Uncertainty Quantification for Nucleon Form Factors from Lattice QCD Dalibor Djukanovic

Actually, I never made it beyond ONE nucleon ...

UQ - in FF from LQCD

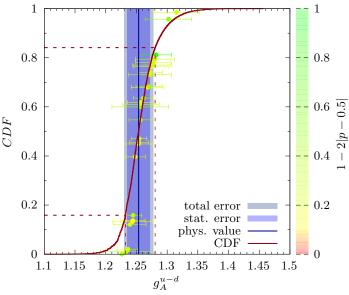
Editors' Suggestion

Improved analysis of isovector nucleon matrix elements with $N_f = 2 + 1$ flavors of $\mathcal{O}(a)$ improved Wilson fermions

Dalibor Djukanovic, Georg von Hippel, Harvey B. Meyer, Konstantin Ottnad, and Hartmut Wittig

Phys. Rev. D 109, 074507 (2024) - Published 16 April 2024

The authors present an improved analysis of a lattice determination of isovector nucleon matrix elements. With additional ensembles they achieve excellent control of all systematic errors and obtain the most precise results to date. Show Abstract +



• Topic of this talk is plots like on the left

Recent results from Mainz (for more details)

HTML

PDF

DD, von Hippel, Meyer, Ottnad, Wittig, "Improved analysis of isovector nucleon matrix elements with Nf=2+1 flavors of O(a)improved Wilson fermions", *Phys.Rev.D* 109 (2024) 7, 074507

DD, von Hippel, Meyer, Ottnad, Salg, Wittig, "Zemach and Friar radii of the proton and neutron from lattice QCD," to appear in PRD

DD, von Hippel, Meyer, Ottnad, Salg, Wittig, "Precision Calculation of the

Electromagnetic Radii of the Proton and Neutron from Lattice QCD",

Phys.Rev.Lett. 132 (2024) 21, 21

DD, von Hippel, Meyer, Ottnad ,Salg, Wittig, "Electromagnetic form factors of the nucleon from Nf=2+1 lattice QCD", *Phys.Rev.D* 109 (2024) 9, 9

Agadjanov, DD, von Hippel, Meyer, Ottnad, Wittig, "Nucleon Sigma Terms with Nf=2+1 Flavors of O(a)-Improved Wilson Fermions",

Phys.Rev.Lett. 131 (2023) 26, 26

26.06.24

DD, von Hippel, Kopoonen, Meyer, Ottnad Wittig, "Isovector axial form factor of the nucleon from lattice QCD", Phys.Rev.D 106 (2022) 7, 074503

UQ - Sources of Errors

"There are known knowns ... But there are also unknown unknowns"

Rumsfeld during a Pentagon news briefing in February 2002

Rumsfeld-Classification	Knowns	Unknowns
Known	ME can be calculated using Lattice - Pathintegral	Statistical Errors, Dealing with Correlations
Unkknown	Systematics – excited states, finite lattice spacing, finite volume	?

UQ may mean one of two things in this talk (keep count tell me later):

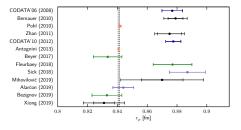
- Uncertainty Quantification
- Un Qualified comment

HIM HELMHOLTZ Helmholtz-Institut Mainz

Impact of Form Factors

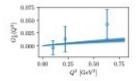
Proton Radius Puzzle





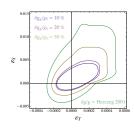
Taken from Bernauer, EPJ Web Conf. 234 (2020)

Precision Tests of SM



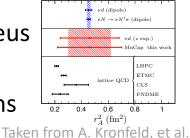
- » Via strangeness $FF \rightarrow Parity$ Violation Experiments
 - Lattice determinations of strange FF very precise

Taken from D.D. et al. Phys.Rev.Lett. 123 (2019) 21, 212001



Taken from T. Bhattacharva et al., Phys. Rev. D85, 054512 (2012)

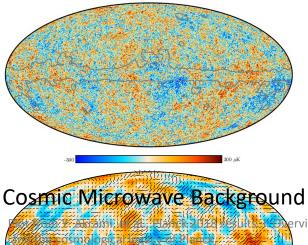
- » Via axial FF \rightarrow Vital input to neutrino-nucleus scattering
 - Lattice competitive to z-exp extractions of experiments Eur. Phys. J. A 55, 196 (2019)

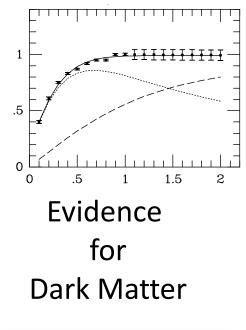


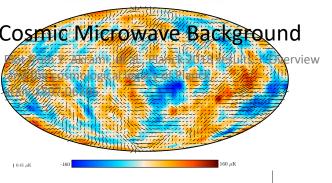
» Via Charges \rightarrow Constraining BSM EFT couplings

UQ - Motivation Dark Matter

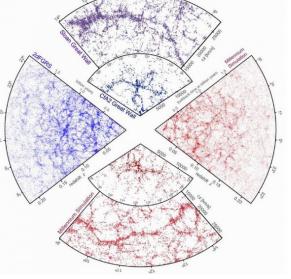
Rotation Curves of Galaxies Plot from *arXiv:2104.11488*







Gravitational Lensing

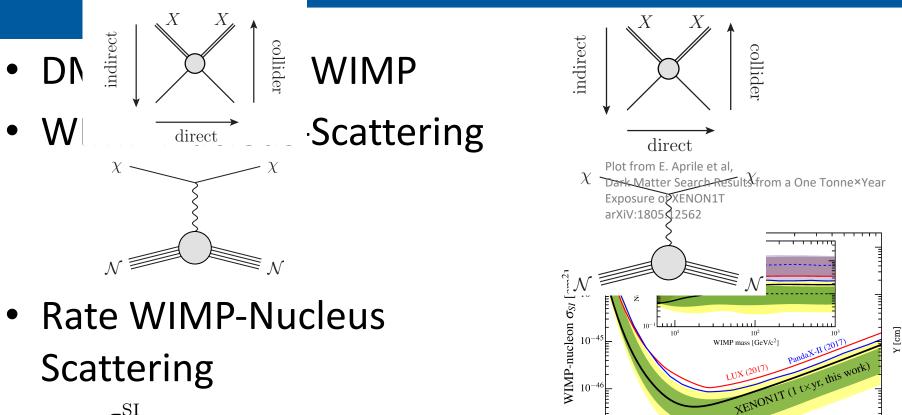


Simulation of Galaxy Structures

Plot from V. Springel, C. S. Frenk, S. D. White, The large-scale structure of the Universe, Nature, 440 (2006) 1137. arXiv:astro-ph/0604561

Credit: NASA/CXC/CfA/M. Markevitch et al.; NASA/STScI; Magel- lan/U.Arizona/D. Clowe et al.; NASA/STScI; ESO WFI

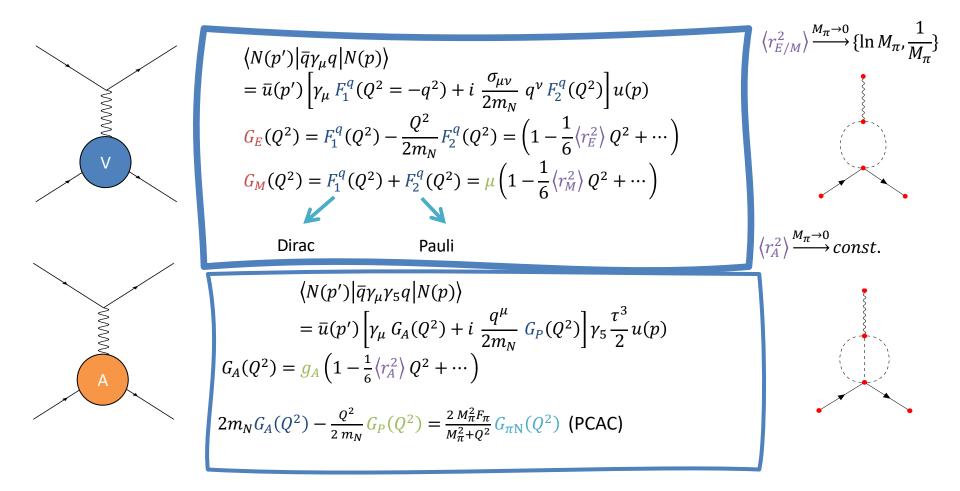
UQ - DM Direct Searches



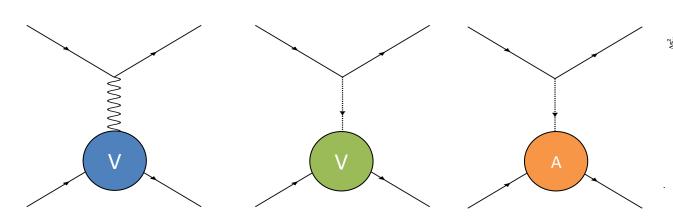
- $R \sim \frac{\sigma^{\rm SI}}{M_{\chi} \mu_N^2} \times (\text{Nuclear Physics}) \times (\text{Astrophysics})$
- $\sigma^{\rm SI}$ depends on Sigma-Term
- Crucial input for interpretation of experiments

WIMP mass [GeV/c²]

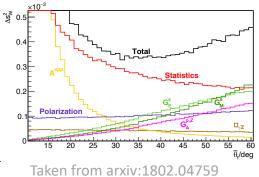
Nucleon Form Factors



Parity Violation



Projected Error Budget for P2:



$$A = \frac{d\sigma_{R} - d\sigma_{L}}{d\sigma_{R} + d\sigma_{L}} = -\frac{G_{F}Q^{2}}{4\sqrt{2}\pi\alpha} \frac{\epsilon \ G_{E}^{\gamma}G_{E}^{Z} + \tau G_{M}^{\gamma}G_{M}^{Z} - (1 - 4\sin^{2}\theta_{W}) \ \epsilon'G_{M}^{\gamma} \ G_{A}}{\epsilon (G_{E}^{\gamma})^{2} + \tau (G_{M}^{\gamma})^{2}}$$
$$\tau = \frac{Q^{2}}{4 \ m_{N}^{2}}, \epsilon = \left(1 + 2(1 + \tau)\tan^{2}\frac{\theta}{2}\right)^{-1}, \epsilon' = \sqrt{\tau (1 + \tau)(1 - \epsilon^{2})}$$
$$G_{E/M}^{Z,p} = (1 - 4\sin^{2}\theta_{W}) \ G_{E/M}^{\gamma,p} - G_{E/M}^{\gamma,n} - G_{E/M}^{s}$$

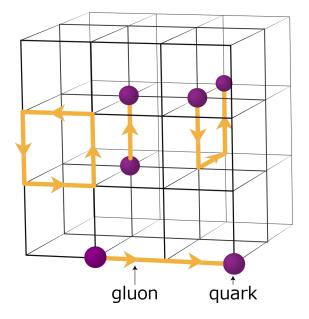
- Sensitive to the Weak Charge Test of SM at low energies
- Need e/m FF (strange)
- Need axial FF (strange) (Decomposition assuming Isospin Symmetry)

Lattice – Oneslide Intro "ab initio" technique: Lattice Q

- Discretize Space Time
- Lattice action
 - $S^{Lat}[U, \Psi, \overline{\Psi}] = S_G^{Lat}[U] + S_F^{Lat}[U, \Psi, \overline{\Psi}]$ $\langle \Omega \rangle = \frac{1}{z} \int \prod_{x,\mu} dU_{\mu}(x) \Omega \prod_{f=u,d,s} \det[D + m_f] e^{-S_G}$
- $\langle \Omega \rangle$ evaluated stochastically (MC-HMC)
- Challenges
 - Need to extrapolate to continuum In lattice spacing In lattice Volume
 - Need to extrapolate to physical quark masses (Chiral EFT)

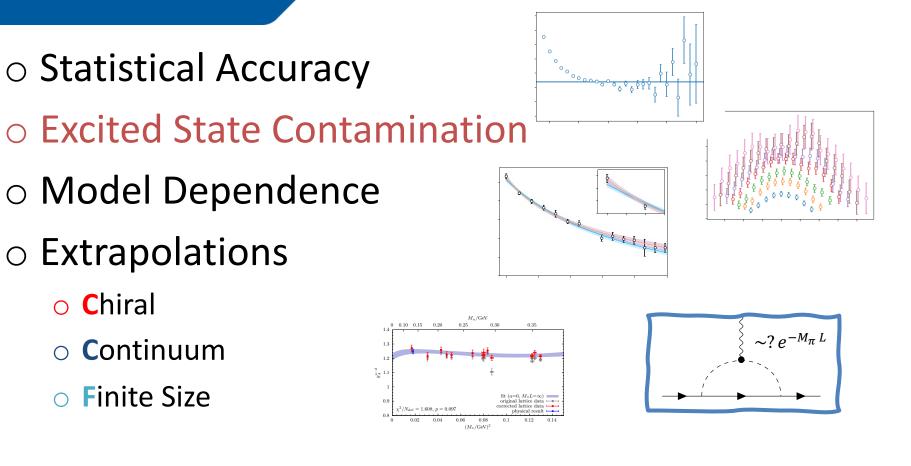
26.06.24

Need to control excited states



Source: JICFuS, Tsukuba

Sources of Uncertainty

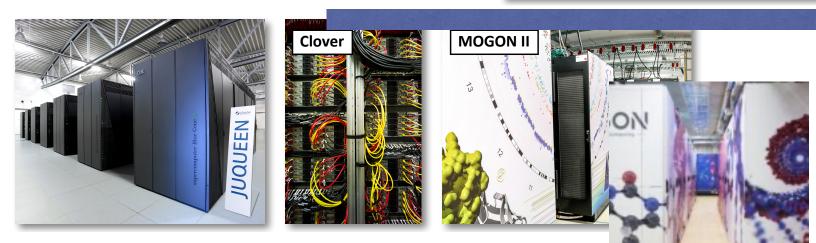


Aside: Can calculate Excited States directly in ChPT even for FF (reliable for large t_{sep})

Taken from O. Bär, H.Colic, Phys. Rev. D 103 (2021) 11, 114514

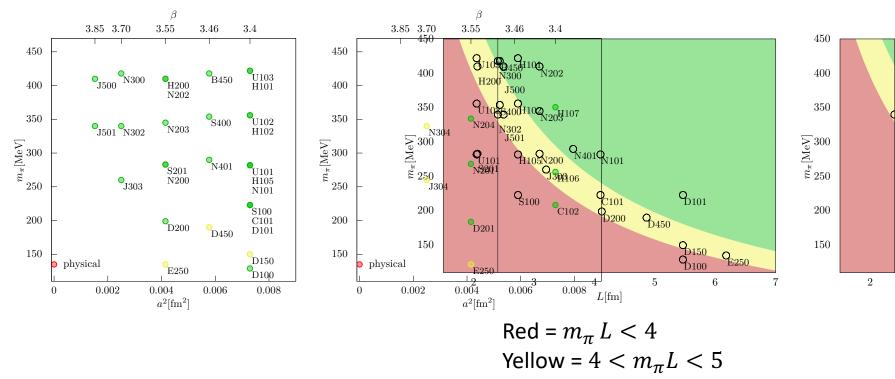
Lattice

- Discretization not unique: Wilson, DWF, HISQ ...
- $N_f = 2 + 1$ (2 degenerate u/d + s)
- Gauge ensembles produced within
 Coordinated Lattice Simulations



Luscher and Schaefer, "Lattice QCD without topology barriers", JHEP 07 (2011) 036 Bruno, DD, Engel et al, "Simulation of QCD with $N_f=f= 2 + 1$ flavors of nonperturbatively improved Wilson fermions", JHEP 02 (2015) 043

Landscape of CLS ensembles



Taken from: D.Mohler et al, EPJ Web of Conferences **175**, 02010 (2018)

26.06.24

Lattice Setup

ID	$a \; [\mathrm{fm}]$	T/a	L/a	$M_{\pi}[\text{MeV}]$	$M_{\pi}L$	$t_{\rm sep}[{ m fm}]$	$N_{\rm cfg}$
H102	\bigcirc	96	32	354	4.96	0.35, 0.43, 0.52, 0.6, 0.69,	2005
H105	0.086	96	32	280	3.93	0.35, 0.45, 0.52, 0.0, 0.09, 0.78, 0.86, 0.95, 1.04, 1.12,	1027
C101	0.080	96	48	225	4.73	$\begin{array}{c} 0.78, 0.80, 0.95, 1.04, 1.12, \\ 1.21, 1.3, 1.38, 1.47 \end{array}$	2000
N101		128	48	281	5.91		1596
S400		128	32	350	4.33		2873
N451	0.076	128	48	286	5.31	0.31, 0.46, 0.61, 0.76, 0.92,	1011
D450	0.070	128	64	216	5.35	1.07, 1.22, 1.37, 1.53	500
D452		128	64	153	3.79		1000
N203		128	48	346	5.41		1543
N200		128	48	281	4.39	$\left[0.26, 0.39, 0.51, 0.64, 0.77, \right]$	1712
D200	0.064	128	64	203	4.22	0.20, 0.39, 0.31, 0.04, 0.77, 0.9, 1.03, 1.16, 1.29, 1.41	2000
E250		192	96	129	4.04	0.9, 1.03, 1.10, 1.29, 1.41	400
S201		128	32	293	3.05		2093
N302		128	48	348	4.22	0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,	2201
J303	0.050	192	64	260	4.19	0.2, 0.3, 0.4, 0.5, 0.0, 0.7, 0.8, 0.9, 1., 1.1, 1.2, 1.3, 1.39	1073
E300		192	64	174	4.21	0.9, 1., 1.1, 1.2, 1.3, 1.39	570

• Enlarged range in *t*_{sep}

 \rightarrow Monitor excited state contribution

- Roughly same statistics at every t_{sep} \rightarrow Number of sources adapted to t_{sep}
- Chiral/Continuum/Finite-Size extrapolation possible

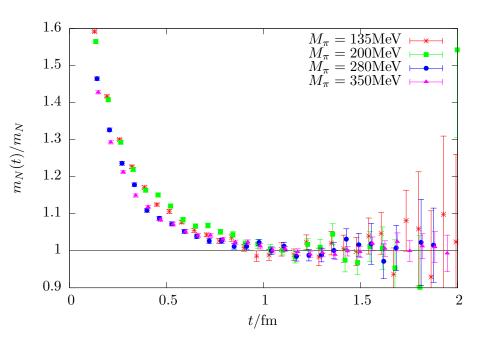
Physics from the Lattice

• Physics contained in correlation functions

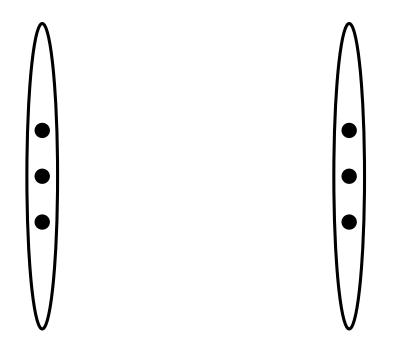
$$\sum e^{i\boldsymbol{p}(\boldsymbol{y}-\boldsymbol{x})} \left\langle \mathcal{O}_N(\boldsymbol{x})\mathcal{O}_N(\boldsymbol{y})^{\dagger} \right\rangle = \sum a_n(\boldsymbol{p}) e^{-E_n(\boldsymbol{p})(\boldsymbol{y}_0-\boldsymbol{x}_0)}$$

$$\xrightarrow{(y_0-x_0)\to\infty} a_0(\boldsymbol{p})e^{-E_0(y_0-x_0)}$$

- \mathcal{O}_N : Nucleon interpolating of
- Ground state dominates for
- Challenges:
 - Signal to noise det
 - Need to control ex



26.06.24

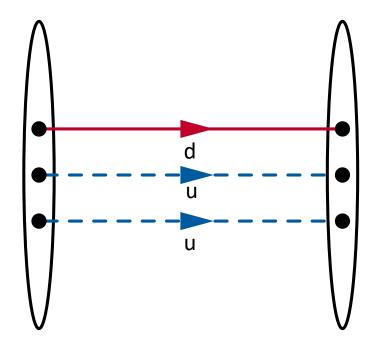


Nucleon interpolating operators

 $\Psi(x) = \epsilon_{abc} u_a^T(x) C \gamma_5 d_b(x) u_c(x)$

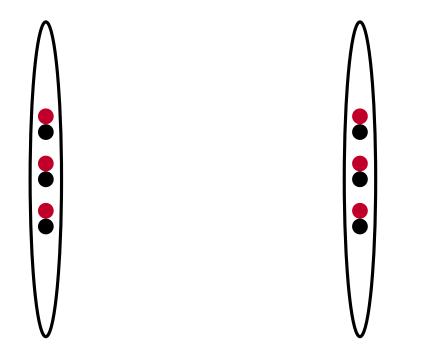
26.06.24

 $\Psi(x) = \epsilon_{abc} u_a^T(x) C \gamma_5 d_b(x) u_c(x)$

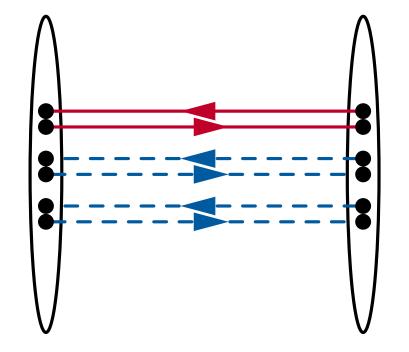


Wick Contraction

$$\langle \Psi(x)\bar{\Psi}(y)\rangle \sim e^{-m_N t}$$



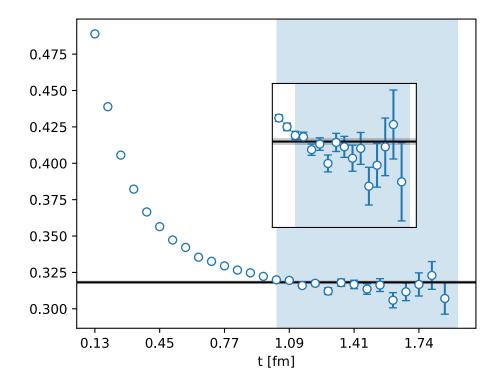
Part of Variance is $\langle \Psi(x)\Psi(x)\bar{\Psi}(y)\bar{\Psi}(y)\rangle$



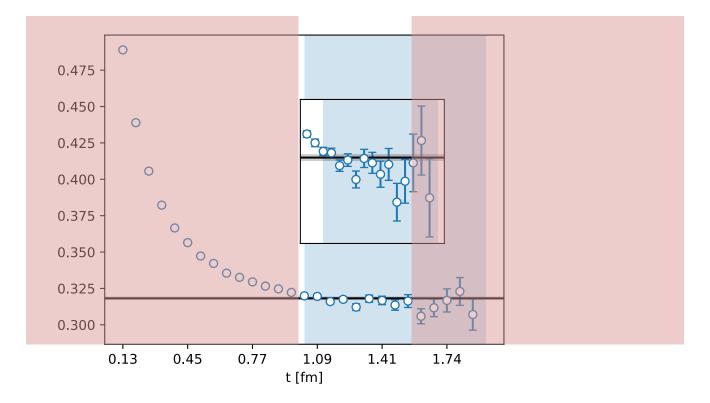
Part of Variance is $\langle \Psi(x)\Psi(x)\bar{\Psi}(y)\bar{\Psi}(y)\rangle$ Noise $\sim e^{-3m_{\pi}t}$ vs Signal $\sim e^{-m_{N}t}$

26.06.24

Noise wins at large times



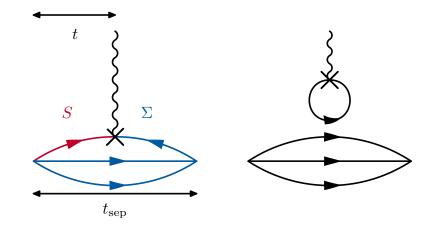
Effective mass



At early times excited states contribute significantly Noise wins

Noise wins at large times

3pt Functions Distances



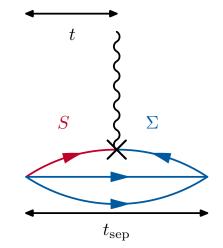
- In 3pt-functions we have two distances between
 - Source and current insertion time
 - Source and current insertion time (or source-sink separation)
- Very hard to make both large at the same time
- Excited-state problem is exacerbated
- Additional problem from Quark Disconnected Diagrams (notoriously hard to evaluate)

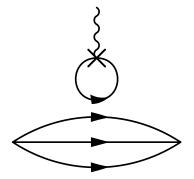
z-Institut Mainz

Direct Determination

- Connected part
 - Sequential Source
 - Zero Momentum at sink $C_{2}(t; \mathbf{p}) = \Gamma_{\alpha\beta} \sum_{\mathbf{x}} e^{-i\mathbf{p}\mathbf{x}} \langle \Psi_{\beta}(\mathbf{x}, t) \overline{\Psi}_{\alpha}(0) \rangle,$ $C_{3}(t, t_{s}; \mathbf{q}) = \Gamma_{\alpha\beta}' \sum_{\mathbf{x}, \mathbf{y}} e^{i\mathbf{q}\mathbf{y}} \langle \Psi_{\beta}(\mathbf{x}, t_{s}) \mathcal{O}_{S}(\mathbf{y}, t) \overline{\Psi}_{\alpha}(0) \rangle,$
- Disconnected part
 - Loops All-to-All: OET+HPE+HP
 - Still Noisy:
 - \rightarrow Additional two-point functions

 $C_3^{\text{disc}}(t, t_s; \mathbf{0}) = \left\langle L_S(\mathbf{0}, z_0) \cdot C_2(\mathbf{p}', y_0, x; \Gamma') \right\rangle - \left\langle L_S(\mathbf{0}, z_0) \right\rangle \cdot \left\langle C_2(\mathbf{p}', y_0, x; \Gamma') \right\rangle$





Form Factors on the Lattice

- Computational Frame Work is now set
- One needs to
 - Plugin the desired current
 - Deal with the result
 - Extract ground-state matrix elements

 $R^{s}_{V_{\mu}}(z_{0}, \boldsymbol{q}; y_{0}, \boldsymbol{p}'; \Gamma_{\nu}) = \frac{C^{s}_{3, V_{\mu}}(\boldsymbol{q}, z_{0}; \boldsymbol{p}', y_{0}; \Gamma_{\nu})}{C_{2}(\boldsymbol{p}', y_{0})}$

 $\times \sqrt{\frac{C_2(\boldsymbol{p}',y_0)C_2(\boldsymbol{p}',z_0)C_2(\boldsymbol{p}'-\boldsymbol{q},y_0-z_0)}{C_2(\boldsymbol{p}'-\boldsymbol{q},y_0)C_2(\boldsymbol{p}'-\boldsymbol{q},z_0)C_2(\boldsymbol{p}',y_0-z_0)}}.$

- Perform CCF extrapolation
- Give best estimate of the error from the above
- Lets start with scalar current

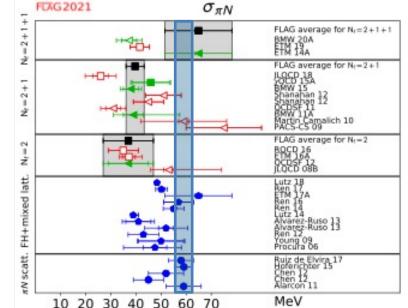
Sigma-Term

- Phenomenologically via Pion-Nucleon-Scattering (Chang-Dashen-Theorem + extrap.)
- Lattice calculation

$$\sigma_{\pi N} = m_l \langle N | \bar{u}u + \bar{d}d | N \rangle = m_l \frac{\partial m_N}{\partial m_l}$$

Directly or via Mass

 Some tension between
 Roy-Steiner based estimate and Lattice



• Usual Ratio (forward limit):

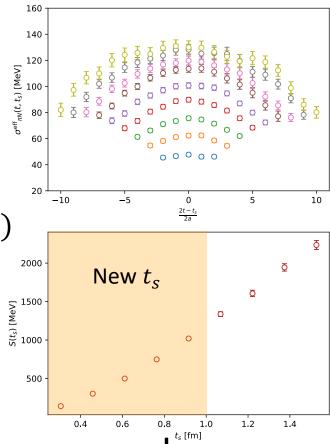
$$R(t,t_s) = \frac{C_3(t,t_s)}{C_2(t_s)} \qquad \text{Re}\,R(t,t_s) \xrightarrow{t,(t_s-t)\gg 0} G_S$$

 $G_{\rm S}^{\rm eff}(t,t_s) = {
m Re}\,R(t,t_s)$

- Excited states $\sim e^{-\Delta t}$, $e^{-\Delta(t_s-t)}$
- Summed correlator:

$$S(t_s) = \sum_{t=t_c}^{t_s - t_c} \sigma_{\pi N}^{\text{eff}}(t, t_s)$$

Excited states parametrically suppressed



• Usual Ratio (forward limit):

$$R(t,t_s) = \frac{C_3(t,t_s)}{C_2(t_s)} \qquad \text{Re}\,R(t,t_s) \xrightarrow{t,(t_s-t)\gg 0} G_S$$

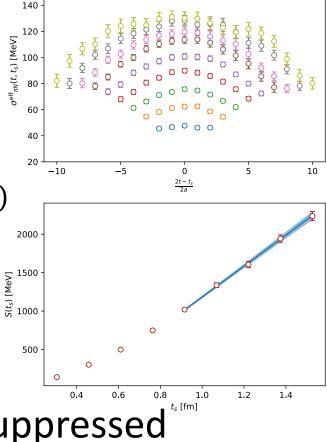
 $G_{\rm S}^{\rm eff}(t,t_s) = {
m Re}\,R(t,t_s)$

- Excited states $\sim e^{-\Delta t}$, $e^{-\Delta(t_s-t)}$
- Summed correlator:

$$S(t_s) = \sum_{t=t_c}^{t_s - t_c} \sigma_{\pi N}^{\text{eff}}(t, t_s)$$

Excited states parametrically suppressed

$$S(t_s) = (\sigma_{\pi N} \qquad)(1 + t_s - 2t_c)$$



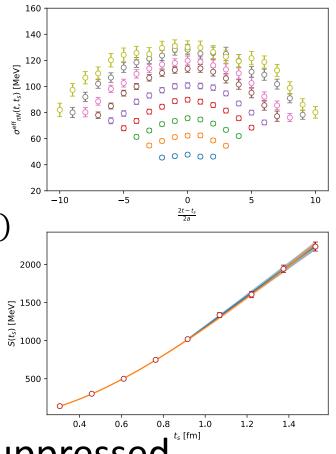
• Usual Ratio (forward limit):

$$R(t,t_s) = \frac{C_3(t,t_s)}{C_2(t_s)} \qquad \text{Re}\,R(t,t_s) \xrightarrow{t,(t_s-t)\gg 0} G_S$$

 $G_{\rm S}^{\rm eff}(t,t_s) = {
m Re}\,R(t,t_s)$

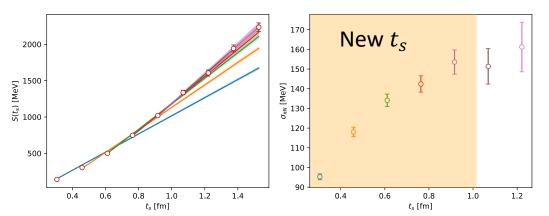
- Excited states $\sim e^{-\Delta t}$, $e^{-\Delta(t_s-t)}$
- Summed correlator:

$$S(t_s) = \sum_{t=t_c}^{t_s - t_c} \sigma_{\pi N}^{\text{eff}}(t, t_s)$$



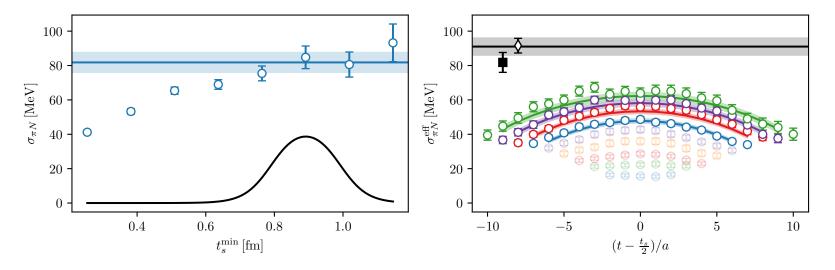
Excited states parametrically suppressed

$$S(t_s) = (\sigma_{\pi N} + m_{11}e^{-\Delta t_s})(1 + t_s - 2t_c) + e^{-\Delta t_s} \frac{2m_{10} \left(e^{\Delta(1 - t_c + t_s)} - e^{\Delta t_c}\right)}{e^{\Delta} - 1} + \dots$$



- Excited State Fits need priors for gap Δ (like explicit 2-state-Fit)
- Linear Fits:
 - Not trustworthy for small *t_s*
 - Error increases with larger starting t_s
 - Several possibilities
 - Choose one, use weights e.g. AIC, p-values, ...
 - Define a window in physical units and average

Excited-State Contamination



• Left: Blue data is linear fits to summation data at starting at t indicated on x-axis Black profile is window function

26.06.24

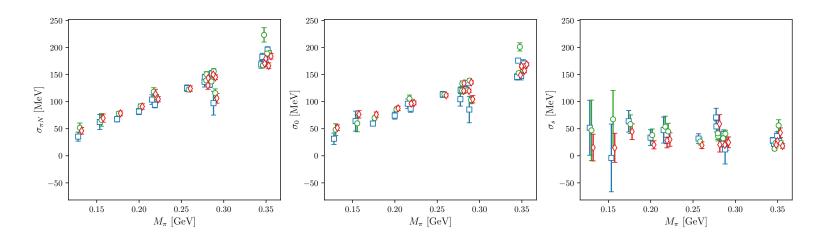
$$w_i = \frac{1}{2} \tanh \frac{t_s - t_{\rm lo}}{\Delta t} - \frac{1}{2} \tanh \frac{t_s - t_{\rm up}}{\Delta t}$$

Blue band is weighted average of profile and data point

- Right: Effective FF data for different source-sink separations Black band is explicit two-state fit
- Have two separate ways for extracting the matrix element

Sigma lerm

1/10



Chiral expansion based on SU(3)-BChPT

$$\begin{split} m_{N} &= m_{0} - \underbrace{\left(2b_{0} + 4b_{f}\right)}_{\hat{b}_{0}} M_{\pi}^{2} - \underbrace{\left(4b_{0} + 4b_{d} - 4b_{f}\right)}_{\hat{b}_{1}} M_{K}^{2}}_{\hat{b}_{1}} \\ &+ \mathcal{F}_{\pi} I_{MB}(M_{\pi}) + \mathcal{F}_{K} I_{MB}(M_{K}) + \mathcal{F}_{\eta} I_{MB}(M_{\eta}), \\ \sigma_{\pi N} &= \frac{M_{\pi}}{2} \frac{\partial m_{N}}{\partial M_{\pi}} + \frac{M_{\pi}^{2}}{4M_{K}} \frac{\partial m_{N}}{\partial M_{K}} + \frac{M_{\pi}^{2}}{6M_{\eta}} \frac{\partial m_{N}}{\partial M_{\eta}} \\ \sigma_{s} &= \frac{2M_{K}^{2} - M_{\pi}^{2}}{4M_{K}} \frac{\partial m_{N}}{\partial M_{K}} + \frac{2M_{K}^{2} - M_{\pi}^{2}}{3M_{\eta}} \frac{\partial m_{N}}{\partial M_{\eta}}, \\ \sigma_{0} &= \sigma_{\pi N} - \frac{2M_{\pi}^{2}}{2M_{K}^{2} - M_{\pi}^{2}} \sigma_{s}. \end{split} \qquad \mathcal{F}_{\pi} = -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^{2} + 2DF + F^{2}\right), \\ \mathcal{F}_{\pi} &= -\frac{3}{4} \left(D^$$

26.06.24

ΠM

Helmholtz-Institut Mainz

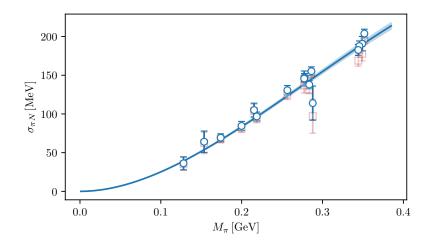
CCF

Add terms for continuum and finite volume

$$\sigma_{\pi N/s} \to \sigma_{\pi N/s} + b_i \frac{a}{\sqrt{t_0}} M_{\pi/K}^2.$$

$$\sigma_{\pi N} \to \sigma_{\pi N} + b_L \left(\frac{M_\pi^3}{M_\pi L} - \frac{M_\pi^3}{2}\right) \exp\left(-M_\pi L\right).$$

• Example of a fit



Variation	$\sigma_{\pi N}$ [MeV]	$\sigma_0 [\text{MeV}]$	$\sigma_s \; [\text{MeV}]$	$\chi^2(dof)$	weight in $\%$
$M_{\pi} < 220 \text{ MeV}$	42.04(1.27)	38.70(1.35)	43.18(9.20)	4.0(10)	1
$M_{\pi} < 285 \text{ MeV}$	41.89(67)	38.98(69)	37.56(4.74)	20.5(18)	0
no cut in M_{π}	41.67(44)	38.91(41)	35.62(3.09)	42.9(30)	1
$M_{\pi} < 220 \text{ MeV} + \mathcal{O}(a)$	41.58(6.58)	37.23(6.28)	56.36(24.19)	3.5(8)	0
$M_{\pi} < 285 \text{ MeV} + \mathcal{O}(a)$	39.31(3.15)	37.05(3.06)	29.24(12.55)	19.6(16)	0
no cut in $M_{\pi} + \mathcal{O}(a)$	37.55(1.82)	34.87(1.80)	34.68(6.69)	37.5(28)	2
$M_{\pi} < 220 \text{ MeV} + O(e^{-mL})$	42.45(1.33)	39.10(1.40)	43.26(9.20)	3.8(9)	0
$M_{\pi} < 285 \text{ MeV} + O(e^{-mL})$	42.43(79)	39.53(81)	37.52(4.74)	19.9(17)	0
no cut in $M_{\pi} + O(e^{-mL})$	42.87(59)	40.11(57)	35.78(3.09)	34.4(29)	26
$M_{\pi} < 220 \text{ MeV} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	42.69(6.68)	36.67(6.47)	77.88(45.65)	3.2(7)	0
$M_{\pi} < 285 \text{ MeV} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	39.38(3.35)	39.43(3.30)	-0.62(22.83)	16.7(15)	0
no cut in $M_{\pi} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	39.34(2.08)	37.61(2.04)	22.39(13.53)	31.1(27)	19
$M_{\pi} < 220 \text{ MeV}$	46.81(1.14)	44.88(1.16)	24.92(5.61)	6.9(10)	27
$M_{\pi} < 285 \text{ MeV}$	43.71(62)	42.02(63)	21.87(3.42)	27.8(18)	2
no cut in M_{π}	41.04(39)	39.32(39)	22.23(2.32)	92.3(30)	0
$M_{\pi} < 220 \text{ MeV} + \mathcal{O}(a)$	51.38(5.87)	49.17(5.80)	28.65(16.12)	6.3(8)	5
$M_{\pi} < 285 \text{ MeV} + \mathcal{O}(a)$	45.77(2.73)	44.14(2.73)	21.17(8.71)	27.2(16)	0
no cut in $M_{\pi} + \mathcal{O}(a)$	40.38(1.65)	39.02(1.64)	17.62(4.73)	90.9(28)	0
$M_{\pi} < 220 \text{ MeV} + \mathcal{O}(e^{-mL})$	47.21(1.20)	45.28(1.22)	24.95(5.61)	6.8(9)	10
$M_{\pi} < 285 \text{ MeV} + O(e^{-mL})$	44.44(76)	42.75(77)	21.79(3.42)	25.9(17)	2
no cut in $M_{\pi} + O(e^{-mL})$	42.79(56)	41.08(56)	22.15(2.32)	73.4(29)	0
$M_{\pi} < 220 \text{ MeV} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	52.26(5.93)	49.09(6.00)	41.03(32.57)	6.0(7)	2
$M_{\pi} < 285 \text{ MeV} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	47.13(2.90)	46.07(2.99)	13.78(19.15)	24.6(15)	1
no cut in $M_{\pi} + \mathcal{O}(a) + \mathcal{O}(e^{-mL})$	43.83(1.87)	42.81(1.87)	13.24(10.25)	71.9(27)	0

HI

oltz-Institut Mainz

UQ - Systematics and Errors

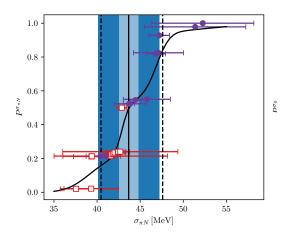
- With the two datasets perfrom all extrapolations
- Variations: Excited States, M_{π}^2 , $\mathcal{O}(a^2)$, $\mathcal{O}(e^{-M_{\pi}L})$
- No a priori best extrapolation
- Treat variations as Models
- Perform averages based on AIC weights

$$w_i^{\text{AIC}} = \frac{e^{-\frac{1}{2}\text{AIC}_i}}{\sum_i e^{-\frac{1}{2}\text{AIC}_j}}$$

 Treat model estimates as random variable with CDF

$$P^{x}(y) = \int_{-\infty}^{y} \sum_{i}^{n} w_{i} \mathcal{N}(y'; x_{i}, \sigma_{i}^{2}) dy'$$

Strategy from S. Borsanyi et al. (2020), Nature 593, 51-55 (2021)



Akaike Information Criterion

- IC based on Kullback-Leibler Divergence $\mathrm{AIC} = -2\ln \hat{L} + 2k$
- For least-square-fitting $\mathrm{AIC} = \chi^2(\hat{a}) + 2k$

26.06.24

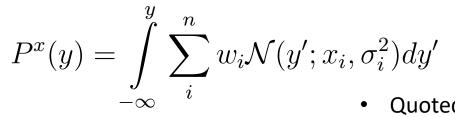
Cut datapoints

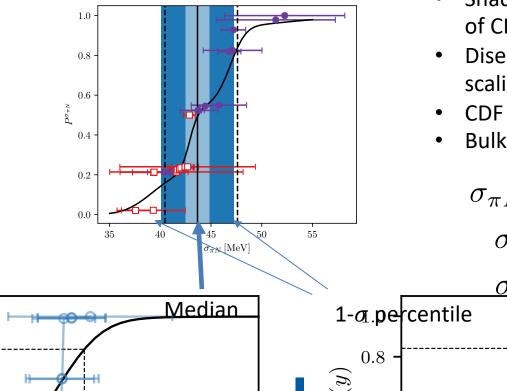
- Weights are higher for
 - Better fits
 - Less fit parameters
 - More Data used

$$w_i^{\text{AIC}} = \frac{e^{-\frac{1}{2}\text{AIC}_i}}{\sum_j e^{-\frac{1}{2}\text{AIC}_j}},$$

Sigma Term Error Estimate

• Use the weights to define CDF as





- Quoted value is the median of CDF
- Shaded area is symmetrized 1- σ interval of CDF
- Disentangle syst. from stat. error by scaling error in $\mathcal{N}(y'; x_i, \sigma_i^2) dy'$
- CDF smoothens rugged dsitribution
- Bulk of variations included in errorband

$$\sigma_{\pi N} = 43.7(1.2)(3.4) \text{ MeV}$$

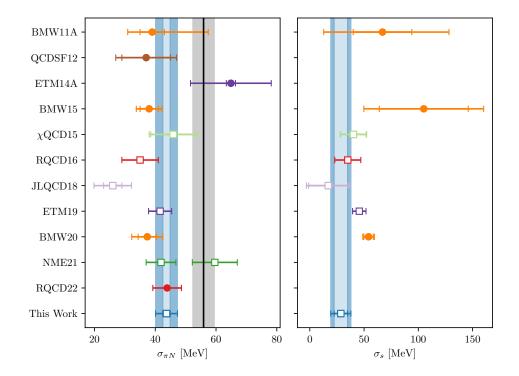
$$\sigma_{0} = 41.3(1.2)(3.4) \text{ MeV}$$

$$\sigma_{s} = 28.6(6.2)(7.0) \text{ MeV}.$$

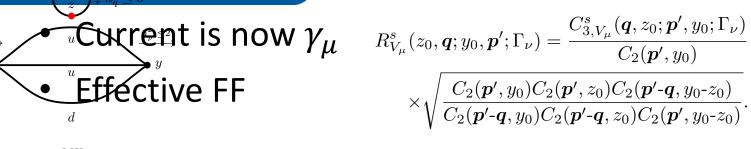
reentile

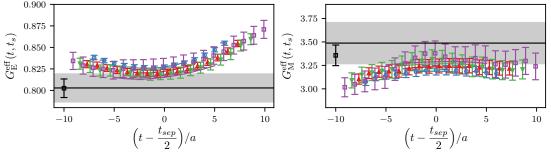
UQ - Comparison Sigma Term

- Sigma Term is dominated by stystematic error
- Excited-state largest source of uncertainty

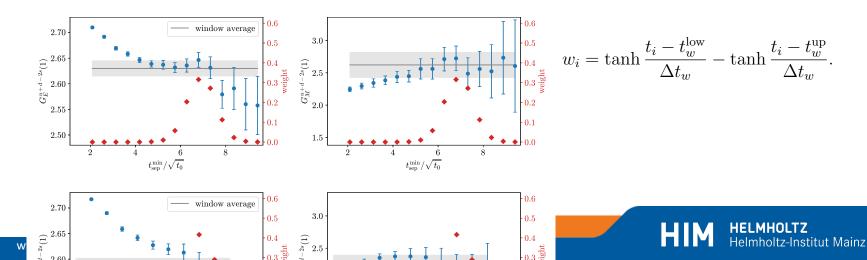


EM FF of the Proton

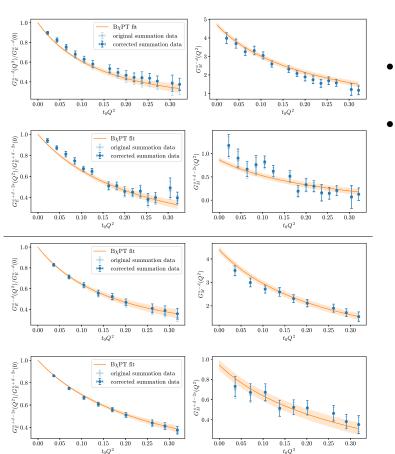




Again use window-average of summed correlator



FF of the Nucleon

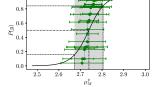


- Simultaneous fit to all ensembles using BChPT ammended with terms for continuum and finite volume T. Bauer, J. C. Bernauer, and S. Scherer, Phys. Rev. C86, 065206 (2012).
 - Perform variations of the fits, e.g. cuts in momentum transfer, pion mass, etc.
 - Calculate radii and magnetic moment

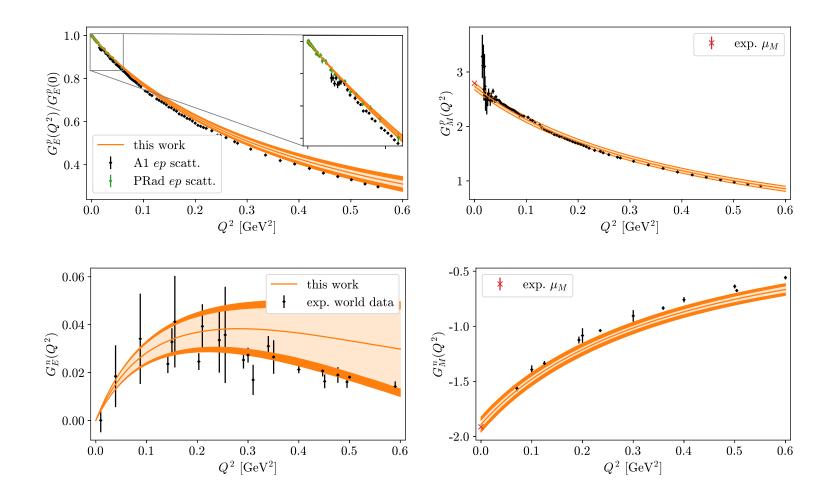
$$\langle r^2 \rangle = -\frac{6}{G(0)} \left. \frac{\partial G(Q^2)}{\partial Q^2} \right|_{Q^2 = 0}$$

26.06.24



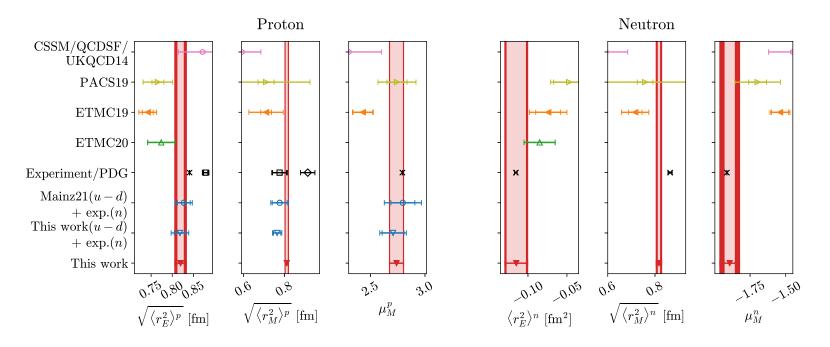


Model Average FF



26.06.24

UQ - Comparison to others FF



- Electric radius and magnetic moment consistent with experiment
- Some tension for magnetic radius
- Magnetic properties accessible in spectroscopy measurement of HFS

$$\begin{split} r_Z^p &= -\frac{4}{\pi} \int_0^\infty \frac{dQ}{Q^2} \left[\frac{G_E^p(Q^2) G_M^p(Q^2)}{\mu_M^p} - \frac{G_E^p(0) G_M^p(0)}{\mu_M^p} \right] \\ &= -\frac{2}{\pi} \int_0^\infty \frac{dQ^2}{(Q^2)^{3/2}} \left[\frac{G_E^p(Q^2) G_M^p(Q^2)}{\mu_M^p} - 1 \right]. \end{split}$$

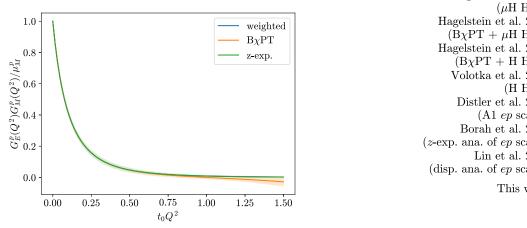
Zemachradius

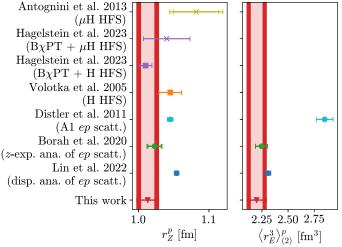
Zemach

- Integral needs full range in momentum
- Smoothly interpolate between BChPT and zexpansio

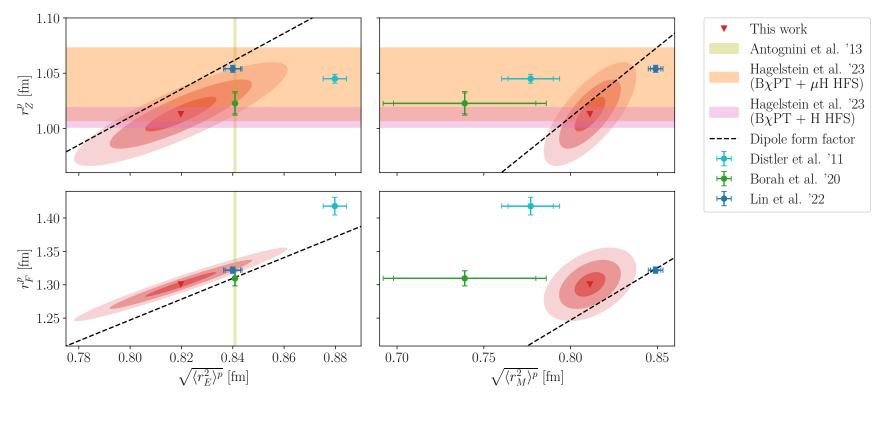
26.06.24

$$F(Q^{2}) = \frac{1}{2} \left[1 - \tanh\left(\frac{Q^{2} - Q_{\text{cut}}^{2}}{\Delta Q_{w}^{2}}\right) \right] F^{\chi}(Q^{2}) + \frac{1}{2} \left[1 + \tanh\left(\frac{Q^{2} - Q_{\text{cut}}^{2}}{\Delta Q_{w}^{2}}\right) \right] F^{z}(Q^{2}),$$





Zemach and Friarradius



$$\begin{split} \langle r_E^3 \rangle_{(2)}^p &= \frac{48}{\pi} \int_0^\infty \frac{dQ}{Q^4} \left[(G_E^p(Q^2))^2 - (G_E^p(0))^2 - \frac{\partial (G_E^p(Q^2))^2}{\partial Q^2} \Big|_{Q^2=0} Q^2 \right] \\ &= \frac{24}{\pi} \int_0^\infty \frac{dQ^2}{(Q^2)^{5/2}} \left[(G_E^p(Q^2))^2 - 1 + \frac{1}{3} \langle r_E^2 \rangle^p Q^2 \right]. \end{split}$$

HELMHOLTZ Helmholtz-Institut Mainz

HIM

Thank you!

My UQ count is 6

