Recent advances in nuclear many-body theory

MITP workshop Uncertainty quantification in nuclear physics

June 24th, 2024

Alexander Tichai

Technische Universität Darmstadt

Outline

Theme: Many-body developments with an eye on theory uncertainties.

Part I: Structure around ⁷⁸Ni from the density matrix renormalization group (Configuration mixing)

Part II: Towards heavy-mass applications from Bogoliubov coupled cluster theory (Symmetry breaking)

Perspectives

Ab initio nuclear structure

Part I The nuclear density matrix renormalization group

Tichai et al., PLB (2023) Tichai et al., arXiv:2402.18723

DMRG collaboration

Achim and Takayuki K. Kapás, S. Knecht, A. Kruppa, Ö. Legeza, P. Moca, M. Werner, G. Zarand

In-medium similarity renormalization group

A. Tichai | MITP - Uncertainty quantification in nuclear physics e reference state $|\Phi\rangle$

The valence-space IMSRG

 Non-perturbative decoupling of particlehole excitations from valence space

 $H(s) = U^{\dagger}(s) H U(s)$

- Large no-core problem mapped to tractable active-space problem
- Many-body observables from large-space shell-model diagonalization
- Simple access of low-lying spectroscopy
- Benefits from open-sourced shell-model machinery (kshell, Nushell, ANTOINE, ...)

Stroberg et al., Ann. Rev. Nucl. Part. Sci (2019)

Successes of the IMSRG

Global study of ~700 nuclei from IMSRG(2)

Stroberg et al., PRL (2021)

Many-body uncertainties

Overview of low-ling spectrum in 78Ni

Density matrix renormalization group

• Matrix product state (MPS) ansatz for fully correlated wave function

White, PRL (1993)

Approximate MPS representation obtained by limiting intermediate summation

bond dimension M

- DMRG defines a variational procedure for the calculation of expectation values
- Local optimization of two-site tensors

• Efficient encoding of nuclear correlations

Schollwöck, Annals of Physics (2011)

Revisiting the example of ⁷⁸Ni

- DMRG: economic representation of the many-body wave function
- Robust convergence of DMRG energies at large bond dimension
- Exact solution out of reach:
 ~220 billion Slater determinants
- Conventional diagonalization
 makes robust UQ impossible

Intermezzo: Entanglement and correlations

Total entropy in even-mass nickel isotopes

see also Taniuchi et al., Nature (2019)

• Entanglement through information science

 $s_i = -[n_i \log n_i + \bar{n}_i \log \bar{n}_i]$

• Total entropy quantifies entanglement

$$I_{\text{tot}} = \sum_{i} s_{i}$$

- Pronounced kink at ⁷⁸Ni hints at neutron shell closure (~ dominated by HF)
- Agreement with conventional prediction based on 2⁺ excitation energies

Phenomenology through the eyes of information theory!

Towards spectroscopy

DMRG/CI observables vs. effective dimension of H_A

- DMRG: economic representation of the many-body wave function
- Slow convergence of binding energies in CI calculations
- Robust convergence of DMRG energies at large bond dimension
- B(E2) transition: more systematic convergence pattern compared to CI
- DMRG does extend CI capacities

Transitional nuclei at N=50

Tichai et al., arXiv:2402.18723

 Ratios of 4+/2+ excitation energies close to rigid-rotor limit

$$E_{\rm rot}^{\star} \sim J(J+1)$$

- Increase of B(E2) values towards open-shell ⁷⁴Cr
- Rapid transition between singleparticle-like and collective excitations
- Qualitative agreement with previous shell-model calculations

Nowacki et al., PRL (2016)

 Island-of-inversion: very low 0p0hcomponent in ground state

Future challenges: shape coexistence

Part II Bogoliubov coupled cluster theory for heavy nuclei

Tichai et al., PLB (2024) Demol et al., PLB (unpublished) Vernik et al., (unpublished)

BCC collaboration Pepijn Demol, Urban Vernik, Thomas Duguet

Bogoliubov coupled cluster theory

Signoracci et al., PRC (2015)

• Coupled cluster: exponential representation of ground-state wave function

 $|\Psi_{\rm BCC}\rangle = e^{\mathcal{T}}|\Phi\rangle$

Quasi-particle extension of standard CC theory ('CC theory for HFB states')

Definition in terms of cluster operator with unknown cluster amplitudes

$$\mathcal{T} = \mathcal{T}_1 + \mathcal{T}_2 + \ldots + \mathcal{T}_A \qquad \qquad \mathcal{T}_2 = \frac{1}{4!} \sum_{pqrs} t_{pqrs} \beta_p^{\dagger} \beta_q^{\dagger} \beta_r^{\dagger} \beta_s^{\dagger}$$

• Similarity-transformed grand potential as core object in formalism

$$\tilde{\Omega} = e^{-\mathcal{T}} \Omega e^{\mathcal{T}} \qquad \qquad \Omega = H - \lambda A$$

Determine cluster amplitudes iteratively from left-projected amplitude equation

$$\langle \Phi^{pq} | \hat{\Omega} | \Phi \rangle = 0$$
$$\langle \Phi^{pqrs} | \hat{\Omega} | \Phi \rangle = 0$$

(Ad hoc) Many-body uncertainties

• Truncation of E_{3max} for three-body matrix elements

explicit extrapolation

• Finite size of the one-body Hilbert space (e_{max})

I - 2 % of total binding energy

Normal-ordering approximation of three-body force

2 % of total binding energy

• Truncation of BCC expansion: missing T_3 amplitudes

10 % of correlation energy

• Lack of particle-number projection of wave function

approximate HFB projection

(less than 3 MeV)

Validation in the calcium chain

- Reproduction of experimental trends and VS-IMSRG predictions
- Consistent prediction of two-neutron separation energies
- Tentative drip line 'assignment' at A=60 but more neutron-rich nuclei supported within error bars

$$S_{2n}(N,Z) = E(N,Z) - E(N-2,Z)$$

 Two-neutron shell gap serves as proxy for shell closures

$$\Delta_{2n}(N,Z) = |S_{2n}(N,Z)| - |S_{2n}(N-2,Z)|$$

Tichai et al., PLB (2024)

Heavy-mass frontier: tin

Tichai et al., PLB (2024)

Neutron dripline in tin

UQ (many-body + interaction) needed to quantitatively compare dripline predictions!

Tichai et al., PLB (2024)

Towards higher accuracy

- Incorporation of leading-order triples effects in BCC framework
- Many-body uncertainty: triples in CC contribute 8-10 % of correlation energy
- Systematic improvement towards VS-IMSRG(2) simulations
- Differential quantities remain largely unaffected in calcium isotopes
- Two-neutron shell gap serves as proxy for shell closures

Vernik, Demol, Tichai, Duguet (unpublished)

Radii in tin isotopes

Demol, Tichai, Duguet (unpublished)

- Observables consistently calculated in BCC theory
- Well-known underproduction of charge radii from chiral EFT

EM 1.8/2.0: ~ 5 %

N²LO_{GO}: ~ I %

New experiment data available

134**Sn** Gorges et al., PRL (2019)

I04-I06Sn Gustafson et al., (in prep.)

 New hope from novel interactions with large LECs (c_D = 7.5)

Arthuis et al., arXiv:2401.06675

Differential charge radii

Interaction sensitivity in neutron-rich tins

Demol, Tichai, Duguet (unpublished)

Neutron skins in tin

Demol, Tichai, Duguet (to be published)

 Correlated with slope parameter in symmetric nuclear matter

Nuclear EOS

- Linear dependence of neutron skins on ispospin asymmetry
- Local variations due to nuclear shell structure
- Sizeable uncertainties due to incomplete model space (e_{max})

Summary

Establish **DMRG** as scalable alternative to **CI**

- MPS representation is superior to CI representation
- Robust convergence of observables with reduced uncertainties
- VS-DMRG: novel merging of complementary *ab initio* approaches

Next steps: explore larger spaces beyond shell model capacities

Heavy nuclei from Bogoliubov coupled cluster

- Extension applicable to general open-shell nuclei
- Scalable approach to heavy nuclei at mild computational cost
- New insights into interaction effects from chiral EFT

Next steps: test new set of chiral interactions for A>100

For discussion

• Design of robust error models for nuclear many-body uncertainties

 $\epsilon_{MB} = \epsilon_{CC/IMSRG} + \epsilon_{FBS} + \epsilon_{NO2B} + \epsilon_{3B}$

• EFT advantage: converged predictions from 'many' consecutive orders available

$LO \longrightarrow NLO \longrightarrow N^2LO \longrightarrow N^3LO$

versus

$IMSRG(2) \rightarrow IMSRG(3) \rightarrow IMSRG(4)$

• Different observables have different sensitivities to nuclear correlations

E₀: particle-hole correlations B(E2): quadrupole collectivity

Current many-body machinery must be extended to target complex structures

Deformation, clustering, halo structures, ...

• Development of many-body emulators is a highly non-trivial problem