Recent progress of chiral three-nucleon forces and applications to nuclei and matter

Kai Hebeler
Mainz, June 24, 2024

Outline

Uncertainties related to chiral three-nucleon interactions:
I. Chiral expansion and different regularization schemes
II. Fixing of low-energy couplings + SRG evolution
III. Inclusion of 3NFs in many-body calculations

3NFs in different regularization schemes

	momentum space	coordinate space
nonlocal regulators: long-range short-range regularization:	nonlocal MS $\begin{aligned} & f_{\Lambda}^{\text {long }}(\mathbf{p}, \mathbf{q})=\exp \left[-\left(\left(\mathbf{p}^{2}+3 / 4 \mathbf{q}^{2}\right) / \Lambda^{2}\right)^{n}\right] \\ & f_{\Lambda}^{\text {short }}(\mathbf{p}, \mathbf{q})=f_{\Lambda}^{\text {long }}(\mathbf{p}, \mathbf{q})=f_{R}(\mathbf{p}, \mathbf{q}) \\ & \left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\text {reg }}\|\mathbf{p q}\rangle=f_{R}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right)\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}\|\mathbf{p q}\rangle f_{R}(\mathbf{p}, \mathbf{q}) \end{aligned}$	
local regulators: long-range short-range regularization:	local MS $\begin{aligned} & f_{\Lambda}^{\text {long }}\left(\mathbf{Q}_{i}\right)=\exp \left[-\left(\mathbf{Q}_{i}^{2} / \Lambda^{2}\right)^{2}\right] \\ & f_{\Lambda}^{\text {short }}\left(\mathbf{Q}_{i}\right)=f_{\Lambda}^{\text {long }}\left(\mathbf{Q}_{i}\right)=f_{\Lambda}\left(\mathbf{Q}_{i}\right) \\ & \left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\text {reg }}\|\mathbf{p q}\rangle=\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}\|\mathbf{p q}\rangle \prod_{i} f_{R}\left(\mathbf{Q}_{i}\right) \end{aligned}$	local CS $\begin{aligned} & f_{R}^{\text {long }}(\mathbf{r})=1-\exp \left[-\left(r^{2} / R^{2}\right)^{n}\right] \\ & f_{R}^{\text {short }}(\mathbf{r})=\exp \left[-\left(r^{2} / R^{2}\right)^{n}\right] \\ & V_{3 \mathrm{~N}}^{\pi \text { reg }}\left(\mathbf{r}_{i j}\right)=f_{R}^{\text {long }}\left(\mathbf{r}_{i j}\right) V_{3 \mathrm{~N}}^{\pi}\left(\mathbf{r}_{i j}\right) \\ & \delta^{\text {reg }}\left(\mathbf{r}_{i j}\right)=\alpha_{n} f_{R}^{\text {short }}\left(\mathbf{r}_{i j}\right) \end{aligned}$
semilocal regulators: long-range short-range	semilocal MS $\begin{aligned} & f_{\Lambda}^{\text {long }}\left(\mathbf{Q}_{i}\right)=\exp \left[-\left(\mathbf{Q}_{i}^{2}+m_{\pi}^{2}\right) / \Lambda^{2}\right] \\ & f_{\Lambda}^{\text {short }}(\mathbf{p})=\exp \left[-\mathbf{p}^{2} / \Lambda^{2}\right] \end{aligned}$	semilocal CS $\begin{aligned} & f_{R}^{\text {long }}(\mathbf{r})=\left(1-\exp \left[-r^{2} / R^{2}\right]\right)^{n} \\ & f_{\Lambda}^{\text {short }}(\mathbf{p})=\exp \left[-\mathbf{p}^{2} / \Lambda^{2}\right] \end{aligned}$
regularization:	$\begin{aligned} & \left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\text {reg }, \pi}\|\mathbf{p q}\rangle=f_{R}^{\text {long }}\left(\mathbf{Q}_{i}\right)\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}\|\mathbf{p q}\rangle \\ & \left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\text {reg }, \delta}\|\mathbf{p q}\rangle=f_{\Lambda}^{\text {short }}\left(\mathbf{p}_{\delta}^{\prime}\right)\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\delta}\|\mathbf{p q}\rangle f_{\Lambda}^{\text {short }}\left(\mathbf{p}_{\delta}\right) \end{aligned}$	$\begin{aligned} & V_{3 \mathrm{~N}}^{\pi, \text { reg }}\left(\mathbf{r}_{i j}\right)=f_{R}^{\text {long }}\left(\mathbf{r}_{i j}\right) V_{3 \mathrm{~N}}^{\pi}\left(\mathbf{r}_{i j}\right) \\ & \delta\left(\mathbf{r}_{i j}\right) \xrightarrow{F T} V_{3 \mathrm{~N}}^{\delta} \\ & \left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\text {reg }, \delta}\|\mathbf{p q}\rangle=f_{\Lambda}^{\text {short }}\left(\mathbf{p}_{\delta}^{\prime}\right)\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\delta}\|\mathbf{p q}\rangle f_{\Lambda}^{\text {short }}\left(\mathbf{p}_{\delta}\right) \\ & \quad \text { KH, Phys. Rept. 890, I (202I) } \end{aligned}$

3NFs in different regularization schemes

	momentum space	coordinate space
nonlocal regulators: long-range short-range regularization:	$\begin{aligned} & \text { nonlocal MS } \\ & f_{\Lambda}^{\text {long }}(\mathbf{p}, \mathbf{q})=\exp \left[-\left(\left(\mathbf{p}^{2}+3 / 4 \mathbf{q}^{2}\right) / \Lambda^{2}\right)^{n}\right] \\ & f_{\Lambda}^{\text {short }}(\mathbf{p}, \mathbf{q})=f_{\Lambda}^{\text {long }}(\mathbf{p}, \mathbf{q})=f_{R}(\mathbf{p}, \mathbf{q}) \\ & \left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\text {reg }}\|\mathbf{p q}\rangle=f_{R}\left(\mathbf{p}^{\prime}, \mathbf{q}^{\prime}\right)\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}\|\mathbf{p q}\rangle f_{R}(\mathbf{p}, \mathbf{q}) \end{aligned}$	
local regulators: long-range short-range regularization:	$\begin{aligned} & f_{\Lambda}^{\text {long }}\left(\mathbf{Q}_{i}\right)=\exp \left[-\left(\mathbf{Q}_{i}^{2} / \Lambda^{2}\right)^{2}\right] \\ & f_{\Lambda}^{\text {short }}\left(\mathbf{Q}_{i}\right)=f_{\Lambda}^{\text {long }}\left(\mathbf{Q}_{i}\right)=f_{\Lambda}\left(\mathbf{Q}_{i}\right) \\ & \left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\text {reg }}\|\mathbf{p q}\rangle=\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}\|\mathbf{p q}\rangle \prod_{i} f_{R}\left(\mathbf{Q}_{i}\right) \end{aligned}$	$\underline{\text { local CS }}$ \mathbf{N}^{2} LO N3LO $f_{R}^{\text {long }}(\mathbf{r})=1-\exp \left[-\left(r^{2} / R^{2}\right)^{n}\right]$ $f_{R}^{\text {short }}(\mathbf{r})=\exp \left[-\left(r^{2} / R^{2}\right)^{n}\right]$ Development of large cutoff interactions for QMC calculations in $\left.V_{3 \mathrm{~N}}^{\pi, \text { reg }}\left(\mathbf{r}_{i j}\right)=f_{R}^{\text {long }}\left(\mathbf{r}_{i j}\right)\right)_{3 \mathrm{~N}}^{\pi}\left(\mathbf{r}_{i j}\right)$ Qrogress Tews et al. $\delta^{\text {reg }}\left(\mathbf{r}_{i j}\right)=\alpha_{n} f_{R}^{\text {Rhort }}\left(\mathbf{r}_{i j}\right)$ Reduction of cutoff artacts.
semilocal regulators: long-range short-range regularization:	$\begin{aligned} & f_{\Lambda}^{\text {long }}\left(\mathbf{Q}_{i}\right)=\exp \left[-\left(\mathbf{Q}_{i}^{2}+m_{\pi}^{2}\right) / \Lambda^{2}\right] \\ & f_{\Lambda}^{\text {short }}(\mathbf{p})=\exp \left[-\mathbf{p}^{2} / \Lambda^{2}\right] \end{aligned}$ $\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\text {reg }, \pi}\|\mathbf{p q}\rangle=f_{R}^{\text {long }}\left(\mathbf{Q}_{i}\right)\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}\|\mathbf{p q}\rangle$ $\begin{array}{r} \left.\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\|{ }_{3 \mathrm{~N}}^{\text {reg. } \delta}\|\mathbf{p q}\rangle=f_{\Lambda}^{\text {short }}\left(\mathbf{p}_{\delta}^{\prime}\right)\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\delta}\|\mathbf{p q}\rangle f^{\text {short }} \mathbf{p}_{\delta}\right) \\ \binom{\text { Formal derivation 'basically' finished. }}{\text { Implementation in progress... (hard!) }} \end{array}$	$\begin{aligned} & f_{R}^{\text {long }}(\mathbf{r})=\left(1-\exp \left[-r^{2} / R^{2}\right]\right)^{n} \\ & f_{\Lambda}^{\text {short }}(\mathbf{p})=\exp \left[-\mathbf{p}^{2} / \Lambda^{2}\right] \end{aligned}$ $V_{3 \mathrm{~N}}^{\pi \text { reg }}\left(\mathbf{r}_{i j}\right)=f_{R}^{\text {logg }}\left(\mathbf{r}_{i j}\right) V_{3 \mathrm{~N}}^{\pi}\left(\mathbf{r}_{i j}\right)$ $\delta\left(\mathbf{r}_{i j}\right) \xrightarrow{F T} V_{3 \mathrm{~N}}^{\delta}$ $\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\text {reg }, \delta}\|\mathbf{p q}\rangle=f_{\Lambda}^{\text {short }}\left(\mathbf{p}_{\delta}^{\prime}\right)\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right\| V_{3 \mathrm{~N}}^{\delta}\|\mathbf{p q}\rangle f_{\Lambda}^{\text {short }}\left(\mathbf{p}_{\delta}\right)$ KH, Phys. Rept. 890, I (202I)

Illustration of 3 NFs in different regularization schemes
nonlocal MS
local MS
semilocal MS
semilocal CS

$$
\xi^{2}=p^{2}+3 / 4 q^{2} \quad \tan \theta=p /(\sqrt{3} / 2 q)=\frac{\pi}{4}
$$

Uncertainty II: Fitting of low-energy couplings + SRG evolution

- choice of observables
- separate or simultaneous fits of NN and 3N LECs?
- using few-body and/or many-body observables?
- using bare or low-resolution interactions for fits?
- low resolution interactions:
* evolve NN interactions to lower scales via the RG
* fit the 3 N LECs at a low cutoff scale ($\Lambda_{3 \mathrm{~N}} \sim 2 \mathrm{fm}^{-1}$)
* e.g., use ${ }^{3} \mathrm{H}$ binding energy and ${ }^{4} \mathrm{He}$ radius to fix CD and CE_{E}

	$V_{\text {low } k}$		SRG	
Λ or $\lambda / \Lambda_{3 \mathrm{NF}}\left[\mathrm{fm}^{-1}\right]$	c_{D}	c_{E}	c_{D}	c_{E}
$1.8 / 2.0\left(\mathrm{EM} c_{i}{ }^{\prime} \mathrm{s}\right)$	+1.621	-0.143	+1.264	-0.120
$2.0 / 2.0\left(\mathrm{EM} c_{i}\right.$'s)	+1.705	-0.109	+1.271	-0.131
$2.0 / 2.5\left(\mathrm{EM} c_{i}\right.$'s)	+0.230	-0.538	-0.292	-0.592
$2.2 / 2.0\left(\mathrm{EM} c_{i}\right.$'s)	+1.575	-0.102	+1.214	-0.137
$2.8 / 2.0\left(\mathrm{EM} c_{i}\right.$'s)	+1.463	-0.029	+1.278	-0.078
$2.0 / 2.0\left(\mathrm{EGM} c_{i}\right.$'s)	-4.381	-1.126	-4.828	-1.152
$2.0 / 2.0\left(\right.$ PWA c_{i} 's)	-2.632	-0.677	-3.007	-0.686

Low-resolution fits versus consistent NN+3N evolution

	NN SRG evolution +3 N fits				
$\lambda_{\mathrm{SRG}}\left(\mathrm{fm}^{-1}\right)$	$\Lambda_{3 \mathrm{NF}}\left(\mathrm{fm}^{-1}\right)$	c_{D}	c_{E}	$r_{3 \mathrm{H}}(\mathrm{fm})$	$E_{4} \mathrm{He}(\mathrm{MeV})$
∞	2.0	+1.5	0.114	1.601	$-28.64(4)$
2.8	$2.0[116]$	+1.278	-0.078	1.604	$-28.75(2)$
2.6	2.0	+1.26	-0.099	1.605	$-28.77(2)$
2.4	2.0	+1.265	-0.115	1.606	$-28.80(2)$
2.2	$2.0[116]$	+1.214	-0.137	1.608	$-28.86(2)$
2.0	$2.0[116]$	+1.271	-0.131	1.612	$-28.95(2)$
1.8	$2.0[116]$	+1.264	-0.120	1.617	$-29.11(2)$
1.6	2.0	+1.25	-0.075	1.626	$-29.42(2)$
∞	2.5	-1.45	-0.633	1.604	$-28.65(4)$
2.8	2.5	-1.35	-0.735	1.606	$-28.84(2)$
2.6	2.5	-1.2	-0.75	1.606	$-28.85(2)$
2.4	2.5	-1.0	-0.725	1.607	$-28.89(2)$
2.2	2.5	-0.7	-0.675	1.609	$-28.95(2)$
2.0	$2.5[116]$	-0.292	-0.592	1.612	$-29.05(2)$
1.8	2.5	0.05	-0.503	1.617	$-29.21(2)$
1.6	2.5	0.55	-0.353	1.626	$-29.48(2)$

KH, Bogner, Furnstahl, Nogga, Schwenk, PRC 83, 03 I30I(201I)
KH, Phys. Rept. 890, I (202I)

Drischler, KH, Schwenk, PRL I22, 04250I (2019)

Simonis, Stroberg, KH, Holt, Schwenk, PRC 96, 014303 (20I7)

Low-resolution fits versus consistent NN+3N evolution

pure neutron matter (PNM)

			$\mathrm{NN}+3 \mathrm{~N}$ SRG evolution		
$\lambda_{\mathrm{SRG}}\left(\mathrm{fm}^{-1}\right)$	$\Lambda_{3 \mathrm{NF}}\left(\mathrm{fm}^{-1}\right)$	$E_{3_{\mathrm{H}}}(\mathrm{MeV})$	$r_{3}(\mathrm{fm})$	$E_{4} \mathrm{He}(\mathrm{MeV})$	
∞	2.0	-8.482	1.601	$-28.64(4)$	
2.8	$2.0[116]$	-8.482	1.605	$-28.72(2)$	
2.6	2.0	-8.481	1.606	$-28.73(2)$	
2.4	2.0	-8.481	1.608	$-28.73(2)$	
2.2	$2.0[116]$	-8.480	1.611	$-28.74(2)$	
2.0	$2.0[116]$	-8.479	1.615	$-28.75(2)$	
1.8	$2.0[116]$	-8.478	1.622	$-28.76(2)$	
1.6	2.0	-8.476	1.635	$-28.79(2)$	
∞	2.5	-8.482	1.604	$-28.65(4)$	
2.8	2.5	-8.482	1.608	$-28.75(2)$	
2.6	2.5	-8.482	1.609	$-28.76(2)$	
2.4	2.5	-8.482	1.610	$-28.77(2)$	
2.2	2.5	-8.481	1.613	$-28.77(2)$	
2.0	$2.5[116]$	-8.481	1.617	$-28.77(2)$	
1.8	2.5	-8.480	1.625	$-28.77(2)$	
1.6	2.5	-8.478	1.638	$-28.77(2)$	

KH, Phys. Rept. 890, I (202I)

Low-resolution fits versus consistent $\mathrm{NN}+3 \mathrm{~N}$ evolution

pure neutron matter (PNM)

symmetric nuclear matter (SNM)

KH, Phys. Rept. 890, I (202I)

New and improved 'magic' interactions

Arthuis, KH, Schwenk, arXiv:240I. 06675

- Fit to C_{D} and C_{E} to ${ }^{3} \mathrm{H}$ energy and both binding energies and radius of ${ }^{16} \mathrm{O}$ using EM500 and NNLO sim 550 low-resolution NN interactions
- Simultaneous reproduction of experimental binding energies and charge radii see talk by Achim for more details and results

- Fit to C_{D} and C_{E} to ${ }^{3} \mathrm{H}$ energy and both binding energies and radius of ${ }^{16} \mathrm{O}$ using EM500 and NNLO Nim 550 low-resolution NN interactions
- Simultaneous reproduction of experimental binding energies and charge radii see talk by Achim for more details and results

Uncertainty III: Inclusion of 3NF in many-body calculations

A general Hamiltonian consisting of kinetic energy, NN and 3 N interactions:

$$
\begin{aligned}
& \hat{H}=\hat{T}_{\text {rel }}+\hat{V}_{\mathrm{NN}}+\hat{V}_{3 \mathrm{~N}} \\
& \hat{T}_{\mathrm{rel}}=\sum_{i j}\langle i| T|j\rangle \hat{a}_{i}^{\dagger} \hat{a}_{j}, \\
& \hat{V}_{\mathrm{NN}}=\frac{1}{(2!)^{2}} \sum_{i j k l}\langle i j| V_{\mathrm{NN}}^{\text {as }}|k l\rangle \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{l} \hat{a}_{k}, \\
& \left.\hat{V}_{3 \mathrm{~N}}=\frac{1}{(3!)^{2}} \sum_{i j k l m n}\langle i j k| V_{3 \mathrm{~N}}^{\mathrm{as}}|l m n\rangle\right\rangle_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{k}^{\dagger} \hat{a}_{n} \hat{a}_{m} \hat{a}_{l}
\end{aligned}
$$

can be exactly rewritten in a normal-ordered form:

$$
\begin{aligned}
& \Gamma_{\mathrm{HF}}^{(0)}=\sum_{i} n_{i}\langle i| T|i\rangle+\frac{1}{2} \sum_{i j} n_{i} n_{j}\langle i j| V_{\mathrm{NN}}^{\mathrm{as}}|i j\rangle+\frac{1}{6} \sum_{i j k} n_{i} n_{j} n_{k}\langle i j k| V_{3 \mathrm{~N}}^{\mathrm{as}}|i j k\rangle, \\
& \hat{\Gamma}_{\mathrm{HF}}^{(1)}=\sum_{i j}\left[\langle i| T|j\rangle+\sum_{k} n_{k}\langle i k| V_{\mathrm{NN}}^{\mathrm{as}}|j k\rangle+\frac{1}{2} \sum_{k l} n_{k} n_{l}\langle i k l| V_{3 \mathrm{~N}}^{\mathrm{as}}|j k l\rangle\right] N\left(\hat{a}_{i}^{\dagger} \hat{a}_{j}\right), \\
& \hat{\Gamma}_{\mathrm{HF}}^{(2)}=\sum_{i j k l}\left[\langle i j| V_{\mathrm{NN}}^{\mathrm{as}}|k l\rangle+\sum_{m} n_{m}\langle i j m| V_{3 \mathrm{~N}}^{\mathrm{as}}|k l m\rangle\right] N\left(\hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{l} \hat{a}_{k}\right), \\
& \hat{\Gamma}_{\mathrm{HF}}^{(3)}=\sum_{i j k l m n}\langle i j k| V_{3 \mathrm{~N}}^{\mathrm{as}}|l m n\rangle N\left(\hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{k}^{\dagger} \hat{a}_{n} \hat{a}_{m} \hat{a}_{l}\right) .
\end{aligned}
$$

Traditional normal ordering framework for 3 N interactions

I. transformation to Jacobi HO basis plus antisymmetrization

$$
\left\langle p^{\prime} q^{\prime} \alpha^{\prime}\right| V_{3 \mathrm{~N}}^{(i), \text { reg }}|p q \alpha\rangle \rightarrow\left\langle N^{\prime} n^{\prime} \alpha^{\prime}\right| V_{3 \mathrm{~N}}^{(\mathrm{as}, \text { reg }}|N n \alpha\rangle
$$

2. transformation to single particle basis

$$
\left\langle N^{\prime} n^{\prime} \alpha^{\prime}\right| V_{3 \mathrm{~N}}^{\text {as, reg }}|N n \alpha\rangle \rightarrow\left\langle 1^{\prime} 2^{\prime} 3^{\prime}\right| V_{3 \mathrm{~N}}^{\text {as, reg }}|123\rangle
$$

3. Normal ordering with respect to some reference state

$$
\left\langle 1^{\prime} 2^{\prime}\right| \bar{V}|12\rangle=\sum_{3} \bar{n}_{3}\left\langle 1^{\prime} 2^{\prime} 3\right| V_{3 N}^{\text {as }}|123\rangle
$$

- severe memory limitations for handling of single-particle matrix elements with increasing E3max
- Significant optimisations possible when storing only those matrix elements needed for normal ordering

Roth at al., PRC 90024325 (2014)

Novel normal ordering framework for 3 N interactions

I. Use momentum space and expand reference state in HO basis:

$$
\begin{aligned}
\left\langle\mathbf{k}_{1}^{\prime} \mathbf{k}_{2}^{\prime}\right| \bar{V}\left|\mathbf{k}_{1} \mathbf{k}_{2}\right\rangle & =\sum_{n_{3} l_{3} m_{3}} \bar{n}_{3}\left\langle\mathbf{k}_{1}^{\prime} \mathbf{k}_{2}^{\prime} \gamma_{3}\right| V_{3 \mathrm{~N}}^{\mathrm{as}}\left|\mathbf{k}_{1} \mathbf{k}_{2} \gamma_{3}\right\rangle \\
& =\int d \mathbf{k}_{3} d \mathbf{k}_{3}^{\prime}\left\langle\mathbf{k}_{1}^{\prime} \mathbf{k}_{2}^{\prime} \mathbf{k}_{3}^{\prime}\right| V_{3 \mathrm{~N}}^{\mathrm{as}}\left|\mathbf{k}_{1} \mathbf{k}_{2} \mathbf{k}_{3}\right\rangle \sum_{n_{3} l_{3} m_{3}} \bar{n}_{3}\left\langle\gamma_{3} \mid \mathbf{k}_{3}^{\prime}\right\rangle\left\langle\mathbf{k}_{3} \mid \gamma_{3}\right\rangle
\end{aligned}
$$

2. Rewrite interaction in Jacobi momentum basis:

$$
\left\langle\mathbf{p}^{\prime} \mathbf{P}^{\prime}\right| \bar{V}|\mathbf{p} \mathbf{P}\rangle=\int d \mathbf{k}_{3} d \mathbf{k}_{3}^{\prime}\left\langle\mathbf{p}^{\prime} \mathbf{q}^{\prime}\right| V_{3 \mathrm{~N}}^{\text {as }}|\mathbf{p q}\rangle \delta\left(\mathbf{P}+\mathbf{k}_{3}-\mathbf{P}^{\prime}-\mathbf{k}_{3}^{\prime}\right) \sum_{n_{3} l_{3} m_{3}} \bar{n}_{3}\left\langle\gamma_{3} \mid \mathbf{k}_{3}^{\prime}\right\rangle\left\langle\mathbf{k}_{3} \mid \gamma_{3}\right\rangle
$$

3. Decomposition in Jacobi partial wave momentum states:
$\left\langle p^{\prime} P^{\prime} L^{\prime} M^{\prime} L_{c m}^{\prime} M_{c m}^{\prime}\right| \bar{V}\left|p P L M L_{c m} M_{c m}\right\rangle$

$$
=\int d \hat{\mathbf{p}} d \hat{\mathbf{P}} d \hat{\mathbf{p}}^{\prime} d \hat{\mathbf{P}}^{\prime} Y_{L_{c m}^{\prime} M_{c m}^{\prime}}^{*}\left(\hat{\mathbf{P}}^{\prime}\right) Y_{L^{\prime} M^{\prime}}^{*}\left(\hat{\mathbf{p}}^{\prime}\right)\left\langle\mathbf{p}^{\prime} \mathbf{P}^{\prime}\right| \bar{V}|\mathbf{p} \mathbf{P}\rangle Y_{L_{c m} M_{c m}}(\hat{\mathbf{P}}) Y_{L M}(\hat{\mathbf{p}})
$$

4. transform matrix elements to Jacobi HO basis

$$
\begin{aligned}
& \left\langle p^{\prime} P^{\prime} L^{\prime} M^{\prime} L_{c m}^{\prime} M_{c m}^{\prime}\right| \bar{V}\left|p P L M L_{c m} M_{c m}\right\rangle \\
& \quad \rightarrow\left\langle n_{p}^{\prime} N_{P}^{\prime} L^{\prime} M^{\prime} L_{c m}^{\prime} M_{c m}^{\prime}\right| \bar{V}\left|n_{p} N_{P} L M L_{c m} M_{c m}\right\rangle
\end{aligned}
$$

5. transformation to single-particle HO basis via generalized Talmi transformation (taking into account L_{cm} dependence)

Novel normal ordering framework for 3 N interactions

- at no stage single-particle 3 N HO matrix elements needed
- $\mathrm{N}_{\text {max }}$ can be increased straightforwardly
- basis size and storage space determined by $J_{\text {max }}$ and $\mathrm{L}_{\mathrm{cm}, \max }$,

Novel normal ordering framework for 3 N interactions

KH at al., PRC 107, 024310 (2023)

Singular value decomposition of NN interactions

- excellent agreement with full results for phase shifts and binding energies for very low number of ranks (= number of retained singular values)

(Randomized) singular value decomposition of 3 N interactions

Tichai et al., arXiv:2307.I5572

- again good agreement with full results for binding energies and charge radii for very low number of ranks (NN interactions not SVD-decomposed)

(Randomized) singular value decomposition of 3 N interactions

Tichai et al., arXiv:2307.I5572

- again good agreement with full results for binding energies and charge radii for very low number of ranks (NN interactions not SVD-decomposed)

Which contributions should a comprehensive uncertainty estimate contain?
I. Power counting scheme
II. Chiral expansion
III. Regularization schemes
IV. Different fitting strategies for low-energy couplings
V. Truncation in many-body expansions/SRG evolution
VI. Basis truncations
VII....?

