion time
• Source and current insertion time (or source-sink separation)

• Very hard to make both large at the same time
• Excited-state problem is exacerbated
• Additional problem from Quark Disconnected Diagrams (notoriously hard to 

evaluate)
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Direct Determination

• Connected part
– Sequential Source 
– Zero Momentum at sink

• Disconnected part 
– Loops All-to-All: OET+HPE+HP
– Still Noisy:
→ Additional two-point functions

3

ID � T �a L�a M⇡[MeV] M⇡L tsep[fm] Ncfg

H102 3.40 96 32 352(4) 4.93 0.9, 1.0, 1.2, 1.4 2005

H105 3.40 96 32 278(4) 3.90 1.0, 1.2, 1.4 1027

C101 3.40 96 48 223(3) 4.68 1.0, 1.2, 1.4 2000

S400 3.46 128 32 350(5) xxx 1.1, 1.2, 1.4, 1.5 2873

N451 3.46 128 48 xxx xxx 1.0, 1.2, 1.3, 1.4 1011

D450 3.46 128 64 220 xxx 1.0, 1.2, 1.3, 1.4 500

D452 3.46 128 64 220 xxx 1.0, 1.2, 1.3, 1.4 1000

N203 3.55 128 48 347(4) 5.42 1.0, 1.2, 1.3, 1.4, 1.5 1543

N200 3.55 128 48 283(3) 4.42 1.0, 1.2, 1.3, 1.4 1712

D200 3.55 128 64 203(3) 4.23 1.0, 1.2, 1.3, 1.4 2000 (1000)

E250 3.55 192 96 130(1) 4.04 1.0, 1.2, 1.3, 1.4 400

S201 3.55 128 32 293 4.04 1.0, 1.2, 1.3, 1.4 2093 (2092)

N302 3.70 128 48 353(4) 4.28 1.0, 1.1, 1.2, 1.3 1177

J303 3.70 192 64 257() 4.28 1.0, 1.1, 1.2, 1.3 1073

TABLE I. Details of CLS ensembles used in this work.

and spatially APE-smeared gauge links in the covariant Laplacian � [11]. The parameters
G and NG are tuned so that a smearing radius rG ∼ 0.5 fm [12] is realized.

Wick contractions for the three-point function lead to the connected and disconnected
contributions. For the connected part, we employ extended propagators in the “fixed-sink”
method, requiring additional inversions for each value of ts studied while allowing the mo-
mentum transfer to be varied via a phase factor at the point of the current insertion [13]. In
order to reduce the cost of the inversions, we apply the truncated solver method with bias
correction [14–16]. Also, the projection matrices �′,� read

�′ = � = 1

2
(1 + �0)(1 + i�5�3). (7)

The disconnected three-point function is constructed from the quark loop and the nucleon
two-point function (see Fig. 1):

C
disc
3 (t, ts;q) = �e

−iqx
LS(q, z0) ⋅C2(p

′
, y0, x;�

′
)�, (8)

where LS denotes the trace over the light- or strange-quark loop. Note that for forward
scalar matrix elements (q = 0), the vacuum expectation value of the current insertion needs
to be subtracted:

C
disc
3 (t, ts;0) = �LS(0, z0) ⋅C2(p

′
, y0, x;�

′
)� − �LS(0, z0)� ⋅ �C2(p

′
, y0, x;�

′
)�. (9)

Additionally, we consider all three di↵erent polarizations:

�′i = 1

2
(1 + �0)(1 + i�5�i), i = 1,2,3. (10)

2

I. INTRODUCTION

The scalar matrix element of the nucleon �N �mq q̄q�N� is one of the important physics
observables, which plays a central role in interpreting the results of dark-matter direct-
detection experiments. In particular, for models in which the WIMP-nucleus interaction is
mediated by the Higgs boson, the spin-independent cross-section for WIMP-nucleus scat-
tering is sensitive to the values of such a matrix element [1]. The light-quark scalar matrix
element, also known as the pion-nucleon sigma term �⇡N , is of special interest. A tension
of roughly three standard deviations has emerged between the lattice results (see, e.g. [2])
and the most recent dispersive determination of �⇡N [3].

In this work, we perform a direct determination of the nucleon sigma terms from the
lattice calculation of the two- and three-point correlation functions.

II. SIMULATION DETAILS

We make use of the CLS Nf = 2 + 1 ensembles [5] of non-perturbatively O(a)-improved
Wilson fermions [6] and the tree-level improved Lüscher-Weisz gauge action [7]. Topological
freezing is prevented by imposing open boundary conditions on the gauge field in the time
direction [8]. The reweighting factors needed to correct for the treatment of the strange quark
determinant during the gauge field generation are obtained using the method of Ref. [9].
Table I gives details of the ensembles used in this work1. In particular, lattice spacings
range from 0.050 fm to 0.086 fm.

The two-point and three-point functions, needed to extract the scalar matrix elements of
the nucleon, have the form

C2(t;p) = �↵��
x
e
−ipx
� �(x, t) ↵(0)�, (1)

C3(t, ts;q) = �
′
↵��

x,y
e
iqy
� �(x, ts)OS(y, t) ↵(0)�, (2)

where OS denotes the scalar density

OS(x) = q̄q, q = u, d, s. (3)

The projection matrices �,�′ will be specified below. Further, in our setup, the nucleon at
the sink is at rest, i.e. for a momentum transfer q the initial and final nucleon states have
3-momenta

p
′
= 0, p = −q. (4)

The interpolating operator for the proton,

 ↵(x) = ✏abc �ũ
T
a (x)C�5d̃b(x)� ũc,↵(x) , (5)

is built using Gaussian-smeared quark fields [10]

q̃ = (1 + G�)
NGq , q = u, d, (6)

1For ensembles E250, D450 and N451, periodic boundary conditions in time are imposed.

S ⌃

tsep

t

S ⌃

tsep

t
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Form Factors on the Lattice

• Computational Frame Work is now set
• One needs to 
– Plugin the desired current
– Deal with the result

• Extract ground-state matrix elements 

• Perform CCF extrapolation
• Give best estimate of the error from the above

• Lets start with scalar current
27.06.24

2

� a [fm] N3
s ⇥Nt m⇡ [MeV] mK [MeV] mN [MeV] mKL Ncfg Nmeas

H105 3.40 0.08636 323
⇥ 96 278 460 1037 6.44 1020 391680

N401⇤ 3.46 0.07634 483
⇥ 128 289 462 1042 8.59 701 314048

N203 3.55 0.06426 483
⇥ 128 345 441 1111 6.90 772 345856

N200 3.55 0.06426 483
⇥ 128 283 463 1061 7.23 856 383488

D200 3.55 0.06426 643
⇥ 128 200 480 989 10.01 278 124544

N302⇤ 3.70 0.04981 483
⇥ 128 354 458 1120 5.55 1177 527296

TABLE I. Gauge ensembles used in this Letter, where Ncfg denotes the number of gauge configurations and the last column
corresponds to the total number of measurements for the ratio in Eq. (7). The values for the lattice spacing and pion and
kaon masses are taken from [14], while the nucleon masses are estimated using the two-point function in this work. For the
ensembles marked with an asterisk, the pion and kaon masses have been obtained from dedicated runs in connection with [15].

ceeds via the standard nucleon interpolator

N↵(x) = ✏abc

⇣
ua

�(x) (C�5)�� db
�(x)

⌘
uc

↵(x), (2)

and �0 = 1
2 (1 + �0), which ensures the correct parity of

the nucleon at zero momentum. Wuppertal smearing [16]
is applied at the source and the sink for all quark prop-
agators. We increase the statistics of the nucleon two-
point function using the truncated solver method [17, 18].
Traces over the strange quark loops can be stochastically
estimated using four-dimensional noise vectors ⌘. For a
local current

V s = s̄(x)�s(x), (3)

the trace over the strange quark loop then reads

hL
s
�(q, z0)iG = �

X

z2⇤

eiq·z ⌦
tr [Ss(z; z) �]

↵
G

= �

X

z2⇤

eiq·z ⌦
⌘†(z) �  (z)

↵
G,⌘

,
(4)

with

Ds = ⌘, (5)

where Ds denotes the Dirac operator for the strange
quark, and the sum is taken over the spatial volume ⇤.

u
x y

d

u

z
s

~n2
p02

����!
~n2

p6
���!

# ~n2
q  6

FIG. 1. Disconnected three-point function with a vector cur-
rent inserted in the strange loop (red dot). For the range of
momenta at the source and current insertion, we use ~n2

p/q  6,

while at the sink, we restrict the range to ~n2
p0  2 (~n2

p/q/p0 de-
note the units of squared lattice momenta).

Instead of a local current we consider the O(a)-improved
conserved vector current in this Letter

Vµ(z)Imp. =
1

2

⇣
s̄(z + µ̂a)(1 + �µ)Uµ(z)†s(z)

� s̄(z)(1 � �µ)Uµ(z)s(z + µ̂a)
⌘

+ acV @⌫ (s̄(z)�µ⌫s(z)) ,

(6)

with the improvement coe�cient cV taken from [19]. Fur-
thermore, we use hierarchical probing [8], which replaces
the sequence of noise vectors by one noise vector mul-
tiplied with a sequence of Hadamard vectors. We find
that the statistical error of the strange quark loop is re-
duced by a factor of 5 when using 512 Hadamard vectors,
compared to the estimate based on 512 U(1) noise vec-
tors, for nearly the same cost. The quark loops in this
study were obtained by averaging two independent noise
vectors with 512 Hadamard vectors each. To extract the
strange contribution to the electromagnetic form factors
of the nucleon, we consider the ratios (see [20–22])

Rs
Vµ

(z0, q; y0,p
0; �⌫) =

Cs
3,Vµ

(q, z0;p0, y0; �⌫)

C2(p0, y0)

⇥

s
C2(p0, y0)C2(p0, z0)C2(p0-q, y0-z0)

C2(p0-q, y0)C2(p0-q, z0)C2(p0, y0-z0)
. (7)

Performing the spectral decomposition and only taking
the ground state into account, these ratios read
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Sigma-Term 
• Phenomenologically via Pion-Nucleon-

Scattering (Chang-Dashen-Theorem + extrap.)
• Lattice calculation

Directly or via Mass
• Some tension between

Roy-Steiner based estimate 
and Lattice

R ⇠ �SI

M�µ2
N

⇥ (Nuclear Physics)⇥ (Astrophysics) (1)

�⇡N = mlhN |ūu+ d̄d|Ni = ml
@mN

@ml
(2)

1
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Excited States – Summation
• Usual Ratio (forward limit): 

Excited states  ~𝑒!"# , 𝑒!" #!!#

• Summed correlator:

Excited states parametrically suppressed 
 

4

These steps were undertaken to improve the signal for the disconnected three-point functions.
Traces over the quark loops are stochastically estimated using four-dimensional noise

vectors ⌘. For a local current

O
q
= q̄(x)1q(x), (11)

the trace over the quark loop reads

L
q
(q, z0) = −�

z∈⇤
e
iq⋅zTr �Dq

(z; z)−1 1� , (12)

with

D
q
 = ⌘, (13)

where Dq denotes the Dirac operator for the light or strange quark, and the sum is taken
over the spatial volume ⇤. In order to reduce the contribution to the variance induced by
the random noise, a frequency splitting combined with a hopping expansion of the quark
propagator were used [17].

The ground-state matrix element is extracted from the ratio

R(t, ts) =
C3(t, ts)

C2(ts)
. (14)

In practice, we form such ratios separately for the connected and disconnected contributions.
We improve the signal for the latter by averaging over three polarizations and forwards and
backwards propagating nucleons, see Eq. (??).

Performing the spectral decomposition in Eq. (14) and taking the limit t, (ts − t)� 0, we
obtain

ReR(t, ts)
t,(ts−t)�0
�����→ GS . (15)

The quantity GS denotes the scalar form factor at vanishing momentum transfer. It is also
convenient to introduce the e↵ective form factor:

G
e↵
S (t, ts) = ReR(t, ts). (16)

In the following, we compute errors using the bootstrap method on data with a bin size
of 2. For the conversion to physical units, the lattice spacing determination of Ref. [24] is
used.

III. EXCITED-STATE SYSTEMATICS

In order to extract the ground-state matrix element, the limit in Eq. (15) should be
performed. In practice, taking such a limit is not feasible, partially due to the notorious
signal-to-noise problem in the nucleon correlation functions. The latter su↵er from a strong
exponential growth of the relative statistical noise when the distance in Euclidean time
between operators is increased [18]. Hence, for typical source-sink separations which are used
in current lattice calculations, the ratio in Eq. (14) will be contaminated by exponentially
suppressed terms associated with resonances and multi-hadron states. These states have the
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ID a [fm] T/a L/a M⇡[MeV] M⇡L tsep[fm] Ncfg

H102

0.086

96 32 352 4.93
0.35, 0.43, 0.52, 0.6, 0.69,

0.78, 0.86, 0.95, 1.04, 1.12,

1.21, 1.3, 1.38, 1.47

2005

H105 96 32 278 3.90 1027

C101 96 48 223 4.68 2000

N101 128 48 279 5.86 1596

S400

0.076

128 32 350 4.33

0.31, 0.46, 0.61, 0.76, 0.92,

1.07, 1.22, 1.37, 1.53, 1.68

2873

N451 128 48 287 5.32 1011

D450 128 64 215 5.33 500

D452 128 64 153 3.79 1000

N203

0.064

128 48 347 5.42

0.26, 0.39, 0.51, 0.64, 0.77,

0.9, 1.03, 1.16, 1.29, 1.41

1543

N200 128 48 283 4.42 1712

D200 128 64 203 4.23 2000

E250 192 96 130 4.05 400

S201 128 32 293 3.05 2093

N302

0.050

128 48 353 4.28
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1., 1.1, 1.2, 1.3, 1.39

2201

J303 192 64 262 4.23 1073

E300 192 64 175 4.24 569

R ⇠ �SI

M�µ2
N

⇥ (Nuclear Physics)⇥ (Astrophysics) (1)

�⇡N = mlhN |ūu+ d̄d|Ni = ml
@mN

@ml
(2)

S(ts) =
ts�tcX

t=tc

�e↵
⇡N (t, ts) (3)

S(ts) = (�⇡N +m11e
��ts) (1 + ts � 2tc) + e��ts

2m10

�
e�(1�tc+ts) � e�tc

�

e� � 1
+ . . .

(4)

1
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��ts) (1 + ts � 2tc) + e��ts

2m10

�
e�(1�tc+ts) � e�tc

�

e� � 1
+ . . .

(4)
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Excited States – Summation
• Usual Ratio (forward limit): 

Excited states  ~𝑒!"# , 𝑒!" #!!#

• Summed correlator:

Excited states parametrically suppressed 
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the random noise, a frequency splitting combined with a hopping expansion of the quark
propagator were used [17].
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C3(t, ts)

C2(ts)
. (14)

In practice, we form such ratios separately for the connected and disconnected contributions.
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Excited States – Summation
• Usual Ratio (forward limit): 

Excited states  ~𝑒!"# , 𝑒!" #!!#

• Summed correlator:

Excited states parametrically suppressed 
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These steps were undertaken to improve the signal for the disconnected three-point functions.
Traces over the quark loops are stochastically estimated using four-dimensional noise

vectors ⌘. For a local current

O
q
= q̄(x)1q(x), (11)

the trace over the quark loop reads

L
q
(q, z0) = −�

z∈⇤
e
iq⋅zTr �Dq

(z; z)−1 1� , (12)

with

D
q
 = ⌘, (13)

where Dq denotes the Dirac operator for the light or strange quark, and the sum is taken
over the spatial volume ⇤. In order to reduce the contribution to the variance induced by
the random noise, a frequency splitting combined with a hopping expansion of the quark
propagator were used [17].

The ground-state matrix element is extracted from the ratio

R(t, ts) =
C3(t, ts)

C2(ts)
. (14)

In practice, we form such ratios separately for the connected and disconnected contributions.
We improve the signal for the latter by averaging over three polarizations and forwards and
backwards propagating nucleons, see Eq. (??).

Performing the spectral decomposition in Eq. (14) and taking the limit t, (ts − t)� 0, we
obtain

ReR(t, ts)
t,(ts−t)�0
�����→ GS . (15)

The quantity GS denotes the scalar form factor at vanishing momentum transfer. It is also
convenient to introduce the e↵ective form factor:

G
e↵
S (t, ts) = ReR(t, ts). (16)

In the following, we compute errors using the bootstrap method on data with a bin size
of 2. For the conversion to physical units, the lattice spacing determination of Ref. [24] is
used.

III. EXCITED-STATE SYSTEMATICS

In order to extract the ground-state matrix element, the limit in Eq. (15) should be
performed. In practice, taking such a limit is not feasible, partially due to the notorious
signal-to-noise problem in the nucleon correlation functions. The latter su↵er from a strong
exponential growth of the relative statistical noise when the distance in Euclidean time
between operators is increased [18]. Hence, for typical source-sink separations which are used
in current lattice calculations, the ratio in Eq. (14) will be contaminated by exponentially
suppressed terms associated with resonances and multi-hadron states. These states have the
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Excited States – Summation

• Excited State Fits need priors for gap Δ (like explicit 2-state-Fit)
• Linear Fits:
• Not trustworthy for small 𝑡9
• Error increases with larger starting 𝑡9
• Several possibilities

• Choose one, use weights e.g. AIC, p-values, … 
• Define a window in physical units and average

New 𝑡/



www.hi-jena.de
www.hi-mainz.de 

Excited-State Contamination
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• Left: Blue data is linear fits to summation data at starting at t indicated on x-axis
         Black profile is window function

         Blue band is weighted average of profile and data point
• Right: Effective FF data for different source-sink separations 

           Black band is explicit two-state fit
• Have two separate ways for extracting the matrix element 

5

same quantum numbers as the nucleon. Several approaches were developed to have a better
control over the excited-state systematics (for a review, see [19]). The summation method
[20–22] and multi-state fits [22, 23] are most widely used among them.

In the summation method, the ground-state matrix element is determined from the
summed ratio

S(ts) =

ts−a
�
t=a G

e↵
S (t, ts), (17)

It can be shown that such a ratio has a simple asymptotic behaviour in ts:

S(ts) = (GS +m11 exp−�ts) (1 + ts − 2tc) + 2m10 exp−
�ts

2
csch

�

2
sinh

1

2
(1 + ts − 2tc) + . . .

(18)

where � denotes the energy gap between the lowest excited state and the ground state, while
m10 and m11 are matrix elements of the current between first excited to ground state and
excited to excited state, respectively. The excited-state contributions, which are contained
in the exponential terms of Eq. (18), are parametrically suppressed by � ⋅ ts. We have
extended the number of source-sink separations compared to our analysis of the isovector
vector form factor [] to include smaller source-sink separations. This enables us to monitor
the range of ts where the linear extrapolation of Eq. (18), i.e. ignoring terms proportional
to m10 and m11, stabilizes. Moreover we performed fits to the summed correlator including
the first excited state. The fit is however not stable and we need to use priors for the energy
gap � between ground and first excited state. Even with a prior for the energy gap we are
not able to resolve the excited-excited contribution m11 with good accuracy and we resort
to a simplified fit ansatz without this term.

Instead of taking the value above a threshold in ts we perform an average of the summation
data with the weight function

wi =
1

2
tanh

ts − tlo

�t
−
1

2
tanh

ts − tup

�t
. (19)

The choice of lower (tlo) and upper (tup) bound constrains the excessive influence of excited
states at small values of ts and the exponentially increasing noise at larger values, respec-
tively. Moreover the extraction via a single value at a given threshold is very sensitive to
statistical fluctuation in the data. We find the choices

tlo = 0.8 fm, tup = 1.0 fm and �t = 0.08 fm, (20)

to give reasonable estimates for the ground state matrix element using linear fits to the
summed correlator. Using the weighting function of Eq. (19) leads to estimates compatible
to fitting what might be identified as a plateau in the extraction of the ground state matrix
element for di↵erent values of ts (see Fig. 1).

In addition to the analysis of the summed coreelators we performed fits using a two-state
ansatz for the e↵ective form factor. The fit function reads

G
e↵
S = GS +m10 exp [−�t] +m10 exp [−�(ts − t)] +m11 exp [−�ts] . (21)

Similar to the analysis of the summed correlators, we cannot fit the gap of the first excited
state and we are forced to use priors. We use twice the ensemble pion mass as the central
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Sigma Term

• Chiral expansion based on SU(3)-BChPT
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FIG. 2. Comparison of the di↵erent extractions. The blue squares, green circles and red diamonds correspond to the extraction
based on the window average of the summed correlator, the explicit two-state fit to the summed correlator, and the explicit
two-state fit to the e↵ective form factor.

Even though the neglected excited-state contributions in
the two-state ansatz are parametrically less suppressed,
we include all ts > 0.8 fm, i.e. the same value as for
tlo in Eq. (19). Subsequently, we cut time slices at the
source and sink until a good fit is achieved. For �s the
data is too noisy to perform two-state fits of the e↵ective
form factor, and we resort to plateau fits, where we fit
di↵erent ts and use the value that shows convergence with
ts. A two-state fit applied to data at m⇡ = 200MeV is
illustrated in Fig. 1 (right panel), along with the results
of the two other methods. Fig. 2 shows a comparison
of the � terms obtained from the di↵erent excited-state
analyses, and the results are collected in Tab. V in the
appendix.

While the summation method with the averaging win-
dow fixed in units of fm is adequate if the dominant
excited-state contribution is only weakly dependent on
the pion mass, the two other analysis methods explic-
itly assume the bulk of that contribution to be associ-
ated with a mass gap � = O(m⇡). Therefore, in terms of
excited-state contamination, we essentially have two pro-
cedures, either relying on the applicability of Eq. (17) or,
relying on assumptions about the energy gaps through
priors, applying Eqs. (20) and (21), where the latter are
both very sensitive to the prior, but give consistent re-
sults. In order to assess the systematics associated with
the very di↵erent e↵ects of excited states in the two
strategies, we perform the chiral and continuum extrap-
olation for the window averaged summation method (fit
ansatz Eq. (17)) and for one method using priors (fit
ansatz Eq. (21)), and finally model average the results
with equal weights, i.e. giving no preference to either
strategy.

Chiral and continuum extrapolation. The calcu-
lation of the � term in chiral perturbation theory (ChPT)
proceeds via the nucleon mass using the Feynman-
Hellmann theorem. The nucleon mass has been calcu-
lated in various formulations of ChPT [26, 55–57] up to

two-loop order [58].
Since our gauge ensembles lie on a line of constant trace

of the quark mass matrix (2ml +ms), both the pion and
the kaon mass change as ml is varied. Moreover, to have
a handle on the quantities �0 and �s, the inclusion of the
strange quark into the e↵ective theory is mandatory. We
therefore use the result of SU(3) ChPT in the extended
on-mass shell scheme (EOMS) of [59]. The nucleon mass
reads

mN =m0 − (2b0 + 4bf)

��������������������������������������������������

b̂0

M2
⇡ − (4b0 + 4bd − 4bf)

���������������������������������������������������������������������������������������������

b̂1

M2
K

+F⇡IMB(M⇡) +FKIMB(MK) +F⌘IMB(M⌘), (22)
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For the ⌘ meson mass, we assume the Gell-Mann-Okubo
relation 3M2

⌘ = 4M2
K −M2

⇡ . We fix the values of the
low-energy constants (LECs) D = 0.8, F = 0.46, F� =

0.108 GeV, m0 = 938.9 MeV and fit the constants b̂0 and
b̂1. For the physical point we use the isospin-limit meson
masses M⇡ = 134.8 MeV and MK = 494.2 MeV [60]. Eq.
(22) is derived with respect to the quark masses, yielding
the quark-mass dependence of the sigma terms. For the
quark mass dependence of the octet meson masses we
take the leading order expression in ChPT [61].
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FIG. 2. Comparison of the di↵erent extractions. The blue squares, green circles and red diamonds correspond to the extraction
based on the window average of the summed correlator, the explicit two-state fit to the summed correlator, and the explicit
two-state fit to the e↵ective form factor.

Even though the neglected excited-state contributions in
the two-state ansatz are parametrically less suppressed,
we include all ts > 0.8 fm, i.e. the same value as for
tlo in Eq. (19). Subsequently, we cut time slices at the
source and sink until a good fit is achieved. For �s the
data is too noisy to perform two-state fits of the e↵ective
form factor, and we resort to plateau fits, where we fit
di↵erent ts and use the value that shows convergence with
ts. A two-state fit applied to data at m⇡ = 200MeV is
illustrated in Fig. 1 (right panel), along with the results
of the two other methods. Fig. 2 shows a comparison
of the � terms obtained from the di↵erent excited-state
analyses, and the results are collected in Tab. V in the
appendix.

While the summation method with the averaging win-
dow fixed in units of fm is adequate if the dominant
excited-state contribution is only weakly dependent on
the pion mass, the two other analysis methods explic-
itly assume the bulk of that contribution to be associ-
ated with a mass gap � = O(m⇡). Therefore, in terms of
excited-state contamination, we essentially have two pro-
cedures, either relying on the applicability of Eq. (17) or,
relying on assumptions about the energy gaps through
priors, applying Eqs. (20) and (21), where the latter are
both very sensitive to the prior, but give consistent re-
sults. In order to assess the systematics associated with
the very di↵erent e↵ects of excited states in the two
strategies, we perform the chiral and continuum extrap-
olation for the window averaged summation method (fit
ansatz Eq. (17)) and for one method using priors (fit
ansatz Eq. (21)), and finally model average the results
with equal weights, i.e. giving no preference to either
strategy.

Chiral and continuum extrapolation. The calcu-
lation of the � term in chiral perturbation theory (ChPT)
proceeds via the nucleon mass using the Feynman-
Hellmann theorem. The nucleon mass has been calcu-
lated in various formulations of ChPT [26, 55–57] up to

two-loop order [58].
Since our gauge ensembles lie on a line of constant trace

of the quark mass matrix (2ml +ms), both the pion and
the kaon mass change as ml is varied. Moreover, to have
a handle on the quantities �0 and �s, the inclusion of the
strange quark into the e↵ective theory is mandatory. We
therefore use the result of SU(3) ChPT in the extended
on-mass shell scheme (EOMS) of [59]. The nucleon mass
reads

mN =m0 − (2b0 + 4bf)
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source and sink until a good fit is achieved. For �s the
data is too noisy to perform two-state fits of the e↵ective
form factor, and we resort to plateau fits, where we fit
di↵erent ts and use the value that shows convergence with
ts. A two-state fit applied to data at m⇡ = 200MeV is
illustrated in Fig. 1 (right panel), along with the results
of the two other methods. Fig. 2 shows a comparison
of the � terms obtained from the di↵erent excited-state
analyses, and the results are collected in Tab. V in the
appendix.
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the pion mass, the two other analysis methods explic-
itly assume the bulk of that contribution to be associ-
ated with a mass gap � = O(m⇡). Therefore, in terms of
excited-state contamination, we essentially have two pro-
cedures, either relying on the applicability of Eq. (17) or,
relying on assumptions about the energy gaps through
priors, applying Eqs. (20) and (21), where the latter are
both very sensitive to the prior, but give consistent re-
sults. In order to assess the systematics associated with
the very di↵erent e↵ects of excited states in the two
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olation for the window averaged summation method (fit
ansatz Eq. (17)) and for one method using priors (fit
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Hellmann theorem. The nucleon mass has been calcu-
lated in various formulations of ChPT [26, 55–57] up to
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of the quark mass matrix (2ml +ms), both the pion and
the kaon mass change as ml is varied. Moreover, to have
a handle on the quantities �0 and �s, the inclusion of the
strange quark into the e↵ective theory is mandatory. We
therefore use the result of SU(3) ChPT in the extended
on-mass shell scheme (EOMS) of [59]. The nucleon mass
reads
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For the ⌘ meson mass, we assume the Gell-Mann-Okubo
relation 3M2

⌘ = 4M2
K −M2

⇡ . We fix the values of the
low-energy constants (LECs) D = 0.8, F = 0.46, F� =

0.108 GeV, m0 = 938.9 MeV and fit the constants b̂0 and
b̂1. For the physical point we use the isospin-limit meson
masses M⇡ = 134.8 MeV and MK = 494.2 MeV [60]. Eq.
(22) is derived with respect to the quark masses, yielding
the quark-mass dependence of the sigma terms. For the
quark mass dependence of the octet meson masses we
take the leading order expression in ChPT [61].
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FIG. 5. Jackknife distribution of the connected part for the �-term for all source-sink-separations. Dashed are the flagged
configurations by the analysis described in the main text. For D200 a total of 4 configurations are flagged out of 2000.

%, which also has the smallest number of configurations
amongst the ensembles analyzed.

Results for the sigma terms

The results for the three determinations described in
the main text for all ensembles are collected in Tab. V.

The conversion to physical units uses the ratios t0
a2 from

[45] and

√
t0 = 0.14464(87) fm (57)

at the physical point from [20]. The error estimate is
based on Bootstrap procedure with a sample size of 5000.

Fits and model average

In Fig. 6 we show one particular fit for the summation
window averaged data based on the SU(3) formula for
the nucleon mass Eq. (22) without any cut in the pion
mass including finite size e↵ects. The data have been
corrected for finite volume e↵ects only, while the fit is at
physical kaon mass.

We derive the expression for the sigma terms from the
nucleon mass
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Using the lowest order ChPT expression for the quark
mass dependence of the meson masses, the sigma terms
read
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�0 = �⇡N −
2M2
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2M2
K −M2

⇡

�s. (63c)

The fits are performed simultaneously to �⇡N , �s and
mN , where we include the correlations among the sigma
terms. We perform variations of these fits, i.e. three cuts
in the pion mass, including/excluding lattice spacing, in-
cluding/excluding finite volume and including both lat-
tice spacing and finite volume corrections. The strictest
pion mass cut is such that enough data points remain to
perform the fit using all values of the lattice spacing. We
treat the data subset selection problem using the “per-
fect model” method of Ref. [75]. In total we thus have
12 variations on three data sets. Instead of choosing a
particular fit we perform model averages over the 36 fits
using their AIC weights. As described in the main text,

B. C. Lehnhart, J. Gegelia, and S. Scherer, 
J. Phys. G 31, 89 (2005) 
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ID �window
⇡N �sum two−state

⇡N �two−state
⇡N �window

0 �sum two−state
0 �two−state

0 �window
s �sum two−state

s �two−state
s

H102 195.9(5.6) 189.8(4.9) 183.9(5.1) 170.6(6.9) 166.0(4.5) 168.8(3.0) 27.1(4.9) 23.8(3.8) 18.1(4.1)

N101 145.2(5.4) 150.5(5.0) 143.7(4.9) 121.0(6.2) 133.6(4.7) 133.9(3.7) 54(10) 36.1(8.6) 21(14)

H105 136.8(9.7) 139.3(6.7) 129.9(7.0) 105(13) 120.4(6.4) 120.0(5.0) 71(17) 42(11) 59(17)

C101 94.3(5.6) 108.0(5.1) 104.5(4.8) 87.0(6.5) 98.2(5.2) 97.7(3.7) 39(17) 45(15) 30(12)

S400 177.9(9.4) 188.7(6.1) 166.3(5.4) 147.5(7.4) 158.7(3.2) 157.2(3.9) 36.4(7.9) 56(11) 42.6(8.9)

N451 152.1(5.6) 156.1(5.0) 145.1(4.4) 135.0(4.1) 138.9(3.7) 135.5(3.0) 40.1(7.8) 40.8(6.4) 24.8(4.0)

D450 103.8(8.9) 118.3(7.5) 113.9(8.9) 96.2(8.6) 105.6(6.6) 96.4(4.0) 47(24) 54(19) 28(13)

D452 62(14) 66(12) 69.6(7.5) 64(18) 60(16) 76.6(6.8) -4(62) 67(53) 15(27)

N203 182.7(6.7) 223(13) 179.2(5.4) 175.7(4.3) 201.1(7.5) 165.5(3.1) 22.5(5.0) 23.8(3.7) 27.2(6.9)

S201 97(22) 115.7(7.9) 106.3(9.0) 85(24) 103.1(6.9) 104.4(6.8) 12(27) 23(12) 24.8(9.9)

N200 131.6(5.4) 137.3(3.8) 150.1(6.0) 122.7(5.6) 121.0(3.2) 119.9(3.3) 22.2(6.0) 32.4(4.4) 20.1(4.4)

D200 81.8(5.8) 91.6(4.3) 91.0(5.0) 74.2(6.5) 85.8(4.2) 87.6(4.3) 33(15) 38(11) 20.2(7.5)

E250 35.44(8.39) 51.77(8.77) 46.19(6.18) 32(11) 48(11) 51.8(5.3) 52(51) 47(56) 15(25)

N302 168.8(7.1) 167.2(4.6) 170.4(6.2) 145.8(5.8) 152.9(3.0) 149.0(3.3) 28.3(5.7) 13.0(3.4) 20.3(3.9)

J303 124.8(6.1) 122.4(4.3) 124.1(4.9) 113.3(5.6) 113.2(3.4) 111.8(3.3) 31.8(8.9) 26.5(6.5) 19.6(6.2)

E300 67.6(5.0) 77.8(4.2) 78.3(4.5) 59.5(4.4) 69.8(3.4) 76.1(4.7) 64(20) 58(17) 45(15)

TABLE V. Results for the sigma terms on every ensemble in MeV, where window, sum two-state and two-state, refer to
the window average of the summed correlator, the two-state fit to the summed correlator and the direct two-state fit to the
correlator, respectively.
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FIG. 6. Simultaneous fit of the window averaged data for �⇡N , �s. In this variation we include corrections due to finite volume,
using all available pion masses. We correct the central value for the fitted finite volume correction only.

only two data sets enter the final analysis. The weights
are normalized first on each data set, and subsequently
averaged using flat weights, i.e. with a factor 1�2. From
these weights we build a cumulative distribution function
(see Fig. 7) following Ref. [18]

P x
(y) =

y

�

−∞
n

�

i

wiN (y
′;xi,�

2
i )dy′ (64)

We estimate the central value and the total error of the
average, using the median and the di↵erence between the
1-� percentiles of P x. For the separation into statistical
and systematic errors we assume that

�2
stat + �2

sys = �2
total, (65)

and that a scaling of the individual Bootstrap errors with
an arbitrary constant is expected to a↵ect �2

stat exclu-

sively. In Fig. 7 we show the CDF for all three quanti-
ties, note that �0 is not fitted. The blue shaded area is
the symmetric error from the percentiles centered around
the median. These coincide rather well with the 1-� per-
centiles of the actual distribution. The breakup into sys-
tematic and statistical error uses the fact that the sys-
tematic error does not change if all errors are inflated by
some arbitrary factor (see Ref. [63] for more details).

In Tab. VI we collect the results for the di↵erent vari-
ations and the corresponding weights in the averaging
procedure wi. We note that we performed the averaging
procedure with all quantities expressed in units of t0, ap-
plying the calibration in the end to convert to physical
units. We see that in general the fit quality for all varia-
tions is acceptable. The penalty terms in the AIC weights
prefer variations with more data and fewer fit parameters.
That is visible for the window data, where most of the
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We treat the lattice spacing dependence of the sigma
term via an additional term3,

�⇡N�s → �⇡N�s + bi
a
√

t0
M2

⇡�K . (27)

The finite-volume dependence of the nucleon mass in
SU(2) is given in [62], wherefrom we derive

�⇡N → �⇡N + bL�
M3

⇡

M⇡L
−

M3
⇡

2
� exp�−M⇡L�. (28)

We only use the finite-volume corrections due to pion
loops, as terms ∼ exp(−MKL) are parametrically much
more suppressed; thus we omit finite-volume corrections
for �s. Instead of using the ChPT results for the pref-
actors of the finite-volume corrections, we leave them as
additional fit parameters, however we use as a loose prior
the value obtained from SU(2) ChPT.

We proceed to fit �⇡N , �s, taking into account the
correlations among the sigma terms and lattice spacing.
The fits are performed with variations in the upper end of
the pion mass range (220, 285 or 360MeV), and includ-
ing/excluding the artifacts with respect to finite lattice
spacing and to finite volume. We analyze the two data
sets obtained from the excited-states analyses separately
with respect to the above variations, i.e. within each data
set all variations are averaged using an AIC weight wi

given by

wi = ai�(∑k ak), ai = exp−1
2��

2
+ 2nc + 2nf � (29)

where nc and nf denote the number of cut data points
and number of fit parameters, respectively. The weights
are normalized per data set, and finally a flat weighting
is applied between the data sets. Using the procedure of
[53, 63] we obtain as our final estimates

�⇡N = 43.7(1.2)(3.4)MeV (30a)

�0 = 41.3(1.2)(3.4)MeV (30b)

�s = 28.6(6.2)(7.0)MeV, (30c)

where the first and second errors correspond to the sta-
tistical and systematic uncertainties, respectively. More
details of the averaging procedure are given in the ap-
pendix. The systematic error dominates, with the largest
source of uncertainty coming from the treatment of ex-
cited states. In Fig. 3 we compare our results to those
of other lattice calculations. We note a reasonable agree-
ment among these calculations.

Conclusion. We have calculated the nucleon sigma
terms �⇡N , �0 and �s with a full error budget concerning
excited-state contamination as well as chiral, finite-size

3Note that the current is not O(a)-improved.

i ∶ window two-state

�i
⇡N 42.3(2.4) MeV 46.9(1.7) MeV

�i
s 39.6(1.9) MeV 45.0(1.7) MeV

�i
0 34.2(9.8) MeV 24.7(6.5) MeV

TABLE II. Result of the model average procedure using AIC
weights defined in Eq. (29) when applied exclusively to the
data set denoted in the column heading. Only total errors
are shown.

and continuum extrapolations. Our estimate for �⇡N lies
close to the early estimate from N⇡ scattering [3]. It is
compatible with most other lattice determinations and in
excellent agreement with the �⇡N determination of [19],
which uses partly the same gauge ensembles but proceeds
by computing the quark-mass dependence of the nucleon
mass. For �s we find a non-zero value, again compat-
ible with most recent lattice determinations. Including
the e↵ects of di↵erent methods for the treatment of ex-
cited states into our error budget, we clearly establish
this to be the largest source of systematic uncertainty.
Analyzing the data sets from the window and two-state
procedure separately, see Tab. II, we observe an upwards
trend for �⇡N when using priors similar to [25], albeit
not as pronounced. Our final central value for �⇡N lies
between the two values presented in [25], but is much
closer to that obtained without imposing tight priors on
the gap � around values of order m⇡. A discrepancy of
2.4� persists with the dispersive result of [4], after ap-
plying the correction necessary to match our definition
of the pion mass in the isospin-limit from Ref. [64]
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actors of the finite-volume corrections, we leave them as
additional fit parameters, however we use as a loose prior
the value obtained from SU(2) ChPT.

We proceed to fit �⇡N , �s, taking into account the
correlations among the sigma terms and lattice spacing.
The fits are performed with variations in the upper end of
the pion mass range (220, 285 or 360MeV), and includ-
ing/excluding the artifacts with respect to finite lattice
spacing and to finite volume. We analyze the two data
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given by

wi = ai�(∑k ak), ai = exp−1
2��

2
+ 2nc + 2nf � (29)
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and number of fit parameters, respectively. The weights
are normalized per data set, and finally a flat weighting
is applied between the data sets. Using the procedure of
[53, 63] we obtain as our final estimates

�⇡N = 43.7(1.2)(3.4)MeV (30a)

�0 = 41.3(1.2)(3.4)MeV (30b)

�s = 28.6(6.2)(7.0)MeV, (30c)

where the first and second errors correspond to the sta-
tistical and systematic uncertainties, respectively. More
details of the averaging procedure are given in the ap-
pendix. The systematic error dominates, with the largest
source of uncertainty coming from the treatment of ex-
cited states. In Fig. 3 we compare our results to those
of other lattice calculations. We note a reasonable agree-
ment among these calculations.

Conclusion. We have calculated the nucleon sigma
terms �⇡N , �0 and �s with a full error budget concerning
excited-state contamination as well as chiral, finite-size

3Note that the current is not O(a)-improved.

i ∶ window two-state

�i
⇡N 42.3(2.4) MeV 46.9(1.7) MeV

�i
s 39.6(1.9) MeV 45.0(1.7) MeV

�i
0 34.2(9.8) MeV 24.7(6.5) MeV

TABLE II. Result of the model average procedure using AIC
weights defined in Eq. (29) when applied exclusively to the
data set denoted in the column heading. Only total errors
are shown.

and continuum extrapolations. Our estimate for �⇡N lies
close to the early estimate from N⇡ scattering [3]. It is
compatible with most other lattice determinations and in
excellent agreement with the �⇡N determination of [19],
which uses partly the same gauge ensembles but proceeds
by computing the quark-mass dependence of the nucleon
mass. For �s we find a non-zero value, again compat-
ible with most recent lattice determinations. Including
the e↵ects of di↵erent methods for the treatment of ex-
cited states into our error budget, we clearly establish
this to be the largest source of systematic uncertainty.
Analyzing the data sets from the window and two-state
procedure separately, see Tab. II, we observe an upwards
trend for �⇡N when using priors similar to [25], albeit
not as pronounced. Our final central value for �⇡N lies
between the two values presented in [25], but is much
closer to that obtained without imposing tight priors on
the gap � around values of order m⇡. A discrepancy of
2.4� persists with the dispersive result of [4], after ap-
plying the correction necessary to match our definition
of the pion mass in the isospin-limit from Ref. [64]
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Variation �⇡N [MeV] �0 [MeV] �s [MeV] �2(dof) weight in %

M⇡ < 220 MeV 42.04(1.27) 38.70(1.35) 43.18(9.20) 4.0(10) 1

M⇡ < 285 MeV 41.89(67) 38.98(69) 37.56(4.74) 20.5(18) 0

no cut in M⇡ 41.67(44) 38.91(41) 35.62(3.09) 42.9(30) 1

M⇡ < 220 MeV+ O(a) 41.58(6.58) 37.23(6.28) 56.36(24.19) 3.5(8) 0

M⇡ < 285 MeV+ O(a) 39.31(3.15) 37.05(3.06) 29.24(12.55) 19.6(16) 0

no cut in M⇡+ O(a) 37.55(1.82) 34.87(1.80) 34.68(6.69) 37.5(28) 2

M⇡ < 220 MeV+ O(e−mL
) 42.45(1.33) 39.10(1.40) 43.26(9.20) 3.8(9) 0

M⇡ < 285 MeV+ O(e−mL
) 42.43(79) 39.53(81) 37.52(4.74) 19.9(17) 0

no cut in M⇡+ O(e
−mL
) 42.87(59) 40.11(57) 35.78(3.09) 34.4(29) 26

M⇡ < 220 MeV+ O(a)+ O(e−mL
) 42.69(6.68) 36.67(6.47) 77.88(45.65) 3.2(7) 0

M⇡ < 285 MeV+ O(a)+ O(e−mL
) 39.38(3.35) 39.43(3.30) -0.62(22.83) 16.7(15) 0

no cut in M⇡+ O(a)+ O(e
−mL
) 39.34(2.08) 37.61(2.04) 22.39(13.53) 31.1(27) 19

M⇡ < 220 MeV 46.81(1.14) 44.88(1.16) 24.92(5.61) 6.9(10) 27

M⇡ < 285 MeV 43.71(62) 42.02(63) 21.87(3.42) 27.8(18) 2

no cut in M⇡ 41.04(39) 39.32(39) 22.23(2.32) 92.3(30) 0

M⇡ < 220 MeV+ O(a) 51.38(5.87) 49.17(5.80) 28.65(16.12) 6.3(8) 5

M⇡ < 285 MeV+ O(a) 45.77(2.73) 44.14(2.73) 21.17(8.71) 27.2(16) 0

no cut in M⇡+ O(a) 40.38(1.65) 39.02(1.64) 17.62(4.73) 90.9(28) 0

M⇡ < 220 MeV+ O(e−mL
) 47.21(1.20) 45.28(1.22) 24.95(5.61) 6.8(9) 10

M⇡ < 285 MeV+ O(e−mL
) 44.44(76) 42.75(77) 21.79(3.42) 25.9(17) 2

no cut in M⇡+ O(e
−mL
) 42.79(56) 41.08(56) 22.15(2.32) 73.4(29) 0

M⇡ < 220 MeV+ O(a)+ O(e−mL
) 52.26(5.93) 49.09(6.00) 41.03(32.57) 6.0(7) 2

M⇡ < 285 MeV+ O(a)+ O(e−mL
) 47.13(2.90) 46.07(2.99) 13.78(19.15) 24.6(15) 1

no cut in M⇡+ O(a)+ O(e
−mL
) 43.83(1.87) 42.81(1.87) 13.24(10.25) 71.9(27) 0

TABLE VI. The results for the di↵erent fit variations together with the assigned weights wi. Results for the window/two-state
data are given in the upper/lower panel. For convenience the values have been converted to physical units using

√
t0 of Eq. (57).
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UQ - Systematics and Errors

• With the two datasets perfrom all extrapolations
• Variations: Excited States, 𝑀:

;, 𝒪 𝑎; , 𝒪(𝑒<=U>)
• No a priori best extrapolation
• Treat variations as Models
• Perform averages based on AIC weights 

• Treat model estimates as random
 variable with CDF

26.06.24

the number of fit parameters while it favors including more actual data points [39]. For the
weighting of di↵erent models on the same input data set we use

wAIC

i =
e�

1
2AICi

P
j
e�

1
2AICj

, (28)

i.e. we normalize the AIC obtained for all models for summation and two-state data sep-
arately. Finally, we apply a flat weight function to the estimates from summation and
two-state fits. We adopt the procedure from [101], which we briefly sketch in the following,
for estimating the systematic and statistical error of the model-averaged values. To that end
we treat the model-averaged estimate as a random variable with the following cumulative
distribution function (CDF)

P x(y) =

yZ

�1

nX

i

wiN (y0; xi, �
2

i )dy
0 (29)

i.e. the weighted sum of Gaussian distributions where the mean xi and variance �2

i is given
by the best estimate and fit error of each model, and the weight wi is obtained as explained
above. This e↵ectively smoothens the otherwise rugged distribution of model postdictions
and allows for a more robust estimate of the distribution parameters (see Fig. 11). The final
value and total error are easily read o↵ from the distribution in Eq. (29) as the median,
and the 1-� percentiles, respectively. Under the assumptions that a rescaling of all errors
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FIG. 11. Cumulative distribution function of all fitted models, where dash-dotted and short-
dashed lines indicate median and 68% percentiles, respectively.
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the number of fit parameters while it favors including more actual data points [39]. For the
weighting of di↵erent models on the same input data set we use
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i.e. we normalize the AIC obtained for all models for summation and two-state data sep-
arately. Finally, we apply a flat weight function to the estimates from summation and
two-state fits. We adopt the procedure from [101], which we briefly sketch in the following,
for estimating the systematic and statistical error of the model-averaged values. To that end
we treat the model-averaged estimate as a random variable with the following cumulative
distribution function (CDF)
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i.e. the weighted sum of Gaussian distributions where the mean xi and variance �2

i is given
by the best estimate and fit error of each model, and the weight wi is obtained as explained
above. This e↵ectively smoothens the otherwise rugged distribution of model postdictions
and allows for a more robust estimate of the distribution parameters (see Fig. 11). The final
value and total error are easily read o↵ from the distribution in Eq. (29) as the median,
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Strategy from S. Borsanyi et al. (2020), Nature 593, 51–55 (2021) 
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FIG. 7. Cumulative distribution function of Eq. (64) for all variations of the fits to the sigma-terms. The red squares and
purple dots denote fits based on summation window and two-state data, respectively.

weight is on the fits using all available pion masses and
including a finite volume correction. On the other hand,
the two-state data prefers fits with stricter cuts in the
pion mass, and again finite volume corrections. When
performing the analysis separately for the summation-
window and two-state data for the sigma terms we obtain

�window
⇡N = 42.3(2.4)MeV (66)

�two-state
⇡N = 46.9(1.7)MeV (67)

�window
0 = 39.6(1.9)MeV (68)

�two-state
0 = 45.0(1.7)MeV (69)

�window
s = 34.2(9.8)MeV (70)

�two-state
s = 24.7(6.5)MeV, (71)

where only the total error is given. All values are within
1−� of our best estimate, as can be seen in Fig. 7, where
the bulk of points is covered by the total errors of our

best estimate.
We note that the AIC averaged result is stable with

respect to including models where only terms of second
order in the pion- and kaon-mass are used, and a model
adding polynomial fourth order terms in the chiral count-
ing. The former turns out to have less AIC weight com-
pared to our (third-order) estimate, while the latter needs
to be stabilized using priors. In both cases, the changes
in the central values are insignificant compared to our
best estimate, and the error changes within a few per-
cent, depending on the prior applied for the fourth-order
term. Similarily, removing all data points with a pion
mass above 285 MeV from the analysis only has very
small e↵ect on the central value and error. Moreover,
we checked that the AIC average is also stable against
variations in the low-energy constants F�, D and F . To
this end we have varied the values of the LECs given in
Tab. 11 of Ref. [19] within one standard deviation, and
added these as additional models in the averaging.
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Akaike Information Criterion
• IC based on Kullback-Leibler Divergence

• For least-square-fitting

• Including data selection

• Weights are higher for 
– Better fits
– Less fit parameters 
– More Data used

 26.06.24

KL(g, f(✓) =

Z
d�g(�) log

⇣ g(�)

f(�|✓)

⌘
(1)

hOi =

Z
D�eiS(�)

O (2)

hOiE =

Z
D�e�SE(�)

O (3)

� (4)

⇠ e�mN t (5)

 (x) = ✏abcu
T
a (x)C�5db(x)uc(x) (6)

⇠ e�3m⇡t (7)

h (x) ̄(y)i (8)

h (x) (x) ̄(y) ̄(y)i (9)

AIC = 2k � 2 ln L̂ (10)

AIC = �2(â) + 2k (11)

1

the number of fit parameters while it favors including more actual data points [39]. For the
weighting of di↵erent models on the same input data set we use

wAIC

i =
e�

1
2AICi

P
j
e�

1
2AICj

, (28)

i.e. we normalize the AIC obtained for all models for summation and two-state data sep-
arately. Finally, we apply a flat weight function to the estimates from summation and
two-state fits. We adopt the procedure from [101], which we briefly sketch in the following,
for estimating the systematic and statistical error of the model-averaged values. To that end
we treat the model-averaged estimate as a random variable with the following cumulative
distribution function (CDF)

P x(y) =

yZ

�1

nX

i

wiN (y0; xi, �
2

i )dy
0 (29)

i.e. the weighted sum of Gaussian distributions where the mean xi and variance �2

i is given
by the best estimate and fit error of each model, and the weight wi is obtained as explained
above. This e↵ectively smoothens the otherwise rugged distribution of model postdictions
and allows for a more robust estimate of the distribution parameters (see Fig. 11). The final
value and total error are easily read o↵ from the distribution in Eq. (29) as the median,
and the 1-� percentiles, respectively. Under the assumptions that a rescaling of all errors
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FIG. 11. Cumulative distribution function of all fitted models, where dash-dotted and short-
dashed lines indicate median and 68% percentiles, respectively.
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AIC = �2(â) + 2k (11)
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# Fit parameters

# Cut datapoints 
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Sigma Term Error Estimate
• Use the weights to define CDF as

26.06.24

the number of fit parameters while it favors including more actual data points [39]. For the
weighting of di↵erent models on the same input data set we use
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i.e. we normalize the AIC obtained for all models for summation and two-state data sep-
arately. Finally, we apply a flat weight function to the estimates from summation and
two-state fits. We adopt the procedure from [101], which we briefly sketch in the following,
for estimating the systematic and statistical error of the model-averaged values. To that end
we treat the model-averaged estimate as a random variable with the following cumulative
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i.e. the weighted sum of Gaussian distributions where the mean xi and variance �2

i is given
by the best estimate and fit error of each model, and the weight wi is obtained as explained
above. This e↵ectively smoothens the otherwise rugged distribution of model postdictions
and allows for a more robust estimate of the distribution parameters (see Fig. 11). The final
value and total error are easily read o↵ from the distribution in Eq. (29) as the median,
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purple dots denote fits based on summation window and two-state data, respectively.

weight is on the fits using all available pion masses and
including a finite volume correction. On the other hand,
the two-state data prefers fits with stricter cuts in the
pion mass, and again finite volume corrections. When
performing the analysis separately for the summation-
window and two-state data for the sigma terms we obtain

�window
⇡N = 42.3(2.4)MeV (66)

�two-state
⇡N = 46.9(1.7)MeV (67)

�window
0 = 39.6(1.9)MeV (68)

�two-state
0 = 45.0(1.7)MeV (69)

�window
s = 34.2(9.8)MeV (70)

�two-state
s = 24.7(6.5)MeV, (71)

where only the total error is given. All values are within
1−� of our best estimate, as can be seen in Fig. 7, where
the bulk of points is covered by the total errors of our

best estimate.
We note that the AIC averaged result is stable with

respect to including models where only terms of second
order in the pion- and kaon-mass are used, and a model
adding polynomial fourth order terms in the chiral count-
ing. The former turns out to have less AIC weight com-
pared to our (third-order) estimate, while the latter needs
to be stabilized using priors. In both cases, the changes
in the central values are insignificant compared to our
best estimate, and the error changes within a few per-
cent, depending on the prior applied for the fourth-order
term. Similarily, removing all data points with a pion
mass above 285 MeV from the analysis only has very
small e↵ect on the central value and error. Moreover,
we checked that the AIC average is also stable against
variations in the low-energy constants F�, D and F . To
this end we have varied the values of the LECs given in
Tab. 11 of Ref. [19] within one standard deviation, and
added these as additional models in the averaging.

Median 1-𝜎 percentile

• Quoted value is the median of CDF
• Shaded area is symmetrized 1-𝜎 interval 

of CDF
• Disentangle syst. from stat. error  by 

scaling error in 
• CDF smoothens rugged dsitribution
• Bulk of variations included in errorband

5

We treat the lattice spacing dependence of the sigma
term via an additional term3,

�⇡N�s → �⇡N�s + bi
a
√

t0
M2

⇡�K . (27)

The finite-volume dependence of the nucleon mass in
SU(2) is given in [62], wherefrom we derive

�⇡N → �⇡N + bL�
M3

⇡

M⇡L
−

M3
⇡

2
� exp�−M⇡L�. (28)

We only use the finite-volume corrections due to pion
loops, as terms ∼ exp(−MKL) are parametrically much
more suppressed; thus we omit finite-volume corrections
for �s. Instead of using the ChPT results for the pref-
actors of the finite-volume corrections, we leave them as
additional fit parameters, however we use as a loose prior
the value obtained from SU(2) ChPT.

We proceed to fit �⇡N , �s, taking into account the
correlations among the sigma terms and lattice spacing.
The fits are performed with variations in the upper end of
the pion mass range (220, 285 or 360MeV), and includ-
ing/excluding the artifacts with respect to finite lattice
spacing and to finite volume. We analyze the two data
sets obtained from the excited-states analyses separately
with respect to the above variations, i.e. within each data
set all variations are averaged using an AIC weight wi

given by

wi = ai�(∑k ak), ai = exp−1
2��

2
+ 2nc + 2nf � (29)

where nc and nf denote the number of cut data points
and number of fit parameters, respectively. The weights
are normalized per data set, and finally a flat weighting
is applied between the data sets. Using the procedure of
[53, 63] we obtain as our final estimates

�⇡N = 43.7(1.2)(3.4)MeV (30a)

�0 = 41.3(1.2)(3.4)MeV (30b)

�s = 28.6(6.2)(7.0)MeV, (30c)

where the first and second errors correspond to the sta-
tistical and systematic uncertainties, respectively. More
details of the averaging procedure are given in the ap-
pendix. The systematic error dominates, with the largest
source of uncertainty coming from the treatment of ex-
cited states. In Fig. 3 we compare our results to those
of other lattice calculations. We note a reasonable agree-
ment among these calculations.

Conclusion. We have calculated the nucleon sigma
terms �⇡N , �0 and �s with a full error budget concerning
excited-state contamination as well as chiral, finite-size

3Note that the current is not O(a)-improved.

i ∶ window two-state

�i
⇡N 42.3(2.4) MeV 46.9(1.7) MeV

�i
s 39.6(1.9) MeV 45.0(1.7) MeV

�i
0 34.2(9.8) MeV 24.7(6.5) MeV

TABLE II. Result of the model average procedure using AIC
weights defined in Eq. (29) when applied exclusively to the
data set denoted in the column heading. Only total errors
are shown.

and continuum extrapolations. Our estimate for �⇡N lies
close to the early estimate from N⇡ scattering [3]. It is
compatible with most other lattice determinations and in
excellent agreement with the �⇡N determination of [19],
which uses partly the same gauge ensembles but proceeds
by computing the quark-mass dependence of the nucleon
mass. For �s we find a non-zero value, again compat-
ible with most recent lattice determinations. Including
the e↵ects of di↵erent methods for the treatment of ex-
cited states into our error budget, we clearly establish
this to be the largest source of systematic uncertainty.
Analyzing the data sets from the window and two-state
procedure separately, see Tab. II, we observe an upwards
trend for �⇡N when using priors similar to [25], albeit
not as pronounced. Our final central value for �⇡N lies
between the two values presented in [25], but is much
closer to that obtained without imposing tight priors on
the gap � around values of order m⇡. A discrepancy of
2.4� persists with the dispersive result of [4], after ap-
plying the correction necessary to match our definition
of the pion mass in the isospin-limit from Ref. [64]
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ID �window
⇡N �sum two−state

⇡N �two−state
⇡N �window

0 �sum two−state
0 �two−state

0 �window
s �sum two−state

s �two−state
s

H102 195.9(5.6) 189.8(4.9) 183.9(5.1) 170.6(6.9) 166.0(4.5) 168.8(3.0) 27.1(4.9) 23.8(3.8) 18.1(4.1)

N101 145.2(5.4) 150.5(5.0) 143.7(4.9) 121.0(6.2) 133.6(4.7) 133.9(3.7) 54(10) 36.1(8.6) 21(14)

H105 136.8(9.7) 139.3(6.7) 129.9(7.0) 105(13) 120.4(6.4) 120.0(5.0) 71(17) 42(11) 59(17)

C101 94.3(5.6) 108.0(5.1) 104.5(4.8) 87.0(6.5) 98.2(5.2) 97.7(3.7) 39(17) 45(15) 30(12)

S400 177.9(9.4) 188.7(6.1) 166.3(5.4) 147.5(7.4) 158.7(3.2) 157.2(3.9) 36.4(7.9) 56(11) 42.6(8.9)

N451 152.1(5.6) 156.1(5.0) 145.1(4.4) 135.0(4.1) 138.9(3.7) 135.5(3.0) 40.1(7.8) 40.8(6.4) 24.8(4.0)

D450 103.8(8.9) 118.3(7.5) 113.9(8.9) 96.2(8.6) 105.6(6.6) 96.4(4.0) 47(24) 54(19) 28(13)

D452 62(14) 66(12) 69.6(7.5) 64(18) 60(16) 76.6(6.8) -4(62) 67(53) 15(27)

N203 182.7(6.7) 223(13) 179.2(5.4) 175.7(4.3) 201.1(7.5) 165.5(3.1) 22.5(5.0) 23.8(3.7) 27.2(6.9)

S201 97(22) 115.7(7.9) 106.3(9.0) 85(24) 103.1(6.9) 104.4(6.8) 12(27) 23(12) 24.8(9.9)

N200 131.6(5.4) 137.3(3.8) 150.1(6.0) 122.7(5.6) 121.0(3.2) 119.9(3.3) 22.2(6.0) 32.4(4.4) 20.1(4.4)

D200 81.8(5.8) 91.6(4.3) 91.0(5.0) 74.2(6.5) 85.8(4.2) 87.6(4.3) 33(15) 38(11) 20.2(7.5)

E250 35.44(8.39) 51.77(8.77) 46.19(6.18) 32(11) 48(11) 51.8(5.3) 52(51) 47(56) 15(25)

N302 168.8(7.1) 167.2(4.6) 170.4(6.2) 145.8(5.8) 152.9(3.0) 149.0(3.3) 28.3(5.7) 13.0(3.4) 20.3(3.9)

J303 124.8(6.1) 122.4(4.3) 124.1(4.9) 113.3(5.6) 113.2(3.4) 111.8(3.3) 31.8(8.9) 26.5(6.5) 19.6(6.2)

E300 67.6(5.0) 77.8(4.2) 78.3(4.5) 59.5(4.4) 69.8(3.4) 76.1(4.7) 64(20) 58(17) 45(15)

TABLE V. Results for the sigma terms on every ensemble in MeV, where window, sum two-state and two-state, refer to
the window average of the summed correlator, the two-state fit to the summed correlator and the direct two-state fit to the
correlator, respectively.

FIG. 6. Simultaneous fit of the window averaged data for �⇡N , �s. In this variation we include corrections due to finite volume,
using all available pion masses. We correct the central value for the fitted finite volume correction only.

only two data sets enter the final analysis. The weights
are normalized first on each data set, and subsequently
averaged using flat weights, i.e. with a factor 1�2. From
these weights we build a cumulative distribution function
(see Fig. 7) following Ref. [18]

P x
(y) =

y

�

−∞
n

�

i

wiN (y
′;xi,�

2
i )dy′ (64)

We estimate the central value and the total error of the
average, using the median and the di↵erence between the
1-� percentiles of P x. For the separation into statistical
and systematic errors we assume that

�2
stat + �2

sys = �2
total, (65)

and that a scaling of the individual Bootstrap errors with
an arbitrary constant is expected to a↵ect �2

stat exclu-

sively. In Fig. 7 we show the CDF for all three quanti-
ties, note that �0 is not fitted. The blue shaded area is
the symmetric error from the percentiles centered around
the median. These coincide rather well with the 1-� per-
centiles of the actual distribution. The breakup into sys-
tematic and statistical error uses the fact that the sys-
tematic error does not change if all errors are inflated by
some arbitrary factor (see Ref. [63] for more details).

In Tab. VI we collect the results for the di↵erent vari-
ations and the corresponding weights in the averaging
procedure wi. We note that we performed the averaging
procedure with all quantities expressed in units of t0, ap-
plying the calibration in the end to convert to physical
units. We see that in general the fit quality for all varia-
tions is acceptable. The penalty terms in the AIC weights
prefer variations with more data and fewer fit parameters.
That is visible for the window data, where most of the
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FIG. 3. Comparison of our results to other lattice determi-
nations: RQCD22 [19], NME21 [25], BMW20 [18], ETM19
[17], JLQCD18 [16], RQCD16 [15], �QCD15 [14], BMW15
[13], ETM14A [12], QCDSF12 [9], BMW11A [8]. Filled cir-
cles represent results extracted from the slope of the nucleon
mass with respect to the light quark mass ml, and squares
represent results obtained directly from the matrix element.
The gray band corresponds to the dispersive result of [4] with
the correction for the isospin-limit value of the pion mass from
[64] applied, i.e. �⇡N = 55.9(3.5)MeV.

(the latter through the John von Neumann Institute for
Computing (NIC)), as well as on the GCS Supercomputer
HAZELHEN at Höchstleistungsrechenzentrum Stuttgart
(www.hlrs.de) under project GCS-HQCD.

Our programs use the QDP++ library [66] and de-
flated SAP+GCR solver from the openQCD package [67],
while the contractions have been explicitly checked using
[68]. We are grateful to our colleagues in the CLS initia-
tive for sharing the gauge field configurations on which
this work is based.
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[8] S. Dürr et al., Phys. Rev. D 85, 014509 (2012), [Erra-
tum: Phys.Rev.D 93, 039905 (2016)], arXiv:1109.4265
[hep-lat].

[9] G. S. Bali et al., Nucl. Phys. B 866, 1 (2013),
arXiv:1206.7034 [hep-lat].

[10] P. E. Shanahan, A. W. Thomas, and R. D. Young, Phys.
Rev. D 87, 074503 (2013), arXiv:1205.5365 [nucl-th].

[11] M. Engelhardt, Phys. Rev. D 86, 114510 (2012),
arXiv:1210.0025 [hep-lat].

[12] C. Alexandrou, V. Drach, K. Jansen, C. Kallidonis,
and G. Koutsou, Phys. Rev. D 90, 074501 (2014),
arXiv:1406.4310 [hep-lat].
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[31] M. Lüscher and P. Weisz, Commun. Math. Phys. 97, 59
(1985), [Erratum: Commun.Math.Phys. 98, 433 (1985)].



www.hi-jena.de
www.hi-mainz.de 

EM FF of the Proton
• Current is now 𝛾#
• Effective FF

• Again use window-average of summed correlator

 

27.06.24

3.3. Sources of Systematic Errors 35

°10 °5 0 5 10≥
t ° tsep

2

¥
/a

0.800

0.825

0.850

0.875

0.900

G
eÆ E

(t
,t

s
)

°10 °5 0 5 10≥
t ° tsep

2

¥
/a

3.00

3.25

3.50

3.75

G
eÆ M

(t
,t

s
)

Figure 3.3: Left and right panels show the effective electric and magnetic form factors of
the nucleon on the ensemble D200 [69], respectively. The colored data points correspond
to the ratio of Eq. (3.14) for different source-sink separations tsep. The gray band is the
result of the summation method while the black data point denotes the result of the
two-fits. Original plots are from [Djukanovic et al., 2021].

spread of the means associated to variations in the analysis, which were specifically de-
signed to highlight the effect of certain systematics. The variations range from different
fit ansätze, cuts in the pion mass or lattice spacing. In this estimate of the error associ-
ated with systematics, neither the fit quality nor the error of the individual variations
is directly included. As an alternative one encounters weighted averages, that do take
the error into account. For such error estimates one thus has to additionally apply a
criterion to fit qualities, e.g., a threshold for p-values.

In an attempt to improve the assessment of systematic errors, in [116] a proposal
based on the Akaike Information Criterion (AIC) [117, 118] was put forward. We
applied this procedure successfully to obtain reliable error estimates in nucleon structure
calculations [Djukanovic et al., 2021]. An appealing aspect of this procedure is the
possibility to include cuts in the data into the weighting factor. The AIC weights are
defined as

AICi = �2
min,i + 2nf + 2nc, (3.28)

where �2
min,i denotes the minimum of the weighted least square for the i-th model, nf the

number of fit parameters, and nc the number of cut data points. There is an intuitive
rationale behind the 2nc, as one can reformulate the problem of cutting data points as
a model variation, where one increases the number of fit parameters in such a way that
each cut point is perfectly reproduced. The �2 is unchanged and the penalty term of
2nf is applied for the additional parameters of the perfect model [119].

The AIC weights are derived from the individual AIC value of the i-th model

wAIC
i =

e�
1
2AICi

P
j

e�
1
2AICj

. (3.29)

From this definition it is clear that variations with better fit quality (�2) less fit-
parameters, and more data are preferred. The weights may be used in weighted averages

calculations of baryon structure observables, it cannot be guaranteed that contributions
from excited states are sufficiently suppressed. This underlines the necessity to explicitly
address the excited-state systematics in order to extract the ground-state form factors from
the effective ones [83, 86].

In this work, we make use of the summation method [87–89]. It takes advantage of the
fact that in the ratios of eq. (13), when summed over timeslices in between source and sink,
the contributions from excited states are parametrically suppressed. Accordingly, we sum
the effective form factors over the operator insertion time, omitting tskip = 2a timeslices at
both ends1,

SE,M(Q2; tsep) =

tsep�tskipX

t=tskip

G
e↵

E,M
(Q2; tsep, t). (16)

In the asymptotic limit with only ground-state contributions, the slope of this quantity as a
function of tsep is given by the ground-state form factor [40, 47],

SE,M(Q2; tsep)
tsep�0

����! CE,M(Q2) +
1

a
(tsep + a� 2tskip)GE,M(Q2) + . . . , (17)

where the ellipsis denotes exponentially suppressed corrections from excited states.
We perform several fits to eq. (17) for different starting values t

min

sep
of the source-sink

separation. Instead of choosing a single value of tmin

sep
on each ensemble, we perform a weighted

average over t
min

sep
, where the weights are given by a smooth window function [62, 63],

Ĝ =

P
i
wiGiP
i
wi

, wi = tanh
ti � t

low

w

�tw
� tanh

ti � t
up

w

�tw
. (18)

Here, ti is the value of tmin

sep
in the i-th fit, and we choose t

low

w
= 6.22

p
t0 ⇡ 0.9 fm, tup

w
=

7.61
p
t0 ⇡ 1.1 fm, and �tw = 0.553

p
t0 ⇡ 0.08 fm. Note that the window has been shifted

to larger values of tmin

sep
by 0.1 fm compared to the one originally used in Refs. [62, 63]. The

reason for this is that our data for the electromagnetic form factors are statistically more
precise than those for the axial form factor in Ref. [62] or the sigma term in Ref. [63]. Hence,
we can resolve excited-state effects for larger values of tmin

sep
, so that the plateau region is

expected to start later. Accordingly, we have observed that the window using larger t
up,low

w

better captures the plateau on the majority of our ensembles. Thus, we have opted for
the more conservative choice, which also yields a slightly larger error. The two choices are
compared in fig. 9 in appendix B.

We average over all available values of tmin

sep
, subject to the constraint that at least three

values of tsep are contained in the underlying fit to eq. (16). It should be stressed that the only
quantity that is effectively restricted by this method is the minimal source-sink separation;
all fits go up to the largest tsep we have computed. Essentially, the window average merely
serves as a smoothing of the lower end of the fit interval.

This strategy is illustrated in fig. 3 for the isoscalar combination at the first non-vanishing
momentum on the ensembles D450 and E300. One can see that the window averages agree
within their errors with what one might identify as plateaux in the blue points. This being
valid to a similar degree for all other ensembles, flavor combinations, and momenta employed
in the analysis, we conclude that the window method reliably identifies the asymptotic value of

1 We justify this choice in appendix B.
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the effective form factors. Moreover, it reduces the human bias compared to manually picking
one particular value for t

min

sep
on each ensemble, since we use the same window parameters

in units of t0 on all ensembles. It is important to note that even if a plateau appears to be
reached, this does not guarantee ground-state dominance. The situation is aggravated by the
fact that in general, relatively few values of tmin

sep
are available, and correlated fluctuations in

any direction can easily be mistaken for a plateau. This underlines once more the necessity
of an automated strategy such as the window average which can readily be applied to all
ensembles and momenta. The size of the gray error bands in fig. 3 furthermore shows that
our window average yields, in contrast to error-weighted procedures, an error estimate which
is comparable to the errors of the individual points entering the average. Thus, we are
convinced that our error estimates are conservative enough to exclude any systematic bias in
the identification of ground-state form factors.

Figure 3. Isoscalar electromagnetic form factors at the first non-vanishing momentum on ensembles
D450 (upper panel) and E300 (lower panel) as a function of the minimal source-sink separation
entering the fits to eq. (16). Each blue point represents a single fit starting at the source-sink
separation given on the horizontal axis. The associated weights derived from eq. (18) are shown by
the red diamonds, with the gray lines and bands depicting the averaged results.

In order to ensure that ground-state dominance is reached by the method described above,
we have explored additional variations of it as well as a complementary approach based
on two-state fits to the effective form factors. Details on these crosschecks can be found
in appendix B. The form factor values obtained by our preferred method are collected in
appendix D for all ensembles and all momenta which we have considered.

10

2

� a [fm] N3
s ⇥Nt m⇡ [MeV] mK [MeV] mN [MeV] mKL Ncfg Nmeas

H105 3.40 0.08636 323
⇥ 96 278 460 1037 6.44 1020 391680

N401⇤ 3.46 0.07634 483
⇥ 128 289 462 1042 8.59 701 314048

N203 3.55 0.06426 483
⇥ 128 345 441 1111 6.90 772 345856

N200 3.55 0.06426 483
⇥ 128 283 463 1061 7.23 856 383488

D200 3.55 0.06426 643
⇥ 128 200 480 989 10.01 278 124544

N302⇤ 3.70 0.04981 483
⇥ 128 354 458 1120 5.55 1177 527296

TABLE I. Gauge ensembles used in this Letter, where Ncfg denotes the number of gauge configurations and the last column
corresponds to the total number of measurements for the ratio in Eq. (7). The values for the lattice spacing and pion and
kaon masses are taken from [14], while the nucleon masses are estimated using the two-point function in this work. For the
ensembles marked with an asterisk, the pion and kaon masses have been obtained from dedicated runs in connection with [15].

ceeds via the standard nucleon interpolator

N↵(x) = ✏abc

⇣
ua

�(x) (C�5)�� db
�(x)

⌘
uc

↵(x), (2)

and �0 = 1
2 (1 + �0), which ensures the correct parity of

the nucleon at zero momentum. Wuppertal smearing [16]
is applied at the source and the sink for all quark prop-
agators. We increase the statistics of the nucleon two-
point function using the truncated solver method [17, 18].
Traces over the strange quark loops can be stochastically
estimated using four-dimensional noise vectors ⌘. For a
local current

V s = s̄(x)�s(x), (3)

the trace over the strange quark loop then reads

hL
s
�(q, z0)iG = �

X

z2⇤

eiq·z ⌦
tr [Ss(z; z) �]

↵
G

= �

X

z2⇤

eiq·z ⌦
⌘†(z) �  (z)

↵
G,⌘

,
(4)

with

Ds = ⌘, (5)

where Ds denotes the Dirac operator for the strange
quark, and the sum is taken over the spatial volume ⇤.

u
x y

d

u

z
s

~n2
p02

����!
~n2

p6
���!

# ~n2
q  6

FIG. 1. Disconnected three-point function with a vector cur-
rent inserted in the strange loop (red dot). For the range of
momenta at the source and current insertion, we use ~n2

p/q  6,

while at the sink, we restrict the range to ~n2
p0  2 (~n2

p/q/p0 de-
note the units of squared lattice momenta).

Instead of a local current we consider the O(a)-improved
conserved vector current in this Letter

Vµ(z)Imp. =
1

2

⇣
s̄(z + µ̂a)(1 + �µ)Uµ(z)†s(z)

� s̄(z)(1 � �µ)Uµ(z)s(z + µ̂a)
⌘

+ acV @⌫ (s̄(z)�µ⌫s(z)) ,

(6)

with the improvement coe�cient cV taken from [19]. Fur-
thermore, we use hierarchical probing [8], which replaces
the sequence of noise vectors by one noise vector mul-
tiplied with a sequence of Hadamard vectors. We find
that the statistical error of the strange quark loop is re-
duced by a factor of 5 when using 512 Hadamard vectors,
compared to the estimate based on 512 U(1) noise vec-
tors, for nearly the same cost. The quark loops in this
study were obtained by averaging two independent noise
vectors with 512 Hadamard vectors each. To extract the
strange contribution to the electromagnetic form factors
of the nucleon, we consider the ratios (see [20–22])

Rs
Vµ

(z0, q; y0,p
0; �⌫) =

Cs
3,Vµ

(q, z0;p0, y0; �⌫)

C2(p0, y0)

⇥

s
C2(p0, y0)C2(p0, z0)C2(p0-q, y0-z0)

C2(p0-q, y0)C2(p0-q, z0)C2(p0, y0-z0)
. (7)

Performing the spectral decomposition and only taking
the ground state into account, these ratios read
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FF of the Nucleon

Figure 4. Isovector and isoscalar electromagnetic form factors on the ensembles E250 (upper panel)
and E300 (lower panel) as a function of Q2. Our original lattice data as obtained from the summation
method using the window average are represented by the faint blue points, while the opaque ones
have been corrected for the continuum and infinite-volume limit. The orange curves and bands
depict direct fits with M⇡,cut = 0.23 GeV and Q2

cut = 0.6 GeV
2, evaluated at the pion mass of the

respective ensemble, zero lattice spacing, and infinite volume.
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• Simultaneous fit to all ensembles using BChPT
ammended with terms for continuum and
finite volume

• Perform variations of the fits, e.g. cuts in 
momentum transfer, pion mass, etc.

• Calculate radii and magnetic moment

Figure 6. Cumulative distribution function of the electromagnetic radii and the magnetic moment of
the proton for all fitted models. The green points depict the central values and errors of the individual
fit results. The thick black line shows the weighted CDF according to eq. (35). For comparison, we
also include a CDF based on the central values only, i.e., P x

(y) =
P

NM
i=1

wBAIC

i
⇥(y � xi), which is

displayed by the light blue line. The dashed-dotted and dashed lines indicate the median and the
central 68 % quantiles, respectively. The gray bands, on the other hand, depict the symmetrized
errors quoted in eqs. (42) to (44).

experiment. Furthermore, our results reproduce within their errors the experimental values
of the magnetic moments both of the proton and of the neutron [91].

Our updated radii and magnetic moment in the isovector channel [cf. eqs. (36) to (38)]
agree well with our previously published results [47], with similar errors on the electric radius
and the magnetic moment, and an improved error on the magnetic radius.

In fig. 8, we compare our results for the proton and neutron [cf. eqs. (42) to (47)] to
recent lattice determinations and to the experimental values. We remark that the only other
complete lattice study including disconnected contributions is Ref. [45], which, however, does
not perform a continuum and infinite-volume extrapolation. Our estimates for the electric
radii of the proton and neutron are larger in magnitude than the results of Refs. [44–46],
while Ref. [38] quotes an even larger central value for

p
hr2

E
ip. We stress that any difference

between our estimate and previous lattice calculations is not related to our preference for
direct fits to the form factors, as opposed to the more traditional analysis via the z-expansion.
In fact, the z-expansion approach yields similar values for our data. Furthermore, we obtain
results for the magnetic moments of the proton and neutron, as well as for

p
hr2

M
in, which

are considerably larger in magnitude than that of Refs. [37, 45], while being compatible with

21

Here, N(p, s) denotes a nucleon state with three-momentum p and spin s, u
s(p) the

corresponding Dirac spinor, and qµ = p
0
µ
� pµ the four-momentum transfer. The quantities

V
µ

f
(q) are defined by

V
µ

f
(q) = �

µ
F

f

1
(Q2) + i

�
µ⌫
q⌫

2mN

F
f

2
(Q2), (3)

where mN is the nucleon mass, and Q
2 = �q

2
> 0 in the spacelike region. Furthermore, we

have introduced the Dirac and Pauli form factors F1(Q2) and F2(Q2), respectively, which are
connected to the electric and magnetic Sachs form factors GE(Q2) and GM(Q2) via

GE(Q
2) = F1(Q

2)�
Q

2

4m2

N

F2(Q
2), (4)

GM(Q2) = F1(Q
2) + F2(Q

2). (5)

The electric form factor at zero momentum transfer yields the nucleon’s electric charge, i.e.,
G

p

E
(0) = 1 and G

n

E
(0) = 0, whereas the magnetic form factor at zero momentum transfer is

identified with the magnetic moment, GM(0) = µM . The corresponding radii are given by
the derivative of the form factors at zero momentum transfer,

hr
2
i = �

6

G(0)

@G(Q2)

@Q2

����
Q2=0

. (6)

The only exception to this definition is the electric radius of the neutron, where the normal-
ization factor is omitted,

hr
2

E
i
n = �6

@G
n

E
(Q2)

@Q2

����
Q2=0

. (7)

For our lattice determination of these quantities, we use the CLS ensembles [49] which
have been generated with 2 + 1 flavors of non-perturbatively O(a)-improved Wilson fermions
[51, 52] and a tree-level improved Lüscher-Weisz gauge action [53]. Only ensembles following
the chiral trajectory characterized by trMq = 2ml +ms = const. are employed. In order to
prevent topological freezing [54], the fields obey open boundary conditions (oBC) in time
[55, 56], with the exception of the ensembles E250, D450, and N451, which use periodic
boundary conditions (pBC) in time. Table I displays the set of ensembles entering the
analysis: they cover four lattice spacings in the range from 0.050 fm to 0.086 fm, and several
different pion masses, including one slightly below the physical value (E250). We note that
data is available on additional (heavier) ensembles, but only the ones shown in table I are
included in this analysis.

In order to compensate for the twisted mass introduced for the light quarks [56, 57] and
the rational approximation used for the dynamical strange quark [58, 59] during the gauge
field generation, all observables need to be reweighted. We employ the reweighting factors
computed in Ref. [60] with exact low-mode deflation on all ensembles except E300, where
the standard stochastic CLS run [49] is used. In all cases, we correct for the treatment of the
strange-quark determinant following the procedure outlined in Ref. [61].

We measure the two- and three-point functions of the nucleon,

hC2(p
0; tsep)i =

X

y

e
�ip0·y�p

�↵

⌦
N↵(y, tsep)N̄�(0)

↵
, (8)

hC3,O(p
0
,q; tsep, t)i =

X

y,z

e
iq·z

e
�ip0·y�p

�↵

⌦
N↵(y, tsep)O(z, t)N̄�(0)

↵
. (9)

4

T. Bauer, J. C. Bernauer, and S. Scherer, 
Phys. Rev. C86, 065206 (2012), 
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Figure 7. Electromagnetic form factors of the proton and neutron at the physical point as a function
of Q2. The orange curves and bands correspond to our final results with their full uncertainties
obtained as model averages over the different direct fits. The light orange bands indicate the
statistical uncertainties only. For the proton, the black diamonds represent the experimental ep-
scattering data from A1 [3] obtained using Rosenbluth separation, and the green diamonds the
corresponding data from PRad [13]. For the neutron, the black diamonds show the experimental
world data collected in Ref. [109]. The experimental values of the magnetic moments [91] are
depicted by red crosses.

that of Ref. [44]. This improves the agreement with the experimental values [91]. In the
case of the magnetic moments, the latter are very precisely known and are reproduced by
our estimates within our quoted uncertainties. For

p
hr2

M
in, we observe nevertheless a 3.2 �

tension between our result and the PDG value (after combining all errors in quadrature).
On the level of the form factor G

n

M
evaluated at any particular value of Q2, however, the

discrepancy is much smaller, as can be seen from fig. 7 (bottom right). For
p
hr2

M
ip, our

result is only about 1.2 combined standard deviations larger than that of Ref. [45]. We note
that our results for the isoscalar radii [cf. eqs. (39) and (40)] are larger than those of Ref.
[45] by a greater amount, while µ

u+d�2s

M
compares well between our study and Ref. [45].

For the electric and magnetic radii of the proton, the experimental situation is much
less clear than for the magnetic moment. As is the case for most of the other recent lattice
calculations [44–46], our result for

p
hr2

E
ip is much closer to the PDG value [91], which

is completely dominated by muonic hydrogen spectroscopy, than to the A1 ep-scattering
result [3]: While we only observe a very mild 1.5 � tension with the former, we disagree at
the 3.7 � level with the latter (after combining all errors in quadrature). We note that we
achieve an even better 0.6� agreement with the recent ep-scattering experiment by PRad
[13], which has also yielded a small electric radius of the proton. For

p
hr2

M
ip, on the

22
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Figure 8. Comparison of our best estimates (red downward-pointing triangle) for the electro-
magnetic radii and the magnetic moments of the proton and neutron with other lattice calcula-
tions, i.e., Mainz21 [47] (blue circle), ETMC20 [46] (green upward-pointing triangle), ETMC19
[45] (orange leftward-pointing triangle), PACS19 [44] (yellow rightward-pointing triangle), and
CSSM/QCDSF/UKQCD14 [37, 38] (pink hexagon). Only studies with filled markers, i.e., ETMC19
and this work, include disconnected contributions and hence represent a full lattice calculation. The
Mainz21 values for the proton have been computed by combining their isovector results with the
PDG values for the neutron [91]. We also show this estimate using our updated isovector results
from this work (blue downward-pointing triangle). The experimental values for the neutron and for
µp

M
are taken from PDG [91] (black cross). The two data points for

q
hr2

E
ip represent the values

from PDG [91] (cross) and Mainz/A1 [3] (square), respectively. The two data points for
q
hr2

M
ip,

on the other hand, depict the reanalysis of Ref. [27] either using the world data excluding that of
Ref. [3] (diamond) or using only that of Ref. [3] (square). For ease of comparison, the red bands
show our final results with the full uncertainty, with the light bands indicating the statistical errors.

other hand, our estimate is well compatible with the value inferred from the A1 experiment
by the analyses [3, 27] and exhibits a sizable 2.8 � tension with the other collected world
data [27]. As can be seen from fig. 7 (top right), the good agreement with A1 is not only
observed in the magnetic radius, but also for the Q

2-dependence of the magnetic form
factor over the whole range of Q2 under study. We note that the dispersive analysis of the
Mainz/A1 and PRad data in Ref. [17] has yielded a significantly larger magnetic radius
[
p

hr2
M
ip = (0.847± 0.004 (stat)± 0.004 (syst)) fm] than the z-expansion-based analysis of

the Mainz/A1 data in Ref. [27]. The former value also exhibits a 3.4 � tension with our
result, which is partly due to its substantially smaller error compared to Ref. [27]. Possible
reasons for this discrepancy include unaccounted-for isospin-breaking effects.

Our statistical and systematic error estimates for the electric radii and magnetic moments
are commensurate with the other lattice studies, while being substantially smaller for the
magnetic radii. We remark that the missing data point at Q2 = 0 complicates the extraction
of the magnetic low-Q2 observables in most recent lattice determinations, especially for
z-expansion fits on individual ensembles. The direct approach has, additionally to combining
information from several ensembles and from GE and GM , less freedom and by itself allows
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• Electric radius and magnetic moment consistent with experiment
• Some tension for magnetic radius
• Magnetic properties accessible in spectroscopy measurement of HFS

     Zemachradius

I. INTRODUCTION

The most accurate determination of the proton’s electric (charge) radius is derived from
the measurement of the Lamb shift in muonic hydrogen spectroscopy [1, 2]. This result
exhibits a large tension with some ep-scattering experiments [3, 4], which is known as the
“proton radius puzzle”.

To infer the electric radius from the observed Lamb shift, higher-order nuclear structure-
contributions need to be subtracted. The leading contribution is the two-photon exchange
[5], the dominant, elastic part of which depends on the third Zemach moment of the proton
[6–8],

hr3Ei
p
(2) =

48

⇡

Z 1

0

dQ

Q4

"
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E(Q
2))2 � (Gp

E(0))
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(Gp

E(Q
2))2 � 1 +

1
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hr2Ei

pQ2

�
. (1)

The associated radius is known as the Friar radius of the proton,

rpF = 3

q
hr3Ei

p
(2). (2)

A very large Friar radius was once suggested [9] as a possible solution to the proton radius
puzzle. For this purpose, however, the Friar radius would need to be so large that the
expansion in radii would break down [10, 11].

While the traditional proton radius puzzle awaits its final resolution, the goal of reaching
a consistent picture of all the fundamental electromagnetic properties of the nucleon has
attained a new prominence. Historically, data-driven dispersive approaches had found values
of the electric radii of the proton consistent with the lower value of muonic-atom spectroscopy
measurements [12, 13]. For the magnetic properties, a tension between dispersive approaches
[14] and z-expansion results [15] appeared, i.e., a separate puzzle beclouds the magnetic
properties of the proton. Underlining the importance of the magnetic properties of the proton,
several experiments are under way to measure these from spectroscopy on hydrogen [16–19].
This can be achieved by measuring, in addition to the Lamb shift, the hyperfine splitting
(HFS) in either electronic or muonic hydrogen, which is caused by the magnetic spin-spin
interaction between the nucleus and the orbiting lepton. The influence of the electromagnetic
structure of the nucleus on the HFS is particularly pronounced for the S-states, since the
S-state wavefunction has a large overlap with the nucleus.

The leading-order proton-structure contribution to the S-state HFS of hydrogen depends
on the Zemach radius of the proton [7, 20],

rpZ = �
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⇡
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dQ
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Gp

E(Q
2)Gp

M(Q2)

µp
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� 1

�
. (3)

Having a first-principles prediction of the Zemach radius prior to the experimental measure-
ment of the ground-state (1S) HFS in muonic hydrogen with ppm precision [16–19], from
which the Zemach radius could be extracted with sub-percent uncertainty, is highly desirable.

2
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these correlations into account when adjusting the extrapolation model would thus not be
meaningful, and also technically challenging because the resulting covariance matrices are
extremely badly conditioned. To describe the Q2-dependence, we use the model-independent
z-expansion [42],

Gp,n
E (Q2) =

mX

k=0

ap,nk z(Q2)k, (6)

Gp,n
M (Q2) =

mX

k=0

bp,nk z(Q2)k, (7)

with

z(Q2) =

p
⌧cut +Q2 �

p
⌧cut � ⌧0p

⌧cut +Q2 +
p
⌧cut � ⌧0

, (8)

where we employ ⌧0 = 0 and ⌧cut = 4M2
⇡,phys. We truncate the z-expansion beyond m = 9,

and incorporate the four sum rules from Ref. [43] for each form factor, which ensure the
correct asymptotic behavior of the latter for large Q2. The normalization of the electric form
factor is enforced by fixing ap0 = 1 and an0 = 0, respectively. For the determination of the
Zemach radius, we fit GE and GM simultaneously, similar to the crosscheck of our analysis
in Ref. [23], so that we have eleven independent fit parameters altogether. For the third
Zemach moment, on the other hand, only the electric form factor is required, so that we fit
only GE and have five independent fit parameters here. The extrapolation fits are performed
for the proton and neutron independently. Using more than twenty data points for each
form factor or a higher degree of the z-expansion does not increase the overlap between the
original B�PT fit and the extrapolation any further.

For the numerical integration of eqs. (1) and (3), we smoothly replace the B�PT
parametrization of the form factors by the z-expansion-based extrapolation in a narrow
window around Q2

cut. Concretely, we use the following estimate for the form factor term,

F (Q2) =
1

2


1� tanh

✓
Q2

�Q2
cut

�Q2
w

◆�
F �(Q2) +

1

2


1 + tanh

✓
Q2

�Q2
cut

�Q2
w

◆�
F z(Q2), (9)

where F (Q2) ⌘ GE(Q2)GM (Q2)/µM for the Zemach radius and F (Q2) ⌘ G2
E(Q

2) for the third
Zemach moment, respectively. In eq. (9), F �(Q2) represents our fit to B�PT, while F z(Q2)
denotes the z-expansion parametrization of the form factors. For the width of the window in
which we switch between the two parametrizations, we choose �Q2

w = 0.0537t�1
0 ⇡ 0.1 GeV2.

We remark that for a consistent calculation of the third Zemach moment, the replacement
according to eq. (9) has to be applied to all terms in eq. (1), i.e., also to the value of hr2Ei. The
cancellation between the different terms of eq. (1) at small Q2 does not occur at the required
numerical accuracy on all our bootstrap samples. To facilitate the numerical integration,
we therefore regulate the small-Q2 contribution to the integral for the proton by replacing
t0Q2

! t0Q2 +1⇥ 10�7 in the denominator, which changes the result for hr3Ei
p
(2) by less than

10 % of its statistical error.
The two parametrizations and their weighted average according to eq. (9) are illustrated

in fig. 1 for the case of the Zemach radius of the proton. While the B�PT formula is clearly
not reliable for Q2 & 1.7 GeV2

⇡ 0.9t�1
0 , the z-expansion behaves well for arbitrarily large

momenta, which is due to the sum rules [43] we have included. In the region where we

5

adjust the z-expansion to the B�PT parametrization (0 < Q2
 0.6 GeV2 for the case

shown in fig. 1), however, the two curves overlap so closely that they are indistinguishable
by eye. The blue curve, which is the one we use for the integration, smoothly switches
from the orange (B�PT) curve to the green (z-expansion) one in a tight window around
Q2

cut = 0.6 GeV2 = 0.322t�1
0 .

Figure 1. Product of the electric and normalized magnetic form factors of the proton at the physical
point evaluated with different parametrizations. The orange curve shows one of the B�PT fits to our
lattice data with Q2

cut = 0.6 GeV2
⇡ 0.322t�1

0 , the green curve the z-expansion-based extrapolation,
and the blue curve the weighted average of the two according to eq. (9).

Replacing the B�PT parametrization smoothly with a constant zero instead of the z-
expansion-based extrapolation [i.e., setting F z(Q2) ⌘ 0 in eq. (9)] allows one to estimate
the contribution of the form factors at Q2 > Q2

cut to the resulting Zemach radius and third
Zemach moment, respectively. For Q2

cut = 0.6 GeV2 (our largest, i.e., least stringent, value
for the cut), we find that the relative difference of the thus obtained value for rpZ to the actual
result using the corresponding variation of the B�PT fits is less than 0.9 %. In other words,
the form factor term at Q2 > 0.6 GeV2 contributes less than 0.9 % to the Zemach radius
of the proton. For the third Zemach moment, the denominator in the integrand suppresses
the large-Q2 contribution to the integral even more strongly than for the Zemach radius.
Accordingly, we find a corresponding relative contribution of less than 0.3 % to the third
Zemach moment of the proton.

Due to this smallness of the contribution of the extrapolated form factors, the precise
form of the chosen model for the extrapolation only has a marginal influence on the resulting
values for the Zemach radius and third Zemach moment. For example, if we replace the
z-expansion by a dipole ansatz (which also fulfills the constraints from Ref. [41]), we find
that the Zemach radius of the proton derived from any of our fit variations changes by at
most 20 % of the entire systematic error quoted in eq. (10) below. Thus, adding the variation
in rpZ due to the extrapolation model quadratically to the systematic uncertainty in eq. (10)
would not change the latter significantly.

Finally, we note that the major advantage of our approach based on the B�PT fits over
an integration of the form factors on each ensemble is that the Zemach and Friar radii can
be computed directly at the physical point, so that an extrapolation of results for the radii
to the physical point, which would entail further significant systematic uncertainties, is not
required.

6

V. MODEL AVERAGE AND FINAL RESULT

As in Refs. [23, 24], we do not have a strong a priori preference for one specific setup of
the B�PT fits. Thus, we determine our final results as well as the statistical and systematic
error estimates from an average over the different fit models and kinematic cuts, using weights
derived from the Akaike Information Criterion (AIC) [44–49]. All values for the Zemach radii
and third Zemach moments entering the average are listed in the appendix, together with
the associated weights. More details on our procedure can be found in section V of Ref. [23].
As our final results, we obtain

rpZ = (1.013± 0.010 (stat)± 0.012 (syst)) fm, (10)
hr3Ei

p
(2) = (2.200± 0.060 (stat)± 0.071 (syst)) fm3, (11)
rnZ = (�0.0411± 0.0056 (stat)± 0.0040 (syst)) fm, (12)

hr3Ei
n
(2) = (0.0078± 0.0020 (syst)± 0.0012 (syst)) fm3. (13)

This corresponds to Friar radii of rpF = (1.301 ± 0.012 (stat) ± 0.014 (syst)) fm and rnF =
(0.198± 0.017 (stat)± 0.010 (syst)) fm, respectively.

In fig. 2, our numbers for the proton are compared to other determinations based on
experimental data. There are three main types of experiments which have been employed
in the literature to compute the Zemach radius of the proton: muonic hydrogen HFS [2],
electronic hydrogen HFS [50], and ep scattering. In order to extract the proton Zemach radius
from an HFS measurement, input on the proton-polarizability effect is required. This can be
either taken from B�PT [21] or evaluated in a data-driven fashion, i.e., using information on
the spin structure functions [51–53] (as was done in Refs. [2, 25]). The form factors measured
in ep-scattering experiments, on the other hand, can be analyzed with many different fit
models, e.g., by employing a (modified) power series [10], a z-expansion [15], or dispersion
theory [14].

Figure 2. Comparison of our best estimates for the Zemach radius and third Zemach moment of
the proton (red downward-pointing triangles) with determinations based on experimental data, i.e.,
muonic hydrogen HFS [2, 21] (crosses), electronic hydrogen HFS [21, 25] (squares), and ep scattering
[10, 14, 15] (circles).

While our result for rpZ agrees within one combined standard deviation with the extractions
based on B�PT [21] and the z-expansion-based analysis of world ep-scattering data [15], and

7
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I. INTRODUCTION

The most accurate determination of the proton’s electric (charge) radius is derived from
the measurement of the Lamb shift in muonic hydrogen spectroscopy [1, 2]. This result
exhibits a large tension with some ep-scattering experiments [3, 4], which is known as the
“proton radius puzzle”.

To infer the electric radius from the observed Lamb shift, higher-order nuclear structure-
contributions need to be subtracted. The leading contribution is the two-photon exchange
[5], the dominant, elastic part of which depends on the third Zemach moment of the proton
[6–8],
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The associated radius is known as the Friar radius of the proton,

rpF = 3

q
hr3Ei

p
(2). (2)

A very large Friar radius was once suggested [9] as a possible solution to the proton radius
puzzle. For this purpose, however, the Friar radius would need to be so large that the
expansion in radii would break down [10, 11].

While the traditional proton radius puzzle awaits its final resolution, the goal of reaching
a consistent picture of all the fundamental electromagnetic properties of the nucleon has
attained a new prominence. Historically, data-driven dispersive approaches had found values
of the electric radii of the proton consistent with the lower value of muonic-atom spectroscopy
measurements [12, 13]. For the magnetic properties, a tension between dispersive approaches
[14] and z-expansion results [15] appeared, i.e., a separate puzzle beclouds the magnetic
properties of the proton. Underlining the importance of the magnetic properties of the proton,
several experiments are under way to measure these from spectroscopy on hydrogen [16–19].
This can be achieved by measuring, in addition to the Lamb shift, the hyperfine splitting
(HFS) in either electronic or muonic hydrogen, which is caused by the magnetic spin-spin
interaction between the nucleus and the orbiting lepton. The influence of the electromagnetic
structure of the nucleus on the HFS is particularly pronounced for the S-states, since the
S-state wavefunction has a large overlap with the nucleus.

The leading-order proton-structure contribution to the S-state HFS of hydrogen depends
on the Zemach radius of the proton [7, 20],
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Having a first-principles prediction of the Zemach radius prior to the experimental measure-
ment of the ground-state (1S) HFS in muonic hydrogen with ppm precision [16–19], from
which the Zemach radius could be extracted with sub-percent uncertainty, is highly desirable.

2

I. INTRODUCTION

The most accurate determination of the proton’s electric (charge) radius is derived from
the measurement of the Lamb shift in muonic hydrogen spectroscopy [1, 2]. This result
exhibits a large tension with some ep-scattering experiments [3, 4], which is known as the
“proton radius puzzle”.

To infer the electric radius from the observed Lamb shift, higher-order nuclear structure-
contributions need to be subtracted. The leading contribution is the two-photon exchange
[5], the dominant, elastic part of which depends on the third Zemach moment of the proton
[6–8],
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The associated radius is known as the Friar radius of the proton,
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A very large Friar radius was once suggested [9] as a possible solution to the proton radius
puzzle. For this purpose, however, the Friar radius would need to be so large that the
expansion in radii would break down [10, 11].

While the traditional proton radius puzzle awaits its final resolution, the goal of reaching
a consistent picture of all the fundamental electromagnetic properties of the nucleon has
attained a new prominence. Historically, data-driven dispersive approaches had found values
of the electric radii of the proton consistent with the lower value of muonic-atom spectroscopy
measurements [12, 13]. For the magnetic properties, a tension between dispersive approaches
[14] and z-expansion results [15] appeared, i.e., a separate puzzle beclouds the magnetic
properties of the proton. Underlining the importance of the magnetic properties of the proton,
several experiments are under way to measure these from spectroscopy on hydrogen [16–19].
This can be achieved by measuring, in addition to the Lamb shift, the hyperfine splitting
(HFS) in either electronic or muonic hydrogen, which is caused by the magnetic spin-spin
interaction between the nucleus and the orbiting lepton. The influence of the electromagnetic
structure of the nucleus on the HFS is particularly pronounced for the S-states, since the
S-state wavefunction has a large overlap with the nucleus.

The leading-order proton-structure contribution to the S-state HFS of hydrogen depends
on the Zemach radius of the proton [7, 20],
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Having a first-principles prediction of the Zemach radius prior to the experimental measure-
ment of the ground-state (1S) HFS in muonic hydrogen with ppm precision [16–19], from
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