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Uncertainties related to chiral three-nucleon interactions:



Table 4: Regularization schemes for 3N interactions. We have suppressed all spin and isospin indices for the sake of simple notation. In general
only spin-independent regulator functions have been applied so far. For the local and semilocal regularization the factorization V3N = V⇡3NV�3N has
been employed.
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• First, we can categorize the regularization in a momentum space or coordinate space formulation. In the first
case the regulator function is a general function of all Jacobi momenta in some chosen basis representation {ab}:

f⇤ = f⇤(p,q,p0,q0). (77)

This regulator function is then applied as a multiplicative factor to 3N contributions without loop contributions
(see, e.g. Eq. (52)):

V reg
3N = V reg

3N (p,q,p0,q0) f⇤(p,q,p0,q0). (78)

For 3N contributions involving loop structures the regulator functions can in principle also be applied to internal
loop momenta. We will discuss this in more detail further below.
Accordingly, in coordinate space the regulator function depends in general on all relative coordinates

fR = fR(r, s, r0, s0). (79)

In the present work we will not discuss methods to apply directly regulator functions in coordinate space since
the calculation and decomposition of the 3N interactions is performed in momentum space. Instead we Fourier-
transform coordinate-space regulators of the form (79) to momentum space and apply them in the basis dis-
cussed in Section 3.4 via convolution integrals. We discuss the regularization in detail below.

• Second, the regulator function can be categorized into local and nonlocal regulator functions. According to the
discussion in Section 3.3 in momentum space local regulator functions are functions of momentum transfers
only, i.e. di↵erences of Jacobi momenta:

f local
⇤ = f⇤(p0 � p,q0 � q) = f⇤(p̃, q̃) (80)
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Derivation of consistently 
regularised currents at 
this order very hard, 

switched to SMS

Formal derivation ‘basically’ finished.
Implementation in progress… (hard!)

Violation of chiral 
symmetry at N3LO?
Non-renormalizable?

Epelbaum, Krebs

Development of large 
cutoff interactions for 
QMC calculations in 
progress Tews et al.
      Reduction of cutoff    
artifacts.
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Illustration of 3NFs in different regularization schemes

⇠2 = p2 + 3/4q2
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Uncertainty II: Fitting of low-energy couplings + SRG evolution

• choice of observables
• separate or simultaneous fits of NN and 3N LECs?
• using few-body and/or many-body observables?
• using bare or low-resolution interactions for fits?
• low resolution interactions: 

✤ evolve NN interactions to lower scales via the RG
✤ fit the 3N LECs at a low cutoff scale (                      )
✤ e.g., use 3H binding energy and 4He radius to fix cD and cE 
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5. Applications to nuclei and matter

In this chapter we present recent results of ab intio calculations of light nuclei, medium-mass nuclei as well as
dense matter based on state-of-the-art chiral NN and 3N interactions. The selection is not intended to be exhaustive,
but is rather supposed to illustrate the current status and open issues in nuclear structure theory. The discussed
results cover various observables of nuclei in di↵erent regimes of the nuclear chart and highlight the capabilities as
well as limitations of presently used interactions and many-body frameworks. The employed interactions include
di↵erent regularization schemes (see Section 3.7) and fitting strategies for the LECs of the NN and 3N interactions
(see Section 2.3).

5.1. SRG evolution of 3N interactions versus low-resolution fits
Many of the studies discussed in the following sections are based on the NN plus 3N interactions derived in

Ref. [116]. As already discussed in Section 2.3.1, these interactions consist of NN interactions evolved to di↵erent
SRG resolution scales �SRG plus 3N interactions fitted to the binding energy of 3H and the point-proton radius of
4He at each scale (see also Table 7). Even though the interactions are only fitted to NN and few-body observables,
the interactions exhibit realistic saturation properties of symmetric matter (see Figure 49). Furthermore, calculations
based on the interaction with �SRG/⇤3N = 1.8/2.0 (“1.8/2.0 (EM)”) show a remarkable agreement with experimental
binding energies for medium-mass nuclei (see also Figure 13). In Table 7 we give the specific values of the 3N
couplings cD and cE for the di↵erent values of the SRG resolution scale �SRG and the 3N cuto↵ scale ⇤3N. The listed
values include the results published in Ref. [116] as well as results for additional resolution scales. The fits at di↵erent
scales map out a continuous trajectory for the couplings cD and cE . We also provide results for the point charge radius
of 3H and the binding energy of 4He at the di↵erent scales. Given that there exists a correlation between the ground-
state energies of three- and four-body systems (“Tjon line”) [193, 194] we expect that the ground state energies for
4He should not change too much when varying �SRG, given that the binding energy of 3H is fixed by construction in
the fit. Still, the observed variation is about 800 keV over the the full range of scales, while all energies are slightly

NN SRG evolution + 3N fits NN+3N SRG evolution
�SRG (fm�1) ⇤3NF (fm�1) cD cE r3H (fm) E4He (MeV) E3H (MeV) r3H (fm) E4He (MeV)
1 2.0 +1.5 0.114 1.601 �28.64(4) �8.482 1.601 �28.64(4)
2.8 2.0 [116] +1.278 �0.078 1.604 �28.75(2) �8.482 1.605 �28.72(2)
2.6 2.0 +1.26 �0.099 1.605 �28.77(2) �8.481 1.606 �28.73(2)
2.4 2.0 +1.265 �0.115 1.606 �28.80(2) �8.481 1.608 �28.73(2)
2.2 2.0 [116] +1.214 �0.137 1.608 �28.86(2) �8.480 1.611 �28.74(2)
2.0 2.0 [116] +1.271 �0.131 1.612 �28.95(2) �8.479 1.615 �28.75(2)
1.8 2.0 [116] +1.264 �0.120 1.617 �29.11(2) �8.478 1.622 �28.76(2)
1.6 2.0 +1.25 �0.075 1.626 �29.42(2) �8.476 1.635 �28.79(2)
1 2.5 �1.45 �0.633 1.604 �28.65(4) �8.482 1.604 �28.65(4)
2.8 2.5 �1.35 �0.735 1.606 �28.84(2) �8.482 1.608 �28.75(2)
2.6 2.5 �1.2 �0.75 1.606 �28.85(2) �8.482 1.609 �28.76(2)
2.4 2.5 �1.0 �0.725 1.607 �28.89(2) �8.482 1.610 �28.77(2)
2.2 2.5 �0.7 �0.675 1.609 �28.95(2) �8.481 1.613 �28.77(2)
2.0 2.5 [116] �0.292 �0.592 1.612 �29.05(2) �8.481 1.617 �28.77(2)
1.8 2.5 0.05 �0.503 1.617 �29.21(2) �8.480 1.625 �28.77(2)
1.6 2.5 0.55 �0.353 1.626 �29.48(2) �8.478 1.638 �28.77(2)

Table 7: Results for the cD and cE couplings, fit to E3H = �8.482 MeV and to the point charge radius r4He = 1.464 fm (based on Ref. [288]) for
the NN/3N cuto↵s and the EM ci values (c1 = �0.81 GeV�1, c3 = �3.2 GeV�1, c4 = +5.4 GeV�1) used, see Ref. [116] for details. The 3H point
charge radius r3H is calculated from the charge form factor solutions of the Faddeev equations and the energies E4He are computed via a Jacobi
NCSM harmonic oscillator diagonalization code (credits to Andreas Ekström for providing the code). For comparison, the experimental 3H point
charge radius is 1.5978 ± 0.040 [212]. The basis space truncations Jmax =

7
2 and Jmax = 5 have been used for the four-body calculations (see

Section 3.4). The slight violation of unitarity as seen in the 3H binding energy is mainly due to the treatment of the charge dependence of the NN
interaction in the SRG evolution (see main text and also discussion in Section 4.2.2 for details).
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diamond). Figure taken from Ref. [123].
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2) and in particular illustrates the role and importance of 3N interactions
for saturation when using low-resolution NN interactions. While calculations based on only NN interactions do
not exhibit saturation in the shown density region (dashed lines) the inclusion of contributions from 3N interactions
lead to saturation properties in reasonable agreement with the empirical region (grey rectangle), even though the 3N
interactions have been fit to only few-body systems. The right panel shows the detailed results for the saturation
points of di↵erent NN plus 3N interactions at di↵erent orders in the many-body expansion (see Ref. [123] for details),
while the results based on the forces derived in Ref. [116] are indicated by the labels �SRG/⇤3N. Evidently, there is a
pronounced linear correlation between the density and energy similar to the “Coester line” [214]. In contrast to the
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mass evaluation (AME) 2012 [141] (extrapolated for 48,78Ni), while the results for the radii are compared against experimental charge radii [212]
where available. Figures taken from Ref. [213].
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the Fermi momentum kF with n = 2k3
F/(3⇡

2) and in particular illustrates the role and importance of 3N interactions
for saturation when using low-resolution NN interactions. While calculations based on only NN interactions do
not exhibit saturation in the shown density region (dashed lines) the inclusion of contributions from 3N interactions
lead to saturation properties in reasonable agreement with the empirical region (grey rectangle), even though the 3N
interactions have been fit to only few-body systems. The right panel shows the detailed results for the saturation
points of di↵erent NN plus 3N interactions at di↵erent orders in the many-body expansion (see Ref. [123] for details),
while the results based on the forces derived in Ref. [116] are indicated by the labels �SRG/⇤3N. Evidently, there is a
pronounced linear correlation between the density and energy similar to the “Coester line” [214]. In contrast to the
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Low-resolution fits versus consistent NN+3N evolution

overbound compared to the experimental ground-state energy Egs = �28.296 MeV [141]. The point charge radius of
3He changes only by about 0.025 fm for both values of ⇤3N.

For comparison, we present the corresponding results for consistently-evolved NN+3N interactions, using the
SRG framework presented in Section 4.2.1. The SRG evolution is performed using an isospin-averaged NN interac-
tion, i.e., the isospin T = 1 channels are treated as

VNN =
Vnn

NN + Vnp
NN + Vpp

NN

3
, (206)

where Vnn
NN, Vnp

NN and Vpp
NN represent the neutron-neutron, neutron-proton and proton-proton interactions, respectively.

We note that this approximation leads to a violation of unitarity for the 3H binding energy, which is determined
from the solutions of the Faddeev equations including the proper treatment of the charge dependence of NN inter-
actions [289]. For the calculations of nuclear matter (see next section) all Coulomb interactions are switched o↵ in

0 0.05 0.1 0.15 0.2

n (fm−3)

0

5

10

15

20

25

E
/A

(M
eV

)

pure neutronmatter (PNM)

NN− only
NN SRG evolution

λSRG = 2.8 fm−1

λSRG = 2.6 fm−1

λSRG = 2.4 fm−1

λSRG = 2.2 fm−1

λSRG = 2.0 fm−1

λSRG = 1.8 fm−1

λSRG = 1.6 fm−1

0

5

10

15

20

25

E
/A

(M
eV

)

Λ3N = 2.0 fm−1

NN SRG evolution + 3N fit

0 0.05 0.1 0.15 0.2

Λ3N = 2.0 fm−1

NN+ 3N SRG evolution

0 0.05 0.1 0.15 0.2

n (fm−3)

0

5

10

15

20

E
/A

(M
eV

)

Λ3N = 2.5 fm−1

NN SRG evolution + 3N fit

0 0.05 0.1 0.15 0.2

n (fm−3)

Λ3N = 2.5 fm−1

NN+ 3N SRG evolution

Figure 50: The energy per particle of pure neutron matter for the interactions specified in Table 7. The plots show results of MBPT calculations
under consideration of all NN and 3N contributions, including residual terms up to 2nd order. The 3N contributions at 3rd order are treated in
normal-ordering approximation (using P = 0). The top panels show the NN-only results at di↵erent resolution scales, while the lower two rows
show the results based on the interactions defined in the left and right columns of Table 7.
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5. Applications to nuclei and matter

In this chapter we present recent results of ab intio calculations of light nuclei, medium-mass nuclei as well as
dense matter based on state-of-the-art chiral NN and 3N interactions. The selection is not intended to be exhaustive,
but is rather supposed to illustrate the current status and open issues in nuclear structure theory. The discussed
results cover various observables of nuclei in di↵erent regimes of the nuclear chart and highlight the capabilities as
well as limitations of presently used interactions and many-body frameworks. The employed interactions include
di↵erent regularization schemes (see Section 3.7) and fitting strategies for the LECs of the NN and 3N interactions
(see Section 2.3).

5.1. SRG evolution of 3N interactions versus low-resolution fits
Many of the studies discussed in the following sections are based on the NN plus 3N interactions derived in

Ref. [116]. As already discussed in Section 2.3.1, these interactions consist of NN interactions evolved to di↵erent
SRG resolution scales �SRG plus 3N interactions fitted to the binding energy of 3H and the point-proton radius of
4He at each scale (see also Table 7). Even though the interactions are only fitted to NN and few-body observables,
the interactions exhibit realistic saturation properties of symmetric matter (see Figure 49). Furthermore, calculations
based on the interaction with �SRG/⇤3N = 1.8/2.0 (“1.8/2.0 (EM)”) show a remarkable agreement with experimental
binding energies for medium-mass nuclei (see also Figure 13). In Table 7 we give the specific values of the 3N
couplings cD and cE for the di↵erent values of the SRG resolution scale �SRG and the 3N cuto↵ scale ⇤3N. The listed
values include the results published in Ref. [116] as well as results for additional resolution scales. The fits at di↵erent
scales map out a continuous trajectory for the couplings cD and cE . We also provide results for the point charge radius
of 3H and the binding energy of 4He at the di↵erent scales. Given that there exists a correlation between the ground-
state energies of three- and four-body systems (“Tjon line”) [193, 194] we expect that the ground state energies for
4He should not change too much when varying �SRG, given that the binding energy of 3H is fixed by construction in
the fit. Still, the observed variation is about 800 keV over the the full range of scales, while all energies are slightly

NN SRG evolution + 3N fits NN+3N SRG evolution
�SRG (fm�1) ⇤3NF (fm�1) cD cE r3H (fm) E4He (MeV) E3H (MeV) r3H (fm) E4He (MeV)
1 2.0 +1.5 0.114 1.601 �28.64(4) �8.482 1.601 �28.64(4)
2.8 2.0 [116] +1.278 �0.078 1.604 �28.75(2) �8.482 1.605 �28.72(2)
2.6 2.0 +1.26 �0.099 1.605 �28.77(2) �8.481 1.606 �28.73(2)
2.4 2.0 +1.265 �0.115 1.606 �28.80(2) �8.481 1.608 �28.73(2)
2.2 2.0 [116] +1.214 �0.137 1.608 �28.86(2) �8.480 1.611 �28.74(2)
2.0 2.0 [116] +1.271 �0.131 1.612 �28.95(2) �8.479 1.615 �28.75(2)
1.8 2.0 [116] +1.264 �0.120 1.617 �29.11(2) �8.478 1.622 �28.76(2)
1.6 2.0 +1.25 �0.075 1.626 �29.42(2) �8.476 1.635 �28.79(2)
1 2.5 �1.45 �0.633 1.604 �28.65(4) �8.482 1.604 �28.65(4)
2.8 2.5 �1.35 �0.735 1.606 �28.84(2) �8.482 1.608 �28.75(2)
2.6 2.5 �1.2 �0.75 1.606 �28.85(2) �8.482 1.609 �28.76(2)
2.4 2.5 �1.0 �0.725 1.607 �28.89(2) �8.482 1.610 �28.77(2)
2.2 2.5 �0.7 �0.675 1.609 �28.95(2) �8.481 1.613 �28.77(2)
2.0 2.5 [116] �0.292 �0.592 1.612 �29.05(2) �8.481 1.617 �28.77(2)
1.8 2.5 0.05 �0.503 1.617 �29.21(2) �8.480 1.625 �28.77(2)
1.6 2.5 0.55 �0.353 1.626 �29.48(2) �8.478 1.638 �28.77(2)

Table 7: Results for the cD and cE couplings, fit to E3H = �8.482 MeV and to the point charge radius r4He = 1.464 fm (based on Ref. [288]) for
the NN/3N cuto↵s and the EM ci values (c1 = �0.81 GeV�1, c3 = �3.2 GeV�1, c4 = +5.4 GeV�1) used, see Ref. [116] for details. The 3H point
charge radius r3H is calculated from the charge form factor solutions of the Faddeev equations and the energies E4He are computed via a Jacobi
NCSM harmonic oscillator diagonalization code (credits to Andreas Ekström for providing the code). For comparison, the experimental 3H point
charge radius is 1.5978 ± 0.040 [212]. The basis space truncations Jmax =

7
2 and Jmax = 5 have been used for the four-body calculations (see

Section 3.4). The slight violation of unitarity as seen in the 3H binding energy is mainly due to the treatment of the charge dependence of the NN
interaction in the SRG evolution (see main text and also discussion in Section 4.2.2 for details).
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Figure 51: The energy per particle of symmetric nuclear matter for the interactions specified in Table 7. See caption of Figure 50 for details
regarding the many-body calculations and the shown results.

the SRG evolution, while for the few-body results in Table 7 the Coulomb contributions are included in Vpp
NN and are

evolved consistently. We emphasize that for the shown results for r3H in Table 7 we did not evolve the radius operator
for these calculations. Due to this and due to the isospin treatment, the radius varies by about 0.03 fm over the shown
resolution scale range. The energy of 4He exhibits a significantly smaller variation for the consistently-evolved 3N
interactions for both cuto↵ values ⇤3N compared to the low-resolution fits shown in the left column.

5.2. Nuclear matter based on consistently SRG-evolved 3N interactions
The consistent evolution of NN and 3N interactions within the SRG has opened new avenues that allowed to

push the scope of various ab initio frameworks for nuclei to heavier masses (see Sections 1 and 4.2). On the other
hand, SRG-evolved NN and 3N forces have not yet been applied to many-body frameworks for nuclear matter since
the SRG evolution of 3N interactions was always performed in an harmonic oscillator representation. Thanks to
the new developments discussed in Section 4.2 it is now possible to perform the SRG evolution in the plane-wave
momentum representation so that a given evolved interaction can now be applied to light nuclei, medium-mass nuclei
as well as nuclear matter. In this section we present first results for pure neutron matter as well as symmetric nuclear
matter based on consistently-evolved NN plus 3N interactions. To this end, we start from the set of interactions
derived in Ref. [116] plus the new fits as specified in Table 7. In particular, we perform matter calculations based
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overbound compared to the experimental ground-state energy Egs = �28.296 MeV [141]. The point charge radius of
3He changes only by about 0.025 fm for both values of ⇤3N.

For comparison, we present the corresponding results for consistently-evolved NN+3N interactions, using the
SRG framework presented in Section 4.2.1. The SRG evolution is performed using an isospin-averaged NN interac-
tion, i.e., the isospin T = 1 channels are treated as

VNN =
Vnn

NN + Vnp
NN + Vpp

NN

3
, (206)

where Vnn
NN, Vnp

NN and Vpp
NN represent the neutron-neutron, neutron-proton and proton-proton interactions, respectively.

We note that this approximation leads to a violation of unitarity for the 3H binding energy, which is determined
from the solutions of the Faddeev equations including the proper treatment of the charge dependence of NN inter-
actions [289]. For the calculations of nuclear matter (see next section) all Coulomb interactions are switched o↵ in

0 0.05 0.1 0.15 0.2

n (fm−3)

0

5

10

15

20

25

E
/A

(M
eV

)

pure neutronmatter (PNM)

NN− only
NN SRG evolution

λSRG = 2.8 fm−1

λSRG = 2.6 fm−1

λSRG = 2.4 fm−1

λSRG = 2.2 fm−1

λSRG = 2.0 fm−1

λSRG = 1.8 fm−1

λSRG = 1.6 fm−1

0

5

10

15

20

25

E
/A

(M
eV

)

Λ3N = 2.0 fm−1

NN SRG evolution + 3N fit

0 0.05 0.1 0.15 0.2

Λ3N = 2.0 fm−1

NN+ 3N SRG evolution

0 0.05 0.1 0.15 0.2

n (fm−3)

0

5

10

15

20

E
/A

(M
eV

)

Λ3N = 2.5 fm−1

NN SRG evolution + 3N fit

0 0.05 0.1 0.15 0.2

n (fm−3)

Λ3N = 2.5 fm−1

NN+ 3N SRG evolution

Figure 50: The energy per particle of pure neutron matter for the interactions specified in Table 7. The plots show results of MBPT calculations
under consideration of all NN and 3N contributions, including residual terms up to 2nd order. The 3N contributions at 3rd order are treated in
normal-ordering approximation (using P = 0). The top panels show the NN-only results at di↵erent resolution scales, while the lower two rows
show the results based on the interactions defined in the left and right columns of Table 7.
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Uncertainty III: Inclusion of 3NF in many-body calculations
A general Hamiltonian consisting of kinetic energy, NN and 3N interactions:

4. Incorporation of 3N interactions in many-body frameworks

In Section 3 we discussed the representation and practical calculation of 3N interaction matrix elements in a
partial-wave momentum basis. These matrix elements represent the microscopic input of most ab initio many-body
frameworks for finite nuclei as well as dense matter. However, the step from interaction matrix elements to the
extraction of many-body observables involves several challenges, in particular since the required many-body basis
sizes grow with the particle number of the studied nuclei. In this section we discuss di↵erent novel and established
techniques that facilitate the incorporation of 3N interactions in many-body frameworks and help to push the reach
of ab initio methods towards heavier nuclei. Specifically, in Section 4.1 we illustrate the partial-wave convergence
of results for nuclear-matter energies. In addition we demonstrate that the choice of the regularization scheme has
a significant impact on the size of contributions from 3N interactions. In Section 4.2 we discuss the Similarity
Renormalization Group (SRG) evolution of NN and 3N interactions to a lower resolution scale in the partial-wave
momentum basis, which helps to significantly accelerate the convergence of many-body calculations of matter and
atomic nuclei. In Section 4.3 we review recent and ongoing developments for the normal ordering of 3N interactions.
This method allows to incorporate the main contributions from 3N interactions in many-body calculations at the cost
of NN interactions. This technique is now used in basically all basis-expansion many-body methods that aim at
studying properties of medium-mass and heavy nuclei. Typically, SRG evolution and normal ordering are combined
in most many-body frameworks. Finally, we discuss in Section 4.4 a novel method to apply 3N interactions in
many-body perturbation theory without partial-wave expansion. This method is particularly suited for calculations of
nuclear matter, as it drastically simplifies the calculation of individual diagrams in MBPT compared to conventional
approaches based on partial-wave decomposed 3N interactions. In addition, the developed framework can also be
combined with a recently developed coupled cluster framework for nuclear matter [139].

For all these applications we will consider a general Hamiltonian in the center-of-mass reference frame, including
contributions from the kinetic energy, NN and 3N interactions. For all the applications discussed in the following, it
is most convenient to represent all quantities in second quantized form (see, e.g. Ref. [121]):

Ĥ = T̂rel + V̂NN + V̂3N , (137)

with

T̂rel =
X

i j

hi|T | ji â†i â j,

V̂NN =
1

(2!)2

X

i jkl

⌦
i j|Vas

NN|kl
↵

â†i â†j âlâk,

V̂3N =
1

(3!)2

X

i jklmn

⌦
i jk|Vas

3N|lmn
↵

â†i â†j â
†

k ânâmâl . (138)

Here all interactions are represented in terms of antisymmetrized matrix elements:
⌦
i j|Vas

NN|kl
↵
=
⌦
i j|A12VNN|kl

↵
= hi j|VNN|kli � h ji|VNN|kli

⌦
i jk|Vas

3N|lmn
↵
=
⌦
i jk|A123V3N|lmn

↵

= hi jk|V3N|lmni � h jik|V3N|lmni � hik j|V3N|lmni � hk ji|V3N|lmni + h jki|V3N|lmni + hki j|V3N|lmni ,
(139)

with the two- and three-body antisymmetrizers (see Section 3.5):

A12 = 1 � P12, A123 = 1 � P12 � P13 � P23 + P123 + P132 . (140)

The matrix elements are assumed to fulfill the general symmetries under simultaneous interchange of particles in the
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partial-wave momentum basis. These matrix elements represent the microscopic input of most ab initio many-body
frameworks for finite nuclei as well as dense matter. However, the step from interaction matrix elements to the
extraction of many-body observables involves several challenges, in particular since the required many-body basis
sizes grow with the particle number of the studied nuclei. In this section we discuss di↵erent novel and established
techniques that facilitate the incorporation of 3N interactions in many-body frameworks and help to push the reach
of ab initio methods towards heavier nuclei. Specifically, in Section 4.1 we illustrate the partial-wave convergence
of results for nuclear-matter energies. In addition we demonstrate that the choice of the regularization scheme has
a significant impact on the size of contributions from 3N interactions. In Section 4.2 we discuss the Similarity
Renormalization Group (SRG) evolution of NN and 3N interactions to a lower resolution scale in the partial-wave
momentum basis, which helps to significantly accelerate the convergence of many-body calculations of matter and
atomic nuclei. In Section 4.3 we review recent and ongoing developments for the normal ordering of 3N interactions.
This method allows to incorporate the main contributions from 3N interactions in many-body calculations at the cost
of NN interactions. This technique is now used in basically all basis-expansion many-body methods that aim at
studying properties of medium-mass and heavy nuclei. Typically, SRG evolution and normal ordering are combined
in most many-body frameworks. Finally, we discuss in Section 4.4 a novel method to apply 3N interactions in
many-body perturbation theory without partial-wave expansion. This method is particularly suited for calculations of
nuclear matter, as it drastically simplifies the calculation of individual diagrams in MBPT compared to conventional
approaches based on partial-wave decomposed 3N interactions. In addition, the developed framework can also be
combined with a recently developed coupled cluster framework for nuclear matter [139].

For all these applications we will consider a general Hamiltonian in the center-of-mass reference frame, including
contributions from the kinetic energy, NN and 3N interactions. For all the applications discussed in the following, it
is most convenient to represent all quantities in second quantized form (see, e.g. Ref. [121]):

Ĥ = T̂rel + V̂NN + V̂3N , (137)

with

T̂rel =
X

i j

hi|T | ji â†i â j,
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X

i jkl
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X
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⌦
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â†i â†j â
†

k ânâmâl . (138)

Here all interactions are represented in terms of antisymmetrized matrix elements:
⌦
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NN|kl
↵
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⌦
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↵
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⌦
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↵

= hi jk|V3N|lmni � h jik|V3N|lmni � hik j|V3N|lmni � hk ji|V3N|lmni + h jki|V3N|lmni + hki j|V3N|lmni ,
(139)

with the two- and three-body antisymmetrizers (see Section 3.5):

A12 = 1 � P12, A123 = 1 � P12 � P13 � P23 + P123 + P132 . (140)

The matrix elements are assumed to fulfill the general symmetries under simultaneous interchange of particles in the
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na na† NN nNN 3N n3N ⇣

0 0 N
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�

1 N
� 1

36 V3Nâ†â†â†âââ
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�

9 1

0 2 N
� 1

4 VNNâ†â†ââ
�

1 N
� 1

36 V3Nâ†â†â†âââ
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9 1

Table 6: Combinatorial factors of the Wick contractions including normal contractions (upper half) and anomalous contractions (lower half). For
the three-body terms only contributions including at least one normal contraction are shown. na denotes the number of uncontracted annihilation
operators, na† the according number of creation operators, nNN the number of possible contractions for NN interactions (or number of terms if there
are no contractions) and n3N the corresponding number of contractions for 3N interactions.

right. As a result, only one type of contraction is nonvanishing and takes the simple form:

â†i â j = �i j � â jâ†i = ni�i j with ni =

(
1 for i  A
0 for i > A . (168)

Evaluating the contractions in Eq. (165), we obtain:

Ĥ = �(0)
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†

k ânâmâl
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The non-trivial prefactors in Eq. (170) result from the combinatorial factors associated with number of possible
contractions nNN and n3N for the zero-body term �(0), the one-body term �̂(1) and the two-body term �̂(2). The factors
are shown in detail in Table 6. From Eq. (170) it follows that normal ordering allows to combine contributions from
free-space two-body interactions with normal-ordered three-body contributions in the form of an e↵ective two-body
vertex function Ve↵ (see Figure 41):

⌦
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=
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, (171)
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Table 6: Combinatorial factors of the Wick contractions including normal contractions (upper half) and anomalous contractions (lower half). For
the three-body terms only contributions including at least one normal contraction are shown. na denotes the number of uncontracted annihilation
operators, na† the according number of creation operators, nNN the number of possible contractions for NN interactions (or number of terms if there
are no contractions) and n3N the corresponding number of contractions for 3N interactions.
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â†i â†j â
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The non-trivial prefactors in Eq. (170) result from the combinatorial factors associated with number of possible
contractions nNN and n3N for the zero-body term �(0), the one-body term �̂(1) and the two-body term �̂(2). The factors
are shown in detail in Table 6. From Eq. (170) it follows that normal ordering allows to combine contributions from
free-space two-body interactions with normal-ordered three-body contributions in the form of an e↵ective two-body
vertex function Ve↵ (see Figure 41):
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can be exactly rewritten in a normal-ordered form:



Traditional normal ordering framework for 3N interactions
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Figure 43: Memory required to store the T -coe�cients (u), as well as the three-body matrix elements in the antisymmetrized-Jacobi (⌅),
JT -coupled (s), and m-scheme (l) representation as function of the maximum three-body energy quantum number E3max. All quantities are
assumed to be single-precision floating point numbers. Figure taken from Rev. [20].

By inserting a complete set of two-body single-particle momentum states and projeting on these states this can be
rewritten in the form:

⌦
k
0
1k
0
2|V |k1k2

↵
=
X

n3l3m3

n3
⌦
k
0
1k
0
2�3|Vas

3N|k1k2�3
↵

=

Z
dk3dk

0
3
⌦
k
0
1k
0
2k
0
3|Vas

3N|k1k2k3
↵ X

n3l3m3

n3
⌦
�3|k03

↵⌦
k3|�3

↵
, (190)

with
⌦
k|nlm

↵
= Rnl(k)Ylm(k̂). Here we used the completeness of the single-particle momentum states

R
dki|ki

↵⌦
ki| = 1

and projected on the momentum states of particles 1, 2, 10 and 20 on both sides by using the orthogonality of the HO
wave functions. As a next step we rewrite the single-particle momentum representation of V and Vas

3N in a Jacobi
representation by using Eq. (25):

⌦
p
0
P
0|V |pP

↵
=

Z
dk3dk

0
3
⌦
p
0
q
0|Vas

3N|pq
↵
�(P + k3 � P

0 � k
0
3)
X

n3l3m3

n̄3
⌦
�3|k03

↵⌦
k3|�3

↵
. (191)

The e↵ective potential we expressed in terms of the Jacobi momentum p and the two-body center of mass momentum
P, i.e. P = k1 + k2 and P

0 = k
0
1 + k

0
2. The single particle momentum of particle 3 can be easily expressed in terms of

these momenta (see Table 2): k3 = 3/2q + P/2. Note that the two-body center of mass momentum P is in general not
conserved since k3 , k

0
3, in contrast to normal ordering with respect to a momentum eigenstate like for nuclear matter

(see Section 4.3.1). If the orbital occupation numbers n3 do not depend on m3 the sum can be performed immediately:

⌦
p
0
P
0|V |pP

↵
=

Z
dk3dk

0
3
⌦
p
0
q
0|Vas

3N|pq
↵
�(P + k3 � P

0 � k
0
3)
X

n3l3

n3Rn3l3 (k3)Rn3l3 (k03)
2l3 + 1

4⇡
Pl3 (k̂3 · k̂03) (192)

For the following we stick to this simplified case for illustration. However, the generalization poses no fundamental
problems.

Eventually we are interested in the partial wave matrix elements of the e↵ective potential V . Due to the non-
Galileian invariance the partial wave structure becomes more complex compared to a free-space NN interaction (see
discussion in Section 4.3). We extend the partial wave basis by the center of mass quantum numbers and project the
interaction in Eq. (192) onto these states:
D
p0P0L0M0L0cmM0cm|V |pPLMLcmMcm

E
=

Z
dp̂dP̂dp̂

0dP̂
0Y⇤L0cm M0cm

(P̂0)Y⇤L0M0 (p̂
0)
⌦
p
0
P
0|V |pP

↵
YLcm Mcm (P̂)YLM(p̂) . (193)
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Roth at al., PRC 90 024325 (2014)

1. transformation to Jacobi HO basis plus antisymmetrization
⌦
p0q0↵0|V (i),reg

3N |pq↵
↵
!

⌦
N 0n0↵0|V (as,reg

3N |Nn↵
↵

<latexit sha1_base64="fZWYQXSzhWQ1OXjax6cYGYQ/bYM="></latexit>

⌦
N 0n0↵0|V as, reg

3N |Nn↵
↵
!

⌦
102030|V as, reg

3N |123
↵

<latexit sha1_base64="i8LbSHfrqJgjokHc9B3hGEBKveo="></latexit>

2. transformation to single particle basis

3. Normal ordering with respect        
to some reference state
⌦
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antisymmetrized
Jacobi

JT-coupled

m-scheme

• severe memory limitations for 
handling of single-particle matrix 
elements with increasing E3max

• Significant optimisations possible 
when storing only those matrix 
elements needed for normal 
ordering 
Miyagi at al., PRC 105, 1 (2022)



1. Use momentum space and expand reference state in HO basis:
⌦
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2. Rewrite interaction in Jacobi momentum basis:
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3. Decomposition in Jacobi partial wave momentum states:
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4. transform matrix elements to Jacobi HO basis
⌦
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5. transformation to single-particle HO basis via generalized Talmi 
transformation (taking into account Lcm dependence) 

Novel normal ordering framework for 3N interactions



• at no stage single-particle 3N HO matrix elements needed
• Nmax can be increased straightforwardly
• basis size and storage space determined by Jmax and Lcm,max,

KH at al., PRC 107, 024310 (2023)

Novel normal ordering framework for 3N interactions



KH at al., PRC 107, 024310 (2023)

Novel normal ordering framework for 3N interactions



 Singular value decomposition of NN interactions

• excellent agreement with full results for phase shifts and binding energies 
for very low number of ranks (= number of retained singular values) 

Tichai et al., PLB 821, 136623 (2021)



 (Randomized) singular value decomposition of 3N interactions
Tichai et al., arXiv:2307.15572

• again good agreement with full results for binding energies and charge radii 
for very low number of ranks (NN interactions not SVD-decomposed)



 (Randomized) singular value decomposition of 3N interactions
Tichai et al., arXiv:2307.15572

• again good agreement with full results for binding energies and charge radii 
for very low number of ranks (NN interactions not SVD-decomposed)

Utilisation of computational benefits of low-rank structure requires 
reformulation of many-body framework based on singular vectors!



I. Power counting scheme

II. Chiral expansion

III. Regularization schemes

IV. Different fitting strategies for low-energy couplings

V. Truncation in many-body expansions/SRG evolution

VI. Basis truncations

VII.…?

Which contributions should a comprehensive 
uncertainty estimate contain?


