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Part I: 
Structure around 78Ni from the
density matrix renormalization group
(Configuration mixing)

Perspectives

Theme:
Many-body developments with an eye on 

theory uncertainties.

Part II: 
Towards heavy-mass applications from
Bogoliubov coupled cluster theory
(Symmetry breaking)
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<latexit sha1_base64="icw5GdGWJfpSbtFnaVZVh6RwoWg="></latexit>

H|�ni = En|�ni
Sources of uncertainty

controlled expansion 
(chiral effective field theory)

controlled expansion 
(many-body solution)

Guiding question:
How large are many-body 

uncertainties?



Part I
The nuclear density matrix 

renormalization group

DMRG collaboration
Achim and Takayuki

K. Kapás, S. Knecht, A. Kruppa, Ö. Legeza, 
P. Moca, M. Werner, G. Zarand

Tichai et al., PLB (2023)
Tichai et al., arXiv:2402.18723



A. Tichai MITP - Uncertainty quantification in nuclear physics

In-medium similarity renormalization group

5

Representing the Hamiltonian

• reference state: single Slater 
determinant

H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, March 1, 2018
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Decoupling in A-Body Space

H. Hergert - “Progress in Ab Initio Techniques in Nuclear Physics”, TRIUMF, Vancouver, March 1, 2018

aim: decouple reference state  
from excitations
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In-medium  
decoupling

• Versatility: generate input for other approaches
Hergert et al., Phys. Rep. (2016)

• Goal: decoupling of elementary ph-excitations

• Ground-state energy from flowing Hamiltonian
<latexit sha1_base64="xLcX6r5jdDh8yW7A8TnL9gl7joM="></latexit>

lim
s!�h�|H(s)|�i = E0

H(s) = U†(s)HU(s)
<latexit sha1_base64="6hjjLySVM5SBZHEf8gmNccBQ9eI="></latexit>

• Approximation: discard induced operators

Keep operators to k-body level:  
IMSRG(k)

• Input: nuclear Hamiltonian in second quantization

<latexit sha1_base64="sONL4hw/rBOYROH7ZOgSBozeVAI="></latexit>

Hnucl. = T + V2N + V3N + ...
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• Many-body observables from large-space 
shell-model diagonalization

Stroberg et al.,  Ann. Rev. Nucl. Part. Sci (2019)

In the language of the renormalization group, He↵ is a fixed point of the RG flow.

One choice for ⌘(s), which is used in the calculations we will describe here is the White

generator (145, 169)

⌘Wh(s) ⌘ Hod(s)
�(s)

. (17)

For present and future use, we have introduced a convenient superoperator notation

(cf. (170)), in which we indicate division of the operator O by a suitably defined energy

denominator � is defined as

h�i|
O
�
|�ji ⌘

h�i|O|�ji
✏i � ✏j

(18)

which can be thought of as element-wise division. Here ✏i, ✏j are energies associated with

the basis states �i, �j . The quantity O
�

itself is an operator whose Fock-space expression is

O
�

=
X
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Oij

✏i � ✏j
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iaj +

1
4

X

ijkl

Oijkl

✏i + ✏j � ✏k � ✏l
a†
ia

†
jalak + . . . (19)

Returning to the flow equation, it is clear that if Hod ! 0, then ⌘ ! 0 and by Eq. (11)

we see that dH(s)
ds ! 0, so He↵ is indeed a fixed point of the flow. One potential issue

with the generator (17) is that a vanishing energy denominator will cause ⌘ to diverge. An

alternative, also suggested by White (169) (see also (171)), is

⌘atan(s) ⌘ 1
2
atan

✓
2Hod(s)

�(s)

◆
. (20)

The arctangent—motivated by the solution of a 2⇥2 system via Jacobi rotations—regulates

the divergent behavior of Eq. (17) in the presence of small denominators. The arctangent

and division by the energy denominator in Eq. (20) should be interpreted as operating

element-wise, as described above.
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Figure 2: A schematic representing of how the IMSRG approach obtains the e↵ective in-

teraction He↵ by progressively suppressing the o↵-diagonal terms of H. (a)s = 0, (b)s = 5,

(c)s = 30

The IMSRG is formulated in terms of Fock-space operators, and so its computational

cost scales polynomially with the basis size N , but not explicitly with the number of particles

being treated. In practical applications, we truncate all operators at a consistent particle

rank to close the system of flow equations arising from Eq. (11) (see Appendix A). We

also set up the decoupling conditions to be minimally invasive to avoid an uncontrolled

12 Stroberg, Hergert, Bogner, and Holt
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Valence-space  
decoupling

• Benefits from open-sourced shell-model 
machinery (kshell, Nushell, ANTOINE, …)

• Non-perturbative decoupling of particle-
hole excitations from valence space

H(s) = U†(s)HU(s)
<latexit sha1_base64="6hjjLySVM5SBZHEf8gmNccBQ9eI=">AAADD3ichVJNT9tAEH2YjwZKaQrHXiyiSkGqIidFgkulSJQql0pUqpNIBNDaWYwVx7bWTiSKuHLv/+BKuaFe+xP4D/wEDrzdOpVaBNnV7sy8mXk7s7teGoVZ7ji3M9bs3PzCi9Li0svlVyuvy29W21kyUr50/SRKVNcTmYzCWLp5mEeymyophl4kO95gR/s7Y6myMIm/5aepPBiKIA6PQ1/khI7Kdquabdgfbfew1xdBIJU2e+/tlt5cGkflilNzzLAfK/VCqaAYe0n5Dj30kcDHCENIxMipRxDIOPdRh4OU2AHOiClqofFLnGOJuSNGSUYIogPuAa39Ao1pa87MZPs8JeJSzLTxjuuzYfQYrU+V1DPKe67vBguePOHMMOsKTyk9Mi4axi/Ec5wwYlrmsIic1DI9U3eV4xjbppuQ9aUG0X36f3k+0aOIDYzHxq6JDMjhGXvMG4gpXVagb3nCYJuO+5TCSGlY4oJRkE9R6tvX9TzXnc4b45xfof7/wz9W2o1a/UOt8XWz0twuPkUJb7GOKl9+C020sMdafVzgElf4af2wrq0b69efUGumyFnDP8P6/QDIpKCU</latexit>

• Large no-core problem mapped to 
tractable active-space problem

• Simple access of low-lying spectroscopy
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tens of keV—well beyond current levels of precision—can
make the difference between an isotope being bound or
unbound. Therefore, an assessment of theoretical uncer-
tainty is mandatory for any meaningful drip line prediction.
Ab initio methods present an appealing framework for
uncertainty quantification: one begins with the most gen-
eral Lagrangian compatible with the applicable sym-
metries, organized by a systematically improvable power
counting, then solves the nuclear many-body problem
within a controlled and systematically improvable approxi-
mation scheme, propagating all uncertainties. Such a
prescription has not yet been achieved in practice, so for
the present we use a comparison with known data to
calibrate a physically motivated model for the error. Recent
work in a similar spirit has applied Bayesian machine
learning algorithms to global mass models [10,41,42]. The
main advantages of our current approach are (i) the
predictions should not be biased towards measured data,
because they were not fit to any data beyond helium and
(ii) the predictions can be benchmarked where the proton
and neutron drip lines are known experimentally (mass
models are typically applied to Z ≳ 8).
In the VS-IMSRG, a valence-space Hamiltonian of

tractable dimension is decoupled from the larger Hilbert
space via an approximate unitary transformation. We begin
in a harmonic-oscillator basis of 15 major shells (i.e.,
e ¼ 2nþ l ≤ emax ¼ 14) with an imposed cut of e1 þ e2 þ
e3 ≤ E3Max ¼ 16 for 3N matrix elements. The resulting
ground-state energies are converged to better than a few

hundred keV with respect to these truncations, and we
perform extrapolations in emax to obtain infrared conver-
gence [43,44]. Transforming to the Hartree-Fock basis, we
capture effects of 3N interactions between valence nucleons
via the ensemble normal ordering of Ref. [35]. We then use
the Magnus formulation of the IMSRG [29,45], truncating
all operators at the normal-ordered two-body level—the
IMSRG(2) approximation—to generate approximate
unitary transformations that decouple the core energy
and valence-space Hamiltonian for each nucleus to be
calculated.
By default, we employ a so-called 0ℏω valence space,

where valence nucleons occupy the appropriate single
major harmonic-oscillator shell (e.g., for 8 < NðZÞ < 20
the sd shell, 20 < NðZÞ < 40 the pf shell, etc.). At
NðZÞ ¼ 2, 8, 20, 40, we do not decouple a neutron (proton)
valence space, and no explicit neutron (proton) excitations
are allowed in the calculation. We discuss exceptions to this
below. Finally the resulting valence-space Hamiltonians are
diagonalized with the NuShellX@MSU shell-model code [46]
(with the exception of a few of the heaviest Ca, Sc, and Ti
isotopes, which were computed with the m-scheme code
Kshell [47]).
We thus calculate ground (and excited) states of all

nuclei from helium to iron, except those for which the shell-
model diagonalization is beyond our computational limits.
For the input NNþ 3N interaction, we use the potential
labeled 1.8=2.0 (EM) in Refs. [17,48], where the 3N
couplings were fit to the 3H binding energy and the 4He

FIG. 1. Calculated probabilities for given isotopes to be bound with respect to one- or two-neutron (proton) removal. The gray region
indicates nuclei that have been calculated, while the height of the boxes corresponds to the estimated probability that a given nucleus is
bound with respect to one- or two-neutron (proton) removal in the neutron-rich (deficient) region of the chart. The inset shows the
residuals with experimental ground-state energies.

PHYSICAL REVIEW LETTERS 126, 022501 (2021)

022501-2

Global study of ~700 nuclei from IMSRG(2)

Stroberg et al., PRL (2021)
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puts the deformed 2+ state at 2.88 MeV, and thus below the spherical 
2+ state at 3.15 MeV, for MCSM the deformed 2+ state at 2.89 MeV lies 
above the spherical 2+ state at 2.57 MeV. The respective 4+ states are 
located approximately 0.5–0.7 MeV above the 2+ states, hence justifying 
the tentative spin assignment for the experimental level at 3.18 MeV.  
In addition, the calculated deformed 0+ states are located approxi-
mately 0.25 MeV below their respective deformed 2+ states. A possi-
ble unobserved transition from the deformed 2+ state to the deformed 
0+ state is expected to be several orders of magnitude weaker than 
direct decays to the ground state owing to the large energy difference of 
the latter. It is further noted that restricting the MCSM calculations to  
the A3DA-m Hamiltonian43 puts the first 2+ state at 2.89 MeV and the 
second 2+ state at 4.72 MeV, strikingly demonstrating the necessity 
for the inclusion of the full neutron sdg shell to properly characterize 
low-lying deformed configurations28.

It is important to stress the structural differences between the  
spherical and deformed configurations, specifically the average number 
of particle–hole excitations above Z = 28 ( −

πnp h) and N = 50 ( −
νnp h) for 

the 0+, 2+ and 4+ states. With MCSM, these numbers are 
0.4 ! !−

πnp h  0.9 and 0.7 ! !−
νnp h  1.7 for the three spherical states, 

whereas for the deformed states the respective values are ≈ .−
πn 2 5p h  

and ≈ .−
νn 2 7p h . Similar values are obtained with LSSM. Recollecting 

the different levels populated from the (p, 2p) and (p, 3p) reactions, the 
calculated spectroscopic factors, which quantify the overlap between 
final and initial state in single-nucleon knockout reactions, can help to 
unravel the nature of levels populated. Inspection of these spectroscopic 
factors from 79Cu to final states in 78Ni with the LSSM and MCSM 
Hamiltonians shows that spherical configurations are strongly 
favoured. In Fig. 5 experimental partial cross-sections to the individual 
levels are compared with calculated ones obtained within the distorted- 
wave impulse approximation (DWIA) formalism49 folded with the 
shell-model spectroscopic factors (see Methods). Although the assump-
tions of the DWIA and shell-model spectroscopic-factor calculations 
are not fully consistent, their combination provides a qualitative picture 
that can be compared with experimental results. We note that for the 
removal of a single proton from the π0f7/2 or π0f5/2 SPOs, the calculated 
cross-sections, which are weakly dependent on the projectile and 
excitation energy, are about 1 mb. The bulk of spectroscopic strength, 
which originates from the removal of a π0f7/2 proton, is calculated at 
energies of 4–5 MeV, with an abrupt increase that is not observed 
experimentally. However, this energy is close or beyond the evaluated 

neutron separation energy50, Sn = 5.16(78) MeV. Owing to the large 
uncertainty of Sn, quantitative comparisons between the experimental 
and theoretical total reaction cross-sections were not feasible, but we 
note that LSSM places the average of the distribution lower than 
MCSM. Good agreement between experiment and theory is observed 
for the ground state, which corresponds predominantly to the removal 
of a π0f5/2 proton, and the strikingly low direct population of the 
observed low-lying levels, which is illustrated by the similar integrated 
cross-sections in Fig. 5. So far, no theoretical framework can predict 
microscopic (p, 3p) cross-sections. It must be stressed, however, that 
the calculated two-nucleon overlaps between the ground state in 80Zn 
and the excited states in 78Ni also favour the population of spherical 
final states.

Nickel isotopes represent the neutron-rich frontier for ab initio cal-
culations. For the IM-SRG results in Fig. 4b (for details see Methods), 
we calculate = .+E(2 ) 3 35 MeV1  and = .+E(4 ) 3 75 MeV1  for 78Ni using 
a proton pf and a neutron sdg SPO valence-space Hamiltonian. This 
value of +E(2 )1  is several hundred kiloelectronvolts higher than the 
present measurement. Nevertheless, it is in good agreement with exper-
imental trends across the chain and also predicts a sharp decrease in 

+E(2 )1  for 80Ni. The average numbers of proton and neutron excitations 
for the +21  state are = .−

πn 0 9p h  and = .−
νn 1 3p h , analogous to the LSSM 

and MCSM results, and the partial cross-sections (Fig. 5d) follow  
a similar trend. However, a stark difference is found for the second  
2+ state, which lies at 5.81 MeV and is spherical. This deficiency is not 
unexpected, because ab initio methods are often built on truncations 
in allowed particle–hole excitations and thus fail to capture very col-
lective features sufficiently. In fact, the +E(2 )1  value for 78Ni only  
varies by about 100 keV when using several two- and three-nucleon 
interactions, so missing particle–hole excitations are probably the main 
uncertainty in the IM-SRG calculations. In particular, our IM-SRG 
results agree with the ab initio CC predictions of ref. 26 at the level of 
single and double correlations when using the same Hamiltonian. 
When triple correlations are further included, the +E(2 )1  value for 78Ni 
calculated with CC is found to be in good agreement with the present 
measurement.

In the case of QRPA calculations, 65% of the +21  wavefunction of 78Ni 
is composed of neutron excitations from the ν0g9/2 to the ν1d5/2 orbital 
across the N = 50 shell gap, whereas 28% are proton excitations from 
the π0f7/2 to the π0f5/2 orbitals. In this approach, the neutron shell gap 
at N = 50 is robust enough so that protons across the Z = 28 shell gap 
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Fig. 4 | Comparison of theoretical predictions with experimental data. 
a, Experimental +E(2 )1  values40 for even–even nickel isotopes are compared 
with calculations using phenomenological shell-model interactions 
(LSSM28,41 and MCSM43), the beyond-mean-field approach (QRPA), the 
ab initio approach (IM-SRG and CC26), as a function of neutron number, 
N. The present result for 78Ni is indicated by the red star. b, Experimental 
level scheme compared with detailed theoretical calculations for 78Ni. 

Transitions with S.L. ≥ 5 are represented by solid arrows and dotted 
arrows correspond to S.L. < 5. The 1.54-MeV transition is not placed, 
whereas the 2.11-MeV transition has S.L. < 3. The evaluated neutron 
separation energy, Sn, and its error50 (1 s.d.) are indicated by the orange 
dashed line and shading, respectively. Predicted deformed states are 
indicated by dashed lines. For convenience, theoretical predictions show 
only the two lowest 0+, 2+ and 4+ spin-parity values.

5 6  |  N A T U R E  |  V O L  5 6 9  |  2  M A Y  2 0 1 9

Taniuchi et al.,  Nature (2019)VS-IMSRG: 3.350 (50) MeV

DMRG:        3.007 (17) MeV

Overview of low-ling spectrum in 78Ni

10% effect!
(not IMSRG, EFT, model space)
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Density matrix renormalization group

• Matrix product state (MPS) ansatz for fully correlated wave function

9

physical indices

bond indices

d dd2 d2d3

• Approximate MPS representation obtained by limiting intermediate summation

bond dimension M

• DMRG defines a variational procedure for 
the calculation of expectation values

d=2: local dimension 
(occupied/unoccupied)

• Local optimization of two-site tensors

site i site i+1

White, PRL (1993) Schollwöck, Annals of Physics (2011)

• Efficient encoding of nuclear correlations

<latexit sha1_base64="IDjI6JsjPtu8xn9Nk/wBA7BM8L8=">AAACRHicbVDLSsNAFJ3UV62vqEs3g0VwVRIp1Y1QEKG4qmAf0IQymU7aoZNJmJkUSsw/+RV+guBKwa07cStO2ixs64ELh3PuY+Z4EaNSWdarUVhb39jcKm6Xdnb39g/Mw6O2DGOBSQuHLBRdD0nCKCctRRUj3UgQFHiMdLzxTeZ3JkRIGvIHNY2IG6Ahpz7FSGmpb97dwmtYcnyBcOIwxIeMQKcpKXyEDV0z6oi5ni53/HXTUt8sWxVrBrhK7JyUQY5m3/xwBiGOA8IVZkjKnm1Fyk2QUBRnC51YkgjhMRqSnqYcBUS6yezPKTzTygD6odDFFZypfycSFEg5DTzdGSA1ksteJv7n9WLlX7kJ5VGsCMfzQ37MoAphFiAcUEGwYlNNEBZUvxXiEdL5KR3z4hVBJqlOxV7OYJW0Lyp2rVK9r5brtTyfIjgBp+Ac2OAS1EEDNEELYPAEXsAbeDeejU/jy/ietxaMfOYYLMD4+QXdNLBP</latexit>

E =
h�|H|�i
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Revisiting the example of 78Ni
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• DMRG: economic representation 
of the many-body wave function

• Robust convergence of DMRG 
energies at large bond dimension

see also Legeza et al., PRC (2015)

• Exact solution out of reach:     
~220 billion Slater determinants

DMRG vs. CI in valence-space calculation

(particle-hole truncation)

2

body operators of higher particle rank are truncated at the
normal-ordered two-body level, defining the IMSRG(2) trun-
cation. The valence-space-decoupled Hamiltonian HVS used
as input for the DMRG calculation is represented in second-
quantized form as

HVS =
X

p

"p c†pcp +
1
4

X

pqrs

Vpqrs c†pc†qcscr , (1)

where "p are the single-particle energies and Vpqrs the (anti-
symmetrized) two-body matrix elements. The collective label
p = (np, lp, jp,mp, tp) gathers all quantum numbers of a single
nucleon: radial quantum number n, orbital angular momen-
tum l, total angular momentum j and its projection m, and
isospin projection t distinguishing protons and neutrons.

The initial VS-IMSRG decoupling is performed in a single-
particle space of 15 major harmonic-oscillator shells, i.e.,
emax ⌘ (2n + l)max = 14, and the 3N interaction matrix ele-
ments are restricted to e1 + e2 + e3 6 E3max = 16. For all
our calculations, we employ the 1.8/2.0 NN+3N Hamiltonian
from Ref. [50], which is based on chiral EFT interactions. The
three-nucleon interactions are taken into account by keeping
only two-body contributions after normal ordering [51–53].

In the DMRG calculation we use the occupation-number
representation of an orbital, yielding a local Hilbert space
Hloc. with dimension d = 2. The full Hilbert space of N or-
bitals is then built from a tensor product of the local spaces,
i.e., HN

⌘ ⌦
N
i=1Hi. The DMRG approach provides a varia-

tional procedure for the minimization of the ground-state en-
ergy (or the lowest energy for a given total angular momentum
and parity) using a matrix product state (MPS) parametriza-
tion of the many-body state (see, e.g., Ref. [41]), that eventu-
ally converges to the full configuration interaction (FCI) limit
for a given Hilbert space. To this end, the nuclear orbitals
are mapped onto a one-dimensional chain where their or-
der is determined by reducing long-range entanglement [54].
For the two-site DMRG variant we split the tensor space ac-
cording to HN = H (left)

⌦ Hp ⌦ Hp+1 ⌦ H
(right) where

H
(left) (H (right)) denote the left (right) blocks. For a given

site p the MPS factor is updated through a diagonalization
of the neighboring block Hamiltonian. The state’s compo-
nents are obtained through a series of unitary transformations
(“sweeps”) going through the orbital space forward from left
to right, and then backward, until convergence is reached. The
method’s intrinsic truncation error is set by the bond dimen-
sion M = dimH (left) = dimH (right) corresponding to the di-
mension of the left/right blocks. Eventually, the size of the
bond dimension to reach an acceptable convergence is in di-
rect correspondence with the amount of quantum entangle-
ment in the many-body state [42].

Entanglement and correlation measures.– For the study
of correlation e↵ects in nuclear many-body systems, we ex-
plore a set of entanglement measures [55, 56]. The total en-
tropy [57] Itot ⌘

P
p sp is obtained from the single-orbital en-

tropy sp ⌘ �Tr ⇢p ln ⇢p, where ⇢p is the one-orbital-reduced
density matrix of the orbital p obtained by tracing out all other
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FIG. 1. Top panel: dimension of the many-body space in CI (left)
and VS-DMRG (right) calculations including up to Tmax particle-
hole excitations and as a function of the bond dimension M, respec-
tively. The full valence-space dimension is indicated by the dotted
line (FCI). Bottom panel: energies of the ground state and the first
2+ state in 78Ni obtained in CI (left) and VS-DMRG (right) calcu-
lations. The extrapolated results are given by the grey bands with
dot-dashed central values for the VS-DMRG (see text for details).

orbitals except for i [58]. The single-orbital entropy is directly
linked to the natural occupation numbers in the many-body
state [59]. Therefore, systems with strong static correlations
give rise to increased values for sp and, consequently, Itot. In
the case of weakly correlated systems, occupation numbers
are either np ⇡ 0 or 1, reflecting the existence of a dominant
reference determinant, as obtained in a mean-field calcula-
tion, for example. As a consequence, nuclei with shell clo-
sures will be accompanied by a local minimum in the total
entropy. To more cleanly disentangle correlations for pro-
tons and neutrons, we define the proton (neutron) total en-
tropy I(p)

tot (I(n)
tot ) where only single-orbital entropies of a given

particle species are summed over. Correlations among pairs
of orbitals can be further studied from the entanglement en-
tropy spq ⌘ �Tr ⇢pq ln ⇢pq using the two-orbital reduced den-
sity matrix ⇢pq. Combing single- and two-orbital entropies
leads to the mutual information, Ip,q ⌘ sp + sq � spq [60]. En-
tanglement studies in nuclear theory have been performed in
shell-model applications [47, 61] and in no-core calculations
of light systems [62]. We emphasize that the entanglement
measures are of non-observable character, as they depend on
the nuclear Hamiltonian and the many-body basis (see, e.g.,
Refs. [63, 64]). Thus, we focus on their qualitative behavior.

Tichai et al., PLB (2023)

• Conventional diagonalization 
makes robust UQ impossible



A. Tichai MITP - Uncertainty quantification in nuclear physics

Intermezzo: Entanglement and correlations
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• Agreement with conventional prediction 
based on 2+ excitation energies

• Pronounced kink at 78Ni hints at neutron 
shell closure (~ dominated by HF)

Total entropy in even-mass nickel isotopes

Phenomenology through the 
eyes of information theory!

see also Taniuchi et al., Nature (2019)

Tichai et al., PLB (2023)
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Neutron-rich nickel isotopes from VS-DMRG.– To show
the power of the VS-DMRG, we apply this new approach
to the description of neutron-rich nickel isotopes that are at-
tracting significant experimental attention, e.g., with the re-
cent discovery of the doubly magic nature of 78Ni [66]. In
fact, ab initio calculations approaching 78Ni require addi-
tional truncations of the configuration interaction (CI) or shell
model space when exploring a 0~! valence space on top of
a 60Ca core [67]. In this work, the CI calculations haven
been performed using the KSHELL [68] and BIGSTICK [69]
codes, while the DMRG calculations together with quantum-
information-based analysis tools used the DMRG-Budapest
program package [70].

In Fig. 1 we compare large-scale CI and VS-DMRG calcu-
lations for 78Ni based on the same VS-IMSRG interaction as
in Ref. [66]. The top panel shows the dimension of the CI and
VS-DMRG spaces, respectively. For 78Ni, the FCI dimension
is 2.3 ·1011, while our largest CI calculations involved 1.9 ·109

configurations employing a truncation at Tmax = 7 particle-
hole (ph) excitations. In contrast, the dimension of the DMRG
space increases only gradually, and is well tractable even for
the largest considered bond dimension M = 10240, with cor-
responding configuration space of ⇡ 107, two orders of mag-
nitude below the largest accessible CI dimension. The DMRG
dimension is essentially the dimension of the space spanned

FIG. 3. Neutron and proton entropies from VS-DMRG calculations
for the oxygen chain (left) and for the evolution at N = 16 from the
closed proton shell to 26Ne and 28Mg (right). Vertical dashed lines
indicate neutron shell closures.

by the two block spaces and the two orbitals, ⇠ M2d2, further
constrained by selection rules for parity, isospin and angular-
momentum projection. Figure 1 clearly shows that the VS-
DMRG results for the ground and first 2+ excited states reveal
a more robust convergence pattern compared to the CI cal-
culation. While the ground-state energy converges system-
atically in the CI case, there is still a sizeable linear trend
present for the first excited 2+ state, making the extrapola-
tion of the excitation energy challenging. This may poten-
tially hint at relevant 8p8h excitations missing in the Tmax = 7
truncation. In contrast, the VS-DMRG results converge sys-
tematically beyond M = 1024. Fitting a quadratic polynomial
fextr.(1/M) = a/M2 + b/M + c enables a robust extrapolation
of the energies [42]. Extrapolation uncertainties are obtained
by taking into account only the 3, 4, 5 data points correspond-
ing to the largest bond dimensions, yielding a VS-DMRG es-
timate of E?2+ = 3.007 ± 0.017 MeV. At much lower space
dimensions, the VS-DMRG approach thus yields much lower
uncertainties compared to CI (E?2+ = 3.141 ± 0.205 MeV).

Next we study the emergence of shell structure from the
perspective of the information entropy from our VS-DMRG
calculations. Figure 2 displays neutron, proton and total en-
tropies and 2+ excitation energies for 70�80Ni. The total en-
tropy shows a pronounced kink for 78Ni consistent with its
doubly magic nature. The proton contribution to the total en-
tropy is small from 70Ni to 78Ni and then exhibits a strong
increase to 80Ni. We attribute this sudden increase of proton
correlations to the onset of nuclear deformation e↵ects. This
is also consistent with the rapid transition from spherical to
deformed ground states beyond 78Ni predicted in Ref. [66].
As expected from the VS-IMSRG results in Ref. [66], the
VS-DMRG reproduces nicely the high 2+ excitation energy
in 78Ni, with an improved result of E?2+ = 3.01 MeV com-
pared to the published VS-IMSRG excitation energy E?2+ .
3.34 MeV) [67]. The di↵erence to the experimental value of
E?2+ = 2.6 MeV is therefore significantly decreased for this

shell closure

• Entanglement through information science
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• Total entropy quantifies entanglement
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Towards spectroscopy

12

DMRG/CI observables vs. effective dimension of HA

• DMRG: economic representation 
of the many-body wave function

• Slow convergence of binding 
energies in CI calculations

• Robust convergence of DMRG 
energies at large bond dimension

• DMRG does extend CI capacities

• B(E2) transition: more systematic 
convergence pattern compared to CI

Tichai et al., arXiv:2402.18723



A. Tichai MITP - Uncertainty quantification in nuclear physics

Transitional nuclei at N=50

13

• Ratios of 4+/2+ excitation energies 
close to rigid-rotor limit

<latexit sha1_base64="sMUIQNV8pBlg0m3fR5RMSmIyk28="></latexit>

E?rot ⇠ J(J + 1)

• Increase of B(E2) values towards 
open-shell 74Cr

• Rapid transition between single-
particle-like and collective excitations

• Qualitative agreement with previous 
shell-model calculations

Nowacki et al., PRL (2016)

• Island-of-inversion: very low 0p0h-
component in ground state 

Spectroscopy of N=50 isotones
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Future challenges: shape coexistence

14

• Emergence of deformed excited-
state rotational band in 78Ni

Nowacki et al., PRL (2016)

• Second 0+ state comes out much higher 
at 5 MeV: IMSRG(3) and beyond?

Spectroscopy of N=50 isotones

now the 0p-0h components amount to 33%. The distortion
of the spectrum is due to the mixing of the spherical and the
deformed 0þ’s. Thus, the doublet of 0þ states in 76Fe
signals the rapid transition from the doubly magic ground
state of 78Ni to the fully rotational case of 74Cr, where the
collective behavior is well established, and the neutron
4p-4h intruder becomes dominant in the yrast band, with a
2þ at 0.27 MeV and Eð4þÞ=Eð2þÞ ¼ 3 (see Fig. 3).
Collectivity persists to a lesser extent in 72Ti, whose 2þ

is at 0.41 MeV. There is no experimental information for
these nuclei yet. Table II shows the calculated BðE2Þ values
and spectroscopic quadrupole moments, which correspond,
in the well-deformed case of 74Cr, to βmass ∼ 0.32 and
βcharge ∼ 0.35 in very nice agreement with the results of the
CHF PES. In Table III, we display the occupation numbers
of the neutron and proton orbits above the N ¼ 50, Z ¼ 28
doubly magic closure. It is seen that in the neutron side,
they evolve from 2.7 neutrons excited in 78Ni to a
maximum of 4.9 neutrons in 74Cr, and down to 3.3 neutrons
in 70Ca. Importantly, we verify that in all the cases, all the
excited orbits have non-negligible occupations, as expected
in a pseudo-SU(3) regime, which, however, is only fully
dominant in 74Cr. In the proton sector, the p3=2 orbit is
preferentially populated, as should happen in the quasi-
SU(3) limit, except in 78Ni, where the proton collectivity is
rather of pseudo-SU(3) type. 70Ca is the most neutron-rich

nuclei in our palette and the one for which our predictions
are less dependable because of the far-off extrapolation of
the neutron ESPEs. It has a curious structure, more vibra-
tional than superfluid, with its ground state wave function
evenly split ð24=24=21=16Þ% between the ð0=2=4=6Þp-h
configurations, and a first excited 0þ state at about 500 keV
of doubly magic, N ¼ 50, Z ¼ 20, character.
Finally, we gather in Fig. 4, the evolution of the 2þ

excitation energies for the nickel and chromium chains. The
present calculations are complemented towards N ¼ 40,
with the results obtained using the LNPS interaction and
valence space [13]. It is seen that the magic peaks in the
nickels, at N ¼ 40 and N ¼ 50, disappear completely in
the chromiums: the fingerprint of the onset of deformation
and of the entrance in the IOIs. The same is indeed true
for the iron chain. The agreement of the SM CI
description with experiment may soon extend to full chains
of isotopes from the proton to the neutron drip lines, for
instance, from 48Ni and 44Cr (N ¼ 20) in the pf shell
with the KB3G interaction, to 80Ni and 76Cr (N ¼ 52)
using PFSDG-U.
In conclusion, it looks as if nature would like to replicate

the N ¼ 40 physics at N ¼ 50. Shape coexistence in
doubly magic 78Ni turns out to be the portal to a new
IOI at N ¼ 50, which merges with the well established one
at N ¼ 40 for the isotopes with Z ≤ 26. With this new
addition, the archipelago of IOIs in the neutron rich shores
of the nuclear chart counts now five members: N ¼ 8, 20,
28, 40, and 50.

This work is partly supported byMINECO (Spain) Grant
No. FPA2014-57196 and Programme “Centros de
Excelencia Severo Ochoa” SEV-2012-0249, and by an
USIAS Fellowship of the Université de Strasbourg.

Note added.—A paper describing the heaviest nickel
isotopes with “ab initio” methods has appeared in [30]
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FIG. 3. Theoretical spectra of the N ¼ 50 isotones with the
PFSDG-U interaction. In red the deformed intruder band of 78Ni.

TABLE III. Average number of p-h excitations and occupancies
of the neutron and proton orbits above N ¼ 50 and Z ¼ 28 for
several intruder states.

nνp−h nπp−h dν5=2 sν1=2 gν7=2 dν3=2 pπ
3=2 fπ5=2 pπ

1=2

78Ni 0þ2 2.7 2.3 1.1 0.8 0.4 0.4 0.9 1.0 0.4
76Fe 2þ1 3.0 1.4 1.2 0.8 0.6 0.4 0.8 0.4 0.2
74Cr 0þ1 4.9 1.6 1.8 1.1 1.2 0.8 1.1 0.3 0.2
72Ti 0þ1 4.8 0.9 2.2 0.7 0.6 1.3 0.7 0.1 0.1
70Ca 0þ1 3.5 0.0 1.9 0.3 0.2 1.1 0.0 0.0 0.0
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FIG. 4. 2þ energy systematics in the nickel and chromium
isotopic chains. Experimental data compared with calculations
using the LNPS [13] and PFSDG-U interactions.
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Spectroscopic results.—Let’s move now to the predic-
tions of the full-fledged diagonalizations using the inter-
action PFSDG-U, starting with the results at a fixed number
of neutron excitations across the N ¼ 50 closure. For this
calculation, we do not impose any truncation in the proton
space. The structure of the 2p-2h and 4p-4h bands are very
similar for all the isotopes (except for 70Ca) and correspond
to well-deformed rotors with a nearly perfect JðJ þ 1Þ
spacing, and BðE2Þ is consistent with deformation param-
eters very close to the ones obtained in the SU(3) limit (we
use standard effective charges qπ ¼ 1.31 and qν ¼ 0.46).
For the 2p-2h yrast band of 74Cr, we have Eð2þÞ ¼
0.27 MeV and BðE2Þð2þ1 → 0þ2 Þ ¼ 360 e2 fm4, whereas
for the 4p-4h one, we get Eð2þÞ ¼ 0.17 MeV and
BðE2Þð2þ1 → 0þ2 Þ ¼ 555 e2 fm4. We have estimated the
correlation energies of the 2p-2h and 4p-4h neutron
configurations, diagonalizing a properly normalized quad-
rupole interaction in the sdg space for the neutrons and the
quasi-pf doublet for the protons. The results are displayed
in Table I. It is seen that both for the 2p-2h and 4p-4h cases,
the largest correlation energies correspond to 74Cr and 76Fe,
followed by those of 78Ni and 72Ti. Notice that removing
protons from 78Ni, the intruder configurations will benefit
from the gain in correlation energy and from the reduction

of the N ¼ 50 neutron gap; therefore, we may expect an
abrupt shape change producing an IOI.
For the full diagonalizations, we use a truncation scheme

in terms of the sum of the number of neutron excitations
across N ¼ 50 and proton excitations across Z ¼ 28 (t).
We perform full-space calculations for Ca, Ti, and Cr and
we are limited to t ¼ 8 for Ni and Fe, but the calculations
seem to be converged. For 78Ni (see Fig. 3), we predict a
doubly magic ground state at 65%, with a first 2þ excited
state at 2.88 MeV, which belongs to the (prolate) deformed
band based in the intruder 0þ, which appears at an
excitation energy of 2.65 MeV, and a second 2þ of
1p-1h nature at 3.15 MeV, connected to the ground state
with BðE2Þ ¼ 110 e2 fm4. We have plotted as well the
yrast 4þ, which belongs to the deformed band, its 6þ

member, and several states of particle-hole nature. The
BðE2Þð2þ1 → 0þ2 Þ goes up to 516 e2 fm4. The location of
the intruder band depends of the competition of the
monopole losses, whose linear part is given by the neutron
ESPEs and the correlation gains (see Table I). In 78Ni, the
balance favors the closed shell, with the intruder 2p-2h
(neutron) band below 3 MeV. Removing two protons in
76Fe, the N ¼ 50 gap is reduced and the correlation energy
increased. This produces an abrupt lowering of the intruder
configurations whose bandheads become nearly degener-
ated with the 0p-0h N ¼ 50 closure. Hence, the ground
state of 76Fe turns out to be a very complicated mixture of
np-nh configurations, including 21% of 0p-0h and 33% of
neutron 2p-2h. The yrast 2þ appears at 0.43 MeV and it is
rather of 2p-2h plus 4p-4h nature. This mismatch produces
a certain quenching of the BðE2Þ relative to the spectro-
scopic quadrupole moment of the 2þ as seen in Table II.
Most interestingly, the first excited state is another 0þ at
0.36 MeV, which is also of very mixed nature, although
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FIG. 2. Projected Energy Surfaces for 78Ni, 76Fe, and 74Cr with
the interaction PFSDG-U.

TABLE I. Quadrupole correlation energies of the neutron
intruder configurations, relative to the N ¼ 50 closure (in MeV).

78Ni 76Fe 74Cr 72Ti 70Ca

2p-2h 5.3 6.5 7.0 5.3 2.2
4p-4h 9.3 10.9 11.3 9.1 4.8

TABLE II. Some E2 properties of the N ¼ 50 isotones.
Energies in MeV, BðE2Þ’s in e2 fm4, Q’s in e fm2.

ΔE BðE2Þ↓ Qs

2þ 4þ 6þ 2þ 4þ 6þ 2þ 4þ 6þ

78Ni 2.88 3.45 4.14 32 783 1021 −39 −65 −75
76Fe 0.43 1.05 1.90 314 707 969 −45 −57 −63
74Cr 0.24 0.72 1.38 630 911 1004 −51 −66 −74
72Ti 0.41 1.02 1.78 321 506 580 −34 −45 −53
70Ca 0.91 1.80 2.56 119 194 5 −3 þ8 þ8
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Spectroscopic results.—Let’s move now to the predic-
tions of the full-fledged diagonalizations using the inter-
action PFSDG-U, starting with the results at a fixed number
of neutron excitations across the N ¼ 50 closure. For this
calculation, we do not impose any truncation in the proton
space. The structure of the 2p-2h and 4p-4h bands are very
similar for all the isotopes (except for 70Ca) and correspond
to well-deformed rotors with a nearly perfect JðJ þ 1Þ
spacing, and BðE2Þ is consistent with deformation param-
eters very close to the ones obtained in the SU(3) limit (we
use standard effective charges qπ ¼ 1.31 and qν ¼ 0.46).
For the 2p-2h yrast band of 74Cr, we have Eð2þÞ ¼
0.27 MeV and BðE2Þð2þ1 → 0þ2 Þ ¼ 360 e2 fm4, whereas
for the 4p-4h one, we get Eð2þÞ ¼ 0.17 MeV and
BðE2Þð2þ1 → 0þ2 Þ ¼ 555 e2 fm4. We have estimated the
correlation energies of the 2p-2h and 4p-4h neutron
configurations, diagonalizing a properly normalized quad-
rupole interaction in the sdg space for the neutrons and the
quasi-pf doublet for the protons. The results are displayed
in Table I. It is seen that both for the 2p-2h and 4p-4h cases,
the largest correlation energies correspond to 74Cr and 76Fe,
followed by those of 78Ni and 72Ti. Notice that removing
protons from 78Ni, the intruder configurations will benefit
from the gain in correlation energy and from the reduction

of the N ¼ 50 neutron gap; therefore, we may expect an
abrupt shape change producing an IOI.
For the full diagonalizations, we use a truncation scheme

in terms of the sum of the number of neutron excitations
across N ¼ 50 and proton excitations across Z ¼ 28 (t).
We perform full-space calculations for Ca, Ti, and Cr and
we are limited to t ¼ 8 for Ni and Fe, but the calculations
seem to be converged. For 78Ni (see Fig. 3), we predict a
doubly magic ground state at 65%, with a first 2þ excited
state at 2.88 MeV, which belongs to the (prolate) deformed
band based in the intruder 0þ, which appears at an
excitation energy of 2.65 MeV, and a second 2þ of
1p-1h nature at 3.15 MeV, connected to the ground state
with BðE2Þ ¼ 110 e2 fm4. We have plotted as well the
yrast 4þ, which belongs to the deformed band, its 6þ

member, and several states of particle-hole nature. The
BðE2Þð2þ1 → 0þ2 Þ goes up to 516 e2 fm4. The location of
the intruder band depends of the competition of the
monopole losses, whose linear part is given by the neutron
ESPEs and the correlation gains (see Table I). In 78Ni, the
balance favors the closed shell, with the intruder 2p-2h
(neutron) band below 3 MeV. Removing two protons in
76Fe, the N ¼ 50 gap is reduced and the correlation energy
increased. This produces an abrupt lowering of the intruder
configurations whose bandheads become nearly degener-
ated with the 0p-0h N ¼ 50 closure. Hence, the ground
state of 76Fe turns out to be a very complicated mixture of
np-nh configurations, including 21% of 0p-0h and 33% of
neutron 2p-2h. The yrast 2þ appears at 0.43 MeV and it is
rather of 2p-2h plus 4p-4h nature. This mismatch produces
a certain quenching of the BðE2Þ relative to the spectro-
scopic quadrupole moment of the 2þ as seen in Table II.
Most interestingly, the first excited state is another 0þ at
0.36 MeV, which is also of very mixed nature, although
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FIG. 2. Projected Energy Surfaces for 78Ni, 76Fe, and 74Cr with
the interaction PFSDG-U.

TABLE I. Quadrupole correlation energies of the neutron
intruder configurations, relative to the N ¼ 50 closure (in MeV).

78Ni 76Fe 74Cr 72Ti 70Ca

2p-2h 5.3 6.5 7.0 5.3 2.2
4p-4h 9.3 10.9 11.3 9.1 4.8

TABLE II. Some E2 properties of the N ¼ 50 isotones.
Energies in MeV, BðE2Þ’s in e2 fm4, Q’s in e fm2.

ΔE BðE2Þ↓ Qs

2þ 4þ 6þ 2þ 4þ 6þ 2þ 4þ 6þ

78Ni 2.88 3.45 4.14 32 783 1021 −39 −65 −75
76Fe 0.43 1.05 1.90 314 707 969 −45 −57 −63
74Cr 0.24 0.72 1.38 630 911 1004 −51 −66 −74
72Ti 0.41 1.02 1.78 321 506 580 −34 −45 −53
70Ca 0.91 1.80 2.56 119 194 5 −3 þ8 þ8

PRL 117, 272501 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

30 DECEMBER 2016

272501-3

78Ni74Cr

see also Taniuchi et al., Nature (2019)

• Pronounced spherical minimum in 
78Ni but prolate minimum in 74Cr

Collective phenomena 
induce larger uncertainties!

Challenge:
Develop ab initio machinery for

 nuclear deformation.
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Vernik et al., (unpublished)
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Bogoliubov coupled cluster theory 
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• Coupled cluster: exponential representation of ground-state wave function 
<latexit sha1_base64="WRvh2BOwQ+pQx4YIA5wc5KVpobY="></latexit>

|�BCCi = eT |�i

• Similarity-transformed grand potential as core object in formalism
<latexit sha1_base64="SGiqA8GNNdCNGUEmWlid5m6U1DQ="></latexit>

�̃ = e�T �eT
<latexit sha1_base64="cbpJI2ZYcUaT8cjKWPs9dkMqhP8=">AAACEHicbVDLSsNAFJ34rPUVFdy4GSyCG0sipboRKm66s4J9QBPKZHrTDp08mJkUSuxP+Alu9QPciVv/wLU/4rTNwrYeuHA45x7u5XgxZ1JZ1rexsrq2vrGZ28pv7+zu7ZsHhw0ZJYJCnUY8Ei2PSOAshLpiikMrFkACj0PTG9xN/OYQhGRR+KhGMbgB6YXMZ5QoLXXMY+c+gB7BN7iKL7DDdbJL8G3HLFhFawq8TOyMFFCGWsf8cboRTQIIFeVEyrZtxcpNiVCMchjnnURCTOiA9KCtaUgCkG46/X+Mz7TSxX4k9IQKT9W/iZQEUo4CT28GRPXlojcR//PaifKv3ZSFcaIgpLNDfsKxivCkDNxlAqjiI00IFUz/immfCEKVrmz+ioDhWLdiL3awTBqXRbtcLD2UCpVy1k8OnaBTdI5sdIUqqIpqqI4oekIv6BW9Gc/Gu/FhfM5WV4wsc4TmYHz9AnlQm5o=</latexit>

� = H � �A

• Definition in terms of cluster operator with unknown cluster amplitudes
<latexit sha1_base64="rkbpNaJio09n78r3lqw8rh/NoUk="></latexit>

T = T1 + T2 + ... + TA
<latexit sha1_base64="SURefB8WSSRn/fX5IPoIhxj+BHQ="></latexit>

T2 =
1
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• Determine cluster amplitudes iteratively from left-projected amplitude equation
<latexit sha1_base64="x1ed8xnu+SR9eTl01Abwvc05id4="></latexit>

h�pq|�̃|�i = 0
<latexit sha1_base64="MMa8LKg8gmd+Uwnv56rYG3VVbAc="></latexit>

h�pqrs|�̃|�i = 0

Signoracci et al., PRC (2015)

Quasi-particle extension of standard CC theory
(‘CC theory for HFB states’)
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(Ad hoc) Many-body uncertainties
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• Truncation of E3max for three-body matrix elements

• Finite size of the one-body Hilbert space (emax)

• Normal-ordering approximation of three-body force

• Truncation of BCC expansion: missing T3 amplitudes

10 % of correlation energy

2 % of total binding energy

1 - 2 % of total binding energy

explicit extrapolation 

• Lack of particle-number projection of wave function

approximate HFB projection 
(less than 3 MeV)
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Validation in the calcium chain
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• Reproduction of experimental trends 
and VS-IMSRG predictions
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• Consistent prediction of two-neutron 
separation energies

• Tentative drip line ‘assignment’ at 
A=60 but more neutron-rich nuclei 
supported within error bars

• Two-neutron shell gap serves as 
proxy for shell closures

<latexit sha1_base64="2NO1OLKAMKn2+Y45D4mxyR+iah8=">AAACLXicbZDLSgMxFIYzXmu9VV26CRahgi0zVasboaALV1LRXrAtJZOeamgmMySZQpn2QXwKH8GtPoALQdy48DVML1Cr/hD4851zOMnvBpwpbdtv1szs3PzCYmwpvryyurae2NgsKT+UFIrU576suEQBZwKKmmkOlUAC8VwOZbd9NqiXOyAV88WN7gZQ98idYC1GiTaokTionQPXpBFlRT91uX+7h09x73py7eE0noB0doAaiaSdsYfCf40zNkk0VqGR+Kw1fRp6IDTlRKmqYwe6HhGpGeXQj9dCBQGhbXIHVWMF8UDVo+Hn+njXkCZu+dIcofGQ/pyIiKdU13NNp0f0vfpdG8D/atVQt07qERNBqEHQ0aJWyLH28SAp3GQSqOZdYwiVzLwV03siCdUmz+ktEjp9k4rzO4O/ppTNOLnM0dVhMp8b5xND22gHpZCDjlEeXaACKiKKHtATekYv1qP1ar1bH6PWGWs8s4WmZH19A0kYpcE=</latexit>

�2n(N,Z) = |S2n(N,Z)| � |S2n(N � 2, Z)|

<latexit sha1_base64="eAFhXmzYAM/m+EK7+haxit+PMRc=">AAACGXicbZDLSgMxFIYz9VbrrerShcEiVLBlpmh1IxREcCUV7QXboWTStA3NZIYkUyjDLH0KH8GtPoA7cevKtS9ipp2Frf4Q+PjPOZyT3/EZlco0v4zUwuLS8kp6NbO2vrG5ld3eqUsvEJjUsMc80XSQJIxyUlNUMdL0BUGuw0jDGV7G9caICEk9fq/GPrFd1Oe0RzFS2upk9+86YYlH+ZvjhyN4Aa+mUIihUNLYyebMojkR/AtWAjmQqNrJfre7Hg5cwhVmSMqWZfrKDpFQFDMSZdqBJD7CQ9QnLY0cuUTa4eQjETzUThf2PKEfV3Di/p4IkSvl2HV0p4vUQM7XYvO/WitQvXM7pNwPFOF4uqgXMKg8GKcCu1QQrNhYA8KC6lshHiCBsNLZzW4RZBTpVKz5DP5CvVS0ysXT25NcpZzkkwZ74ADkgQXOQAVcgyqoAQwewTN4Aa/Gk/FmvBsf09aUkczsghkZnz+Hvpzs</latexit>

S2n(N,Z) = E(N,Z) � E(N � 2, Z)

Tichai et al., PLB (2024)
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Heavy-mass frontier: tin
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Heaviest open-shell ab initio calculations so far!
(To the best of my knowledge)

Tichai et al., PLB (2024)

100 110 120 130 140 150 160 170 180

A

°1200

°1000

°800

°600

°400

E
0

[M
eV

]

EM 1.8/2.0

ASn

emax = 12

E3max = 24

HFB

BMBPT(2)

BCCSD

Exp.

HFB

BMBPT(2)

BCCSD

Exp.



A. Tichai MITP - Uncertainty quantification in nuclear physics

Neutron dripline in tin
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UQ (many-body + interaction) needed 
to quantitatively compare dripline predictions!

Tichai et al., PLB (2024)

BCC:
[140,162]
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Towards higher accuracy
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Vernik, Demol, Tichai, Duguet (unpublished)
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• Systematic improvement towards VS-
IMSRG(2) simulations

• Incorporation of leading-order triples 
effects in BCC framework

• Differential quantities remain largely 
unaffected in calcium isotopes

• Two-neutron shell gap serves as 
proxy for shell closures

• Many-body uncertainty: triples in CC 
contribute 8-10 % of correlation energy
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Radii in tin isotopes
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Demol, Tichai, Duguet (unpublished)

• Well-known underproduction of 
charge radii from chiral EFT

EM 1.8/2.0: ~ 5 %

N2LOGO: ~ 1 %

• Observables consistently 
calculated in BCC theory 

134Sn

104-106Sn

Charge in tin isotopes

• New experiment data available

Gorges et al., PRL (2019)

Gustafson et al., (in prep.)

• New hope from novel interactions 
with large LECs (cD = 7.5)

Arthuis et al., arXiv:2401.06675
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Differential charge radii
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Interaction sensitivity in neutron-rich tins

Demol, Tichai, Duguet (unpublished)

Interaction dependence
(N=82 shell closure)
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Neutron skins in tin
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Demol, Tichai, Duguet (to be published)

• Local variations due to nuclear 
shell structure

• Linear dependence of neutron 
skins on ispospin asymmetry

• Correlated with slope parameter 
in symmetric nuclear matter

Nuclear EOS

• Sizeable uncertainties due to 
incomplete model space (emax)
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Summary
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• MPS representation is superior to CI representation

Establish DMRG as scalable alternative to CI

• VS-DMRG: novel merging of complementary ab initio approaches

Next steps: explore larger spaces beyond shell model capacities

Heavy nuclei from Bogoliubov coupled cluster

• Scalable approach to heavy nuclei at mild computational cost

Next steps: test new set of chiral interactions for A>100

• Extension applicable to general open-shell nuclei 

• Robust convergence of observables with reduced uncertainties

• New insights into interaction effects from chiral EFT
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For discussion
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• Design of robust error models for nuclear many-body uncertainties

<latexit sha1_base64="DDkl/uJu78k7FkjcC4SuDuX5QOw="></latexit>�MB = �CC/IMSRG + �FBS + �NO2B + �3B

• Different observables have different sensitivities to nuclear correlations

B(E2): quadrupole collectivity
E0: particle-hole correlations 

• Current many-body machinery must be extended to target complex structures

Deformation, clustering, halo structures, …

• EFT advantage: converged predictions from ‘many’ consecutive orders available

IMSRG(2) IMSRG(3) IMSRG(4)

LO NLO N2LO N3LO

versus

• Development of many-body emulators is a highly non-trivial problem


