Uncertainty quantification in electroweak reactions

Sonia Bacca JGU mitp

Electroweak Reactions

2

The ab-initio approach

- Start from protons and neutrons
- Solve the quantum mechanics of A=Z+N interacting nucleons

$$H|\Psi\rangle = E|\Psi\rangle$$

H = T + V

• Find numerically exact solutions or controlled approximations

Credits: ORNL, LeJean Hardin and Andy Sproles

Chiral effective field theory **The Hamiltonian**

Systematic expansion

Three-nucleon forces appear $V = V_{NN} + V_{3N} + \ldots$

$V = V_{\rm LO} + V_{\rm NLO} + V_{\rm NNLO} \dots$

Chiral effective field theory Electroweak currents

Two-body currents appear in a systematic expansion

 $J^{\mu} = J$

$$J_{1BC}^{\mu} + J_{2BC}^{\mu} + \dots$$

5

Sources of uncertainty

- Numerical errors
- Many-body truncations
- Model

We estimate these uncertainties with different levels of sophistications depending on the problem we are dealing with. More difficult with increasing A

GoComics.com

6

Relevance of EW reactions

nuclear astrophysics

particle physics

Credit: Robin Dienel/Carnegie Institution for Science

Credit:nures.uta.edu

atomic physics

Credit: R.Pohl

One first example Application to nuclear astrophysics

Big bang nucleosynthesis Bayesian analysis for uncertainty quantification in n p \rightarrow D γ

Uncertainty quantifications with tools developed by the BUQEYE collaboration

• Express observable as

$$y(\nu) = y_{ref}(\nu) \sum_{n=0}^{\infty} c_n(\nu) (Q/\Lambda)^n$$
$$\delta y_k(\nu) = y_{ref}(\nu) \sum_{n=k+1}^{\infty} c_n(\nu) (Q/\Lambda)^n$$

- Calibrate a Gaussian process emulator using physics-based info on $c_n(\nu)$ as "prior"
- Calculate "Bayesian posterior" for $c_{n>k}(\nu)$ obtaining statistically interpretable truncation error, amounting to 0.2% at the highest order.
- Fix current at NLO, vary potential

At zero energy N4LO gives 7.0932 and the experiment 7.3128 \Rightarrow 3% difference due to missing two-body currents

9

What about reactions with A>2?

The continuum problem

 $R(\omega) = \oint_{\mathbf{f}} \left| \left\langle \psi_{\mathbf{f}} \left| J^{\mu} \right| \psi_{0} \right\rangle \right|^{2} \delta(\mathbf{E}_{\mathbf{f}} - E_{0} - \omega)$

bound excited state

2-body break-up

...

3-body break-up

A-body break-up

Excitation Energy

11

The Lorentz integral transform (LIT)

$$L(\sigma, \Gamma) = \frac{\Gamma}{\pi} \int d\omega \frac{R(\omega)}{(\omega - \sigma)^2 + \Gamma^2}$$

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

$$(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = J^{\mu} | \psi_0 \rangle$$

Reduce the continuum problem to a bound-state-like equation

The Lorentz integral transform (LIT)

The inversion is performed numerically with a regularization procedure (ill-posed problem)

Message: Inversions are stable if the LIT is calculated precisely enough

⁴He photoabsorption cross-section

Acharya, SB, Bonaiti, Li Muli, Sobczyk, Front. Phys. 10:1066035 (2023)

With local chiral potentials from Phys. Rev. C 90, 054323 up to N2LO, Method: LIT with hyper-spherical harmonics

What about heavier nuclei?

Coupled-cluster theory

 $|\psi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle = e^T |\phi_0(\vec{r}_1, \vec{r}_2, ..., \vec{r}_A)\rangle \qquad T = \sum T_{(A)}$

CCSD algorithm scales as ~A⁶

cluster expansion

Coupled-cluster formulation of the LIT LIT-CC

<u>SB et al., Phys. Rev. Lett. 111, 122502 (2013)</u>

$$(\bar{H} - E_0 - \sigma + i\Gamma) |\tilde{\Psi}_R\rangle =$$

$$\mathcal{R}(z) = r_0(z) + \sum_{ai} r_i^a(z) a_a^{\dagger} a_i + \frac{1}{4} \sum_{abij} r_{ij}^{ab}(z) a_a^{\dagger} a_b^{\dagger} a_j a_i + \dots$$

Benchmark on 4He

<u>SB et al., Phys. Rev. Lett. 111, 122502 (2013)</u>

Application to Astrophysics

Neutron stars The nuclear EOS

Constraining the symmetry energy $S(\rho)$ through properties of finite nuclei

$$\mathcal{E}(\rho, \alpha) = \mathcal{E}_{\text{SNM}}(\rho) + \alpha^2 \mathcal{S}(\rho) + \mathcal{O}(\alpha^4)$$
$$\rho = (\rho_n + \rho_p) \quad \alpha = (\rho_n - \rho_p)/\rho$$
$$\mathcal{S}(\rho) = \mathbf{J} + \mathbf{L} \frac{(\rho - \rho_0)}{3\rho_0} + \dots$$

slope

parameter

energy

Curtesy from Francesca Bonaiti using data from Hu et al. Nature Phys. 18 (2022)

Electric Dipole Polarizability Comparison of experiments to ab-initio

Fearick et al, PRRL (2023)

Constraints on symmetry energy slope L = 41-49 MeV

More on Ca-isotopes in F. Bonaiti's talk

 $\alpha_D(^{40}\text{Ca})[\text{fm}^3]$

Comparison to other analyses

Curtesy of Francesca Bonaiti

Applications to particle physics

Neutrino oscillations Next generation experiments

https://cerncourier.com/

DEEP UNDERGROUND NEUTRINO EXPERIMENT

https://lbnf-dune.fnal.gov/

Challenges and opportunities

Electrons for neutrinos (e4-/)

✓-A scattering

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \,\mathrm{d}\omega} \bigg|_{\nu/\bar{\nu}} = \sigma_0 \left[\ell_{CC}\right]_{\nu/\bar{\nu}}$$

e-A scattering

$$\frac{d^2\sigma}{d\Omega d\omega}\Big|_e = \sigma_M \left[\frac{Q^4}{q^4}\right]$$

$R_{CC} + \ell_{CL} R_{CL} + \ell_{LL} R_{LL} + \ell_T R_T \pm \ell_{T'} R_{T'}$

e4~ in Mainz: ¹²C exp

Mihovilovic, Doria et al, arXiv:2406.16059, E=855 MeV/c, θ =70°

e4~ in Mainz: theory ⁴⁰Ca(e,e')X

Sobczyk, Acharya, SB, Hagen, PRL 127 (2021) 7, 072501

e4~ in Mainz: theory ¹⁶O(e,e')X

Sobcyzk, Acharya, SB, Hagen, in preparation

Towards neutrino scattering Spectral function formalism

Sobczyk, SB, PRC 109, 044314 (2024)

 $\nu_{\mu} + {}^{16}\mathrm{O} \to \mu^- + X$

 $0.93 < \cos\theta < 1$

Back to nuclear structure

48Ca M1 transition

Acharya et al., PRL 132 (2024) 23, 232504

Applications to Atomic Physics

The helium isotope-shift puzzle

Li Muli, Richardson, SB, arXiv:2401.13424

The helium isotope-shift puzzle

Li Muli, Richardson, SB, arXiv:2401.13424

B. Acharya, F. Bonaiti, G. Hagen, G.R. Jansen, W. Jiang, W. Leidemann, S.S. Li Muli, G. Orlandini, T. Papenbrock, I. Reis, A. Schwenk, J. Simonis, J.E. Sobczyk, et al. +experimental colleagues

Thanks to all my collaborators:

Challenges & Questions

- Should we do model mixing?
- Should we develop emulators?
- What can we do with the ⁴He monopole

Year	Potential	Method	Continuum	E _r =Position of 0+2	Comments
2004	AV8+Central 3NF	GEM	No	20.25	Describes data
2013	AV18+UIX	LIT/HH	Yes*	21	Too high
2013	N3LO+N2LO	LIT/HH	Yes*	21	Too high
2023	AV8+Central 3NF	LIT/HH	No	20	Describes data
2023	Vlowk	NCGSM-CCC	Yes	Tuned	No 3NF, describes data
2023	SU4	NLEFT	No	20-20.30	Describes data, modified ta
2024	N3LO+N2LO*	НН	Yes	20.30	Describes data, a bit high
2024	Daejeon16	NCSM	No	?	Too high

	$E_r (MeV)$	Γ_r (MeV)	Probe
	20.31 ± 0.01	0.29 ± 0.01	(lpha, lpha)
	20.40 ± 0.04	0.33 ± 0.03	(lpha, lpha)
	20.28 ± 0.05	0.41 ± 0.05	(lpha, lpha)
	20.29 ± 0.02	0.89 ± 0.04	(lpha, lpha)
	20.46 ± 0.14	0.34 ± 0.04	(p,p)
	20.26 ± 0.16	0.39 ± 0.10	(e,e)
	20.10 ± 0.05	0.27 ± 0.05	(e,e)
	20.12 ± 0.16	0.24 ± 0.07	(e,e)
e nuzzle?	20.21	0.26 ± 0.05	(e,e)
	20.21	0.29 ± 0.03	(e,e)

