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We are interested in calibrating the next generation of EFT nucleon-
nucleon interactions.  

These models should have robust uncertainty quantification: 
• Parametric uncertainty 
• Truncation uncertainty 

This must be accomplished in the model calibration.

Next-Generation EFT Interactionsχ



We take an effective expansion of QCD 
preserving chiral symmetry with N and  d.o.f. 

The interaction can be ordered in terms of 
powers of  

•  is a momentum or pion mass 

•  is the symmetry breaking scale 

Gives a systematic ordering to improve the 
interaction.
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Effective Field Theory

LECs



For a model calibration problem in a Bayesian approach, we have 
 

The likelihood can take the form it uses in normal model fitting 

 

What the prior does for us is encode any previous information that we may 
know.  

• Ex: LECs are natural, i.e., order 1 

pr( ⃗a | y⃗, I)

Posterior

∝ pr(y⃗ | ⃗a)

Likelihood

pr( ⃗a | I)

Prior

pr(y⃗ | ⃗a) ∼ e−∑i (y(i)
exp − y(i)

th ( ⃗a))
2
/2σ2

i = e−χ2/2

→ pr( ⃗a | I) ∼ 𝒩 (0⃗, Σpr)

Bayes’ Theorem



In the simple likelihood, we had the , , but we can improve this.  

We can inform the model calibration with information about the model itself. 

In what way? 

χ2 (e−χ2/2)
Likelihood Improvement

χ2 = ∑
i

(y(i)
exp − y(i)

th ( ⃗a))
2

σ2
i σ2

i → σ2
i + σ2

th,i



Why are theory errors necessary in calibration? 

Theory Uncertainty in Calibration

Figure courtesy of Pablo Giuliani 

How?



Since our model is a perturbative series, we can model it as such*: 

, 

where  sets a reference scale for the observable  and  is the 
EFT breakdown scale.  

This series follows the truncation scheme of the EFT: 

.

yth(x) = yref(x)
∞

∑
n=0

cn(x)Qn(x), Q ≡
max[psoft, p]

Λb

yref(x) yth Λb

yth(x) = yref(x)
k

∑
n=0

cnQn + yref(x)
∞

∑
n=k+1

cnQn = y(k)
th (x) + δy(k)

th (x)

Modeling the Model

*R. J. Furnstahl et. al. Phys. Rev. C 92, 024005



From the neglected terms, we have 

. 

This is a geometric series in , so we can find* 

, 

Where we assume that .

δy(k)
th (x) = yref(x)

∞

∑
n=k+1

cn(x)Qn(x)

Q

δy(k)
th (x) =

yref c̄ Q(k+1)

1 − Q
cn | c̄ ∼ 𝒩 (0,c̄2)

Truncation Errors

*J. A. Melendez et. al. Phys. Rev. C 100, 044001



From the truncation uncertainty, we can construct a covariance 
matrix, assuming  is normally distributed, 

, 

were we introduce a kernel  to smooth and handle 
correlations.

δyth

Σth
ij = yref,iyref,j

(yref,i c̄ Q(k+1)
i ) (yref,j c̄ Q(k+1)

j )
1 − QiQj

r(xi, xj; ⃗l)

r(xi, xj; ⃗l)

Theoretical Covariance



We can build a total covariance, 
. 

And our correlated likelihood is now 

 
where we define the Mahalanobis distance 

.

Σij = Σexp
ij δij + Σth

ij

pr(y⃗ | ⃗a, I) ∝ e−(y⃗exp − y⃗th)
T
Σ−1(y⃗exp − y⃗th) = e−dM( ⃗a)

dM( ⃗a) = ( ⃗yexp − ⃗yth)
T

Σ−1 ( ⃗yexp − ⃗yth)

Correlated Likelihood

Correlated version of χ2



In this process, we have introduced two new parameters:  and . 

This changes the posterior we need to find: 
 

We can find a closed form of  and .

c̄ Λb

pr( ⃗a, c̄2, Λb | y⃗exp, I)

Total posterior

∝ pr(y⃗exp | ⃗a, Σ, I)

Likelihood for ⃗a

pr( ⃗a|| I)

Prior for ⃗a

pr(c̄2 |Λb, ⃗a, I)

Posterior for c̄2

pr(Λb | ⃗a, I)

Posterior for Λb

.

pr(c̄2 |Λb, ⃗a, I) pr(Λb | ⃗a, I)

Additional Parameters



Since we had , where  is a population variance, we make the 
standard choice of prior for an unknown variance: 

 
This yields a conjugate posterior 

 
Where we have hyperparameters: 

degrees of freedom 

 scale

cn | c̄ ∼ 𝒩 (0,c̄2) c̄2

c̄2 ∼ χ−2 (ν0, τ2
0)

pr(c̄2 | I) ∼ χ−2(ν0, τ2
0) ⟺ pr(c̄2 | ⃗a, Λb, I) ∼ χ−2 (ν, τ2( ⃗a, Λb)) .

ν = ν0 + Nobsnorders,

τ2 ( ⃗a, Λb) =
1
ν

ν0τ0 + ∑
i,n

c2
n,i( ⃗a, Λb) ,

Posterior for c̄

cn,i =
yn

i − y(n−1)
i

yref,i Qn
i

*J. A. Melendez et. al. Phys. Rev. C 100, 044001



Our posterior for the breakdown scale also uses these 
hyperparameters: 

 

This posterior needs to be numerically normalized as the 
normalization constant is dependent on . 

With all our components, we can estimate our parameters.

pr(Λb | ⃗a, I) ∝
pr(Λb | I)

τν∏n,i ( pi

Λb )
n

⃗a

Posterior for Λb



We are working in an EFT framework without pions in Weinberg PC 

Our interaction takes the form: 

                              

 

vLO = CS + CTσ1 ⋅ σ2

vCI
NLO( ⃗k, ⃗K ) = C1k2 + C2k2σ1 ⋅ σ2 + C3S12(k) + C4k2τ1 ⋅ τ2

+iC5 ⃗S ⋅ ( ⃗K × ⃗k) + C6k2τ1 ⋅ τ2σ1 ⋅ σ2 + C7S12(k)τ2 ⋅ τ2

vCD
NLO = CIT

0 T12 + CIV
0 (τ1z + τ2z)

Pionless EFT

yth(x) = yref(x)
∞

∑
n=0

c2n(x)Q2n(x)
yexp(x)



To use these interactions, they must be regularized in some fashion and must 
be local in coordinate space (for QMC). 

We employ a Gaussian cutoff in coordinate space, which smears  
-functions upon Fourier transformation 

We choose  which are ~  in momentum 

space.

δ

Rs ∈ [1.5,2.0,2.5] fm
400
Rs

MeV

Regularization

f(r) =
1

π3/2R3
s

e−( r
Rs )

2



To estimate all of these parameters, we need data to calibrate to: 

Our choice of data is the pp and np Granada database (differential 
cross sections, total cross sections) up to 5 MeV + deuteron binding 
energy + nn scattering length. Not phase shifts! 

We then use Markov Chain Monte Carlo (MCMC) to sample the 
posteriors at LO , NLO , and N3LO , allowing for the 
order-by-order convergence analysis for LO NLO and NLO N3LO 
to estimate  and .

(Q0) (Q2) (Q4)
→ →

c̄ Λb

Parameter Estimation Algorithm



•  

•  

•  

•  

•

pr( ⃗a | I) ∼ 𝒩 ( ⃗aMAP
p.s , ⃗102)

pr(Λb | I) ∼ 𝒩 (500 MeV,10002 MeV)
pr(c̄2 | I) ∼ χ−2(ν0 = 1.5,τ2

0 = 1.52)
r(xi, xj; ⃗l) = e|pi−pj|/2lpe|θi−θj|/2lθδtypei,typej

, lp = 0.3 MeV, lθ = 20∘

psoft = {
pd ∼ 45 MeV/c, for np and nn scattering

1/1app ∼ 25 MeV, for pp scattering .

Prior Choices
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2.5 fm  and  Posteriors c̄ Λb
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2.0 fm  and  Posteriors c̄ Λb
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1.5 fm  and  Posteriors c̄ Λb
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Extrapolation to Remove Artifacts

Why is there 
dependence on the 
order? 

• Power counting? 
• Flawed assumption 

of geometric series? 
• Fierz transformation 

breaking?



Extrapolation to Remove Artifacts

Why is there 
dependence on the 
order? 

• Power counting? 
• Flawed assumption 

of geometric series? 
• Fierz transformation 

breaking?

Proper 
choice of 
prior!!!



With ~50 MeV, the max lab energy is given by  

 MeV 

The Granada database has 4 data (polarized cross sections) up to 5 
MeV that constrains  and  channels.  

We can explore removing -wave interactions from our models.

Λb

p(max)
c.m.

Λb
=

E(max)
lab μ

Λb
= 1 ⇒ E(max)

lab =
Λ2

b

μ
∼ 5

1P1
3P0

p

Unconstrained -wavesp



We can now easily and rigorously propagate uncertainty to observable 
calculations. 

We calculate a posterior predictive distribution (p.p.d.) for the 
observables 

 

which is done via sampling the posterior. 

This can be done for any calculation of nuclear observables. 

pr( ⃗yth | ⃗y, ⃗x, I) = ∫ d ⃗a dc̄2 dΛb 𝒩 ( ⃗yth, Σth) pr( ⃗a, c̄2, Λb | y⃗exp, I)

Posterior Predictive Density



Propagation of Errors for ERPs
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Propagation of Errors for Deuteron

°1 0 1 2

yth/yexp

ED

¥D

rD

QD

µD

Deuteron Neglecting p ° wave
1.5 fm

2.0 fm

2.5 fm

• Poorly constrained -waves 
• 2b corrections at 

d
O(Q5)



• For pion- and -full interactions, we must look at higher energy data (~200 MeV) 
• Emulation for calculation of scattering observables 

Δ

Long-term Goals

Ozge Surer
Miami University

Matt Plumlee
Amazon

Stefan Wild
LBNL

Daniel Odell
SRNL

Gaussian Process Emulation
Reduced Basis Methods via 

Galerkin Projection

Pablo Giuliani
MSU/FRIB



• Application to few- and many-body observables 
• How do we generate ppds using expensive many-body 

methods? 
• Estimation of the momentum to treat model discrepancy? 

• Model mixing EFT model 
• Across degrees-of-freedom 
• Cutoffs 
• Regulators

Open Questions
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