Recent advances in nuclear many-body theory

MITP workshop
Uncertainty quantification in nuclear physics
June 24th, 2024

Alexander Tichai

Outline

Many-body developments with an eye on

theory uncertainties.

Part I:

Structure around ${ }^{78} \mathbf{N i}$ from the density matrix renormalization group (Configuration mixing)

Part II:

Towards heavy-mass applications from Bogoliubov coupled cluster theory (Symmetry breaking)

Perspectives

Ab initio nuclear structure

Sources of uncertainty

 (chiral effective field theory)

Part 1
 The nuclear density matrix renormalization group

DMRG collaboration
Tichai et al., PLB (2023)
Tichai et al., arXiv:2402.I8723
Achim and Takayuki
K. Kapás, S. Knecht, A. Kruppa, Ö. Legeza,
P. Moca, M. Werner, G. Zarand

In-medium similarity renormalization group

In-medium decoupling

Hergert et al., Phys. Rep. (2016)

- Input: nuclear Hamiltonian in second quantization

$$
H_{\text {nucl. }}=T+V_{2 N}+V_{3 N}+\ldots
$$

- Goal: decoupling of elementary ph-excitations

$$
H(s)=U^{\dagger}(s) H U(s)
$$

- Approximation: discard induced operators

Keep operators to k-body level:
IMSRG(k)

- Ground-state energy from flowing Hamiltonian

$$
\lim _{s \rightarrow \infty}\langle\Phi| H(s)|\Phi\rangle=E_{0}
$$

- Versatility: generate input for other approaches

The valence-space IMSRG

- Non-perturbative decoupling of particlehole excitations from valence space

$$
H(s)=U^{\dagger}(s) H U(s)
$$

- Large no-core problem mapped to tractable active-space problem
- Many-body observables from large-space shell-model diagonalization
- Simple access of low-lying spectroscopy
- Benefits from open-sourced shell-model machinery (kshell, Nushell, ANTOINE, ...)

Stroberg et al., Ann. Rev. Nucl. Part. Sci (2019)

Successes of the IMSRG

Global study of ~ 700 nuclei from IMSRG(2)

Stroberg et al., PRL (202I)

Many-body uncertainties

Overview of low-ling spectrum in ${ }^{78} \mathbf{N i}$

VS-IMSRG: 3.350 (50) MeV
Taniuchi et al., Nature (20|9)

Density matrix renormalization group

White, PRL (I993) Schollwöck, Annals of Physics (201I)

- Matrix product state (MPS) ansatz for fully correlated wave function

- Approximate MPS representation obtained by limiting intermediate summation
\longrightarrow bond dimension M
- DMRG defines a variational procedure for the calculation of expectation values
- Local optimization of two-site tensors

- Efficient encoding of nuclear correlations

Revisiting the example of ${ }^{78} \mathbf{N i}$

see also Legeza et al., PRC (2015)
DMRG vs. Cl in valence-space calculation

- DMRG: economic representation of the many-body wave function
- Robust convergence of DMRG energies at large bond dimension
- Exact solution out of reach: ~220 billion Slater determinants
- Conventional diagonalization makes robust UQ impossible

Intermezzo: Entanglement and correlations

Total entropy in even-mass nickel isotopes

see also Taniuchi et al., Nature (2019)

- Entanglement through information science

$$
s_{i}=-\left[n_{i} \log n_{i}+\bar{n}_{i} \log \bar{n}_{i}\right]
$$

- Total entropy quantifies entanglement

$$
I_{\mathrm{tot}}=\sum_{i} s_{i}
$$

- Pronounced kink at ${ }^{78} \mathrm{Ni}$ hints at neutron shell closure (\sim dominated by HF)
- Agreement with conventional prediction based on 2^{+}excitation energies

Phenomenology through the eyes of information theory!

Tichai et al., PLB (2023)

Towards spectroscopy

DMRG/CI observables vs. effective dimension of H_{A}

- DMRG: economic representation of the many-body wave function
- Slow convergence of binding energies in Cl calculations
- Robust convergence of DMRG energies at large bond dimension
- $\mathbf{B}(E 2)$ transition: more systematic convergence pattern compared to Cl
- DMRG does extend Cl capacities

Transitional nuclei at $N=50$

Spectroscopy of $N=50$ isotones

Tichai et al., arXiv:2402.I8723

- Ratios of $4^{+} / 2^{+}$excitation energies close to rigid-rotor limit

$$
E_{\mathrm{rot}}^{\star} \sim J(J+1)
$$

- Increase of $B(E 2)$ values towards open-shell ${ }^{74} \mathrm{Cr}$
- Rapid transition between single-particle-like and collective excitations
- Qualitative agreement with previous shell-model calculations

Nowacki et al., PRL (2016)

- Island-of-inversion: very low 0p0hcomponent in ground state

Future challenges: shape coexistence

Spectroscopy of $N=50$ isotones
see also Taniuchi et al., Nature (2019)

- Emergence of deformed excitedstate rotational band in ${ }^{78} \mathrm{Ni}$
- Second 0^{+}state comes out much higher -6 $5 \mathrm{MeV}: \operatorname{IMSRG}(3)$ and beyond?
Challenge:
Develop ab initio machinery for nuclear deformation.
herical minimum in
${ }^{78} \mathrm{Ni} \quad{ }^{76} \mathrm{Fe} \quad{ }^{74} \mathrm{Cr} \quad{ }^{49} \mathrm{Ti}$

Collective phenomena induce larger uncertainties!

Part II
 Bogoliubov coupled cluster theory for heavy nuclei

Tichai et al., PLB (2024)
Demol et al., PLB (unpublished)
Vernik et al., (unpublished)

BCC collaboration
Pepijn Demol, Urban Vernik, Thomas Duguet

Bogoliubov coupled cluster theory

- Coupled cluster: exponential representation of ground-state wave function

$$
\left|\Psi_{\mathrm{BCC}}\right\rangle=e^{\mathcal{T}}|\Phi\rangle
$$

Quasi-particle extension of standard CC theory ('CC theory for HFB states')

- Definition in terms of cluster operator with unknown cluster amplitudes

$$
\mathcal{T}=\mathcal{T}_{1}+\mathcal{T}_{2}+\ldots+\mathcal{T}_{A} \quad \mathcal{T}_{2}=\frac{1}{4!} \sum_{\text {pqrs }} t_{\text {pqrs }} \beta_{p}^{\dagger} \beta_{q}^{\dagger} \beta_{r}^{\dagger} \beta_{s}^{\dagger}
$$

- Similarity-transformed grand potential as core object in formalism

$$
\tilde{\Omega}=e^{-\mathcal{T}} \Omega e^{\mathcal{T}} \quad \Omega=H-\lambda A
$$

- Determine cluster amplitudes iteratively from left-projected amplitude equation

$$
\begin{aligned}
\left\langle\Phi^{p q}\right| \tilde{\Omega}|\Phi\rangle & =0 \\
\left\langle\Phi^{p q r s}\right| \tilde{\Omega}|\Phi\rangle & =0
\end{aligned}
$$

(Ad hoc) Many-body uncertainties

- Truncation of $\mathrm{E}_{3 \text { max }}$ for three-body matrix elements

explicit extrapolation

- Finite size of the one-body Hilbert space ($\mathrm{e}_{\max }$)

$$
\text { I - } 2 \text { \% of total binding energy }
$$

- Normal-ordering approximation of three-body force

$$
2 \% \text { of total binding energy }
$$

- Truncation of BCC expansion: missing T_{3} amplitudes

$$
10 \text { \% of correlation energy }
$$

- Lack of particle-number projection of wave function approximate HFB projection (less than 3 MeV)

Validation in the calcium chain

- Reproduction of experimental trends and VS-IMSRG predictions
- Consistent prediction of two-neutron separation energies
- Tentative drip line 'assignment' at $A=60$ but more neutron-rich nuclei supported within error bars

$$
S_{2 n}(N, Z)=E(N, Z)-E(N-2, Z)
$$

- Two-neutron shell gap serves as proxy for shell closures

$$
\Delta_{2 n}(N, Z)=\left|S_{2 n}(N, Z)\right|-\left|S_{2 n}(N-2, Z)\right|
$$

Heavy-mass frontier: tin

Heaviest open-shell ab initio calculations so far! (To the best of my knowledge)

Tichai et al., PLB (2024)

Neutron dripline in tin

UQ (many-body + interaction) needed to quantitatively compare dripline predictions!

Tichai et al., PLB (2024)

Towards higher accuracy

- Incorporation of leading-order triples effects in BCC framework
- Many-body uncertainty: triples in CC contribute $8-10 \%$ of correlation energy
- Systematic improvement towards VSIMSRG(2) simulations
- Differential quantities remain largely unaffected in calcium isotopes
- Two-neutron shell gap serves as proxy for shell closures

Vernik, Demol, Tichai, Duguet (unpublished)

Radii in tin isotopes

Charge in tin isotopes

Demol, Tichai, Duguet (unpublished)

- Observables consistently calculated in BCC theory
- Well-known underproduction of charge radii from chiral EFT

EM I.8/2.0: ~ 5 \%
N2LOGO: ~ I \%

- New experiment data available

134Sn Gorges et al., PRL (2019)
104-106Sn Gustafson et al., (in prep.)

- New hope from novel interactions with large LECs ($c_{D}=7.5$)

Arthuis et al., arXiv:240I. 06675

Differential charge radi

Interaction sensitivity in neutron-rich tins

Demol, Tichai, Duguet (unpublished)

Neutron skins in tin

Demol, Tichai, Duguet (to be published)

- Correlated with slope parameter in symmetric nuclear matter

Nuclear EOS

- Linear dependence of neutron skins on ispospin asymmetry
- Local variations due to nuclear shell structure
- Sizeable uncertainties due to incomplete model space ($\mathrm{e}_{\max }$)

Summary

Establish DMRG as scalable alternative to CI

- MPS representation is superior to Cl representation
- Robust convergence of observables with reduced uncertainties
- VS-DMRG: novel merging of complementary $a b$ initio approaches Next steps: explore larger spaces beyond shell model capacities

Heavy nuclei from Bogoliubov coupled cluster

- Extension applicable to general open-shell nuclei
- Scalable approach to heavy nuclei at mild computational cost
- New insights into interaction effects from chiral EFT

Next steps: test new set of chiral interactions for $A>100$

For discussion

- Design of robust error models for nuclear many-body uncertainties

$$
\epsilon_{\mathrm{MB}}=\epsilon_{\mathrm{CC} / \mathrm{MSRG}}+\epsilon_{\mathrm{FBS}}+\epsilon_{\mathrm{NO} 2 \mathrm{~B}}+\epsilon_{3 \mathrm{~B}}
$$

- EFT advantage: converged predictions from 'many' consecutive orders available

$$
\mathbf{L O} \longrightarrow \mathbf{N L O}_{\text {versus }}^{\longrightarrow} \longrightarrow \mathbf{N}^{2} \mathbf{L O} \longrightarrow \mathbf{N}^{3} \mathbf{L O}
$$

$$
\text { IMSRG(2) } \rightarrow \text { IMSRG(3) } \rightarrow \text { IMSRG(4) }
$$

- Different observables have different sensitivities to nuclear correlations

E_{0} : particle-hole correlations
 $B(E 2)$: quadrupole collectivity

- Current many-body machinery must be extended to target complex structures Deformation, clustering, halo structures, ...
- Development of many-body emulators is a highly non-trivial problem

