The chronicles of MESA: Precision, perplexities and uncertain tales

Johannes Gutenberg-Universität - Institut für Kernphysik, Mainz

The scene features a blend of scientific and fantastical elements. On one side, there's a detailed, <u>realistic</u> <u>depiction of the MESA accelerator</u> with <u>beams of light and particles symbolizing high precision nuclear studies</u>. In the background, a majestic neutron star is visible, hinting at the physics of neutron stars and the Equation of State of nuclear matter. On the other side, elements of a mystical forest are subtly incorporated, inspired by the Chronicles of Narnia, with an ancient book partially open, showing <u>diagrams of atomic nuclei and equations</u>. The overall color scheme is a mix of deep blues and purples, creating an atmosphere of mystery and exploration. The image should evoke a sense of wonder and scientific curiosity, seamlessly blending the real and the fantastical.

The "Realistic Depiction "

MESA – Mainz Energy-Recovering Superconducting Accelerator

#MakeHumansSmartAgain

The "Realistic Depiction "

MESA – Mainz Energy-Recovering Superconducting Accelerator

Multi-purpose facility low-energy precision physics experiments

ICETTINASFIENTI

The "Realistic Depiction "

MESA – Mainz Energy-Recovering Superconducting Accelerator

... the "Chronicles of MESA"

ONCETTINASFIENTI

... the "Chronicles of MESA"

CETTINASFIENTI

#MakeHumansSmartAgain

...precision, perplexities and uncertain tales

Rebellious skins

The 4 -horsemen of the Apocalypse

Rebellious skins

Pressure forces neutrons out against surface tension The neutron skin measures how

much neutrons stick out past protons

Rebellious skins

²⁰⁸Pb

150

THE CHRONICLES

100

L (MeV)

50

ETTINASFIENTI

0.15

0.1

Pressure forces neutrons out against surface tension The neutron skin measures how much neutrons stick out past protons

(or the highway to hell, depending on your level of optimism)

The stairway to heaven (or the highway to hell, depending on your level of optimism)

(Personal selection) **PV-Asymmetry** long. polarized unpolarized γ, **Ζ**⁰ target Resonance **PVES** Strength ????.. **Cross-section** Collective **Excitation** BURNE COUNSIS DEFAT I THINK IM Hadronic **EM Probes Probes** Theo. uncertainties (a.u) OF MESA THE CHRONICLES #MakeHumansSmartAgain VCETTINASFIENTI

(or the highway to hell, depending on your level of optimism)

Featured in Physics Editors' Suggestion

Neutron Skin of $^{208}\mathrm{Pb}$ from Coherent Pion Photoproduction

C. M. Tarbert *et al.* (Crystal Ball at MAMI and A2 Collaboration) Phys. Rev. Lett. **112**, 242502 – Published 18 June 2014

Physics See Synopsis: Neutron Skin Turns Out to Be Soft

tagger at the MAMI electron beam facility. On exploitation of an interpolated fit of a theoretical model to the measured cross sections, the half-height radius and diffuseness of the neutron distribution are found to be $c_n = 6.70 \pm 0.03$ (stat.) fm and $a_n = 0.55 \pm 0.01$ (stat.)^{+0.02}_{-0.03}(sys.) fm, respectively, corresponding to a neutron skin thickness $\Delta r_{np} = 0.15 \pm 0.03$ (stat.)^{+0.01}_{-0.03}(sys.) fm. The results give the first successful extraction of a neutron skin thickness with an electromagnetic probe and indicate that the skin of ²⁰⁸Pb has a halo character. The measurement provides valuable new constraints on both the structure of nuclei and the equation of state for neutron-rich matter.

Theo. uncertainties (a.u)

#MakeHumansSmartAgain

Featured in Physics Ed

tors' Suggestion

Neutron Skin of $^{208}\mathrm{Pb}$ from Coherent Pion Photoproduction

C. M. Tarbert *et al.* (Crystal Ball at MAMI and A2 Collaboration) Phys. Rev. Lett. **112**, 242502 – Published 18 June 2014

Physics See Synopsis: Neutron Skin Turns Out to Be Soft

tagger at the MAMI electron beam facility. On exploitation of an interpolated fit of a theoretical model to the measured cross sections, the half-height radius and diffuseness of the neutron distribution are found to be $c_n = 6.70 \pm 0.03$ (stat.) fm and $a_n = 0.55 \pm 0.01$ (stat.) $^{+0.02}_{-0.03}$ (sys.) fm, respectively, corresponding to a neutron skin thickness $\Delta r_{np} = 0.15 \pm 0.03$ (stat.) $^{+0.01}_{-0.03}$ (sys.) fm. The results give the first successful extraction of a neutron skin thickness with an electromagnetic probe and indicate that the skin of 208 Pb has a halo character. The measurement provides valuable new constraints on both the structure of nuclei and the equation of state for neutron-rich matter.

Theoretical analysis of the extraction of neutron skin thickness from coherent π^0 photoproduction off nuclei

F. Colomer, P. Capel, M. Ferretti, J. Piekarewicz, C. Sfienti, M. Thiel, V. Tsaran, and M. Vanderhaeghen Phys. Rev. C **106**, 044318 – Published 18 October 2022

Theoretical analysis of the extraction of neutron skin thickness from coherent π^0 photoproduction off nuclei

F. Colomer, P. Capel, M. Ferretti, J. Piekarewicz, C. Sfienti, M. Thiel, V. Tsaran, and M. Vanderhaeghen Phys. Rev. C **106**, 044318 – Published 18 October 2022

Theoretical analysis of the extraction of neutron skin thickness from coherent π^0 photoproduction off nuclei

THE CHRONICLES

F. Colomer, P. Capel, M. Ferretti, J. Piekarewicz, C. Sfienti, M. Thiel, V. Tsaran, and M. Vanderhaeghen Phys. Rev. C **106**, 044318 – Published 18 October 2022

OF MESA

Non-PV e-scattering

Electron scattering γ exchange provides R_p through nucleus FFs

PV e-scattering

Electron also exchange Z, which is parity violating

Primarily couples to neutron

- Essentially means 1.5% on $A_{_{PV}}$
- A_{PV} is 40 parts per billion
- $\delta(A_{PV})$ is 0.6 parts per billion

$$\delta(A_{PV}) \propto \frac{1}{\sqrt{N}}$$

...the "Chronicles of MESA"

.... need a few N=10¹⁸ electrons! ... close to 10¹¹ electrons/s

...precision, perplexities and uncertain tales

Rebellious skins

The 4 -horsemen of the Apocalypse

Modern nuclear physics is about...

.linking QCD to many-body systems

A scientific... tango

.linking QCD to many-body systems

$\sigma \propto |\langle \Psi_f| J^\mu {\rm Ascientific...}$ tango

- Exact calculations both for bound and scattering states
- Energy and momentum transfer MUST be consistent with GhEFT oppositions!

ansSmartAgain

The four horsemen of the Apocalypse

Theory and experiment disagree on alpha particles

Electron-scattering experiments on excited helium nuclei open questions about the accuracy and sensitivity of state-of-the-art nuclear models.

Ithough the helium nucleus has just four nucleons—two neutrons and two protons—theoretical models fail to replicate some of its properties.

14 PHYSICS TODAY | JUNE 2023

TINASFIENT

ter. The researchers' calculations of a quantity related to how the nucleons are arranged in the alpha particle's first excited state didn't match the values inferred from electron-scattering experiments. The experiments were pri-

marily from the uncertaint intervening d and technolog tor sensitivityically, but that

tween theory and expe

and her colleagues decid

and improved experime

tion was warranted. Now

The four horsemen of the Apocalypse

OF MESA

CETTINASFIENTI

The trans. form factor describes the dynamics of excitation between resonance and ground state depending on Q²

⁴HE TRANSITION FORM FACTOR

$$\mathcal{F}_{M0^+}(\boldsymbol{Q}^2) \propto | < \mathbf{0}_2^+ |\mathcal{M}(\boldsymbol{Q}^2)|\mathbf{0}_1^+ > |$$

 $\left(\frac{d\sigma}{d\Omega}\right)_{\exp} \propto |\mathcal{F}_{M0^+}(\boldsymbol{Q}^2)|^2 \propto \text{Events}$

Determination of a form factor

$$|\mathcal{F}(Q^2)|^2 = \left(\frac{d\sigma}{d\Omega}\right)_{\exp} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott}^*$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{\exp} = \frac{\mathcal{N} - \mathcal{N}_{bg}}{\mathcal{L}_{int} \cdot \epsilon_{eff} \cdot \Omega}$$

INTEGRATED LUMINOSITY

\mathcal{L}_{int} depends on

- Target density and length
- beam current
- time of the measured setup
- \rightarrow monitored parameters

DETECTOR EFFICIENCY

 ε_{eff} depends on

- Deadtime
- Trigger
- VDC parameters (e.g. drift gas density, timing offsets)
- \rightarrow calibrated parameters

PHASE SPACE

- Ω depends on
 - Size of Collimator
 - central momentum p_{cent}
 - scat. angle θ
- \rightarrow simulated parameters

Determination of a form factor

$$|\mathcal{F}(Q^2)|^2 = \left(\frac{d\sigma}{d\Omega}\right)_{\exp} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott}^*$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{\exp} = \frac{\mathcal{N} - \mathcal{N}_{bg}}{\mathcal{L}_{int} \cdot \epsilon_{eff} \cdot \Omega}$$

BACKGROUND SUBTRACTED EVENTS

- $\mathcal{N}-\mathcal{N}_{bg}$ depends on
 - N_{bg} : e⁻ scattering on Target cell Material ²⁷Al
 - N_{bg} : Elastic and Quasi Elastic e⁻ scattering on ⁴He
 - \mathbb{N} : Resonance Model

Aluminum target walls

Semi-empirical model of elastic, quasi-elastic, inelastic scattering. Check with empty cell runs!

Radiative tail of ⁴He elastic line

Elastic Form Factor + radiative corrections

Determination of a form factor

$$|\mathcal{F}(Q^2)|^2 = \left(\frac{d\sigma}{d\Omega}\right)_{\exp} / \left(\frac{d\sigma}{d\Omega}\right)_{Mott}^*$$
$$\left(\frac{d\sigma}{d\Omega}\right)_{\exp} = \frac{\mathcal{N} - \mathcal{N}_{bg}}{\mathcal{L}_{int} \cdot \epsilon_{eff} \cdot \Omega}$$

BACKGROUND SUBTRACTED EVENTS

- $\mathcal{N}-\mathcal{N}_{bg}$ depends on
 - N_{bg} : e⁻ scattering on Target cell Material ²⁷Al
 - N_{bg} : Elastic and Quasi Elastic e⁻ scattering on ⁴He
 - \mathbb{N} : Resonance Model

⁴He continuum

Model includes quasi-elastic processes and other resonances (two background models)

• ⁴He monopole resonance

Parameterisation to simulate the resonance in the spectra (two line shapes)

Results for the transition FF

- Transition form factor fitted with B-Splines and Polynomial x Exp.
- Dependence of background and resonance models embedded by repeating analysis for all combinations of BG1/BG2 and $\sigma 1/\sigma 2$
 - → model confidence band
- At MAGIX we can reduced the uncertainties and measure at lower Q²

TABLE II. Contributions to the systematic uncertainties of the transition form factor and the model dependencies.

Source	$\Delta {\cal F}_{{ m M0}^+}(Q^2) ^2$ (%)
Background	±1
⁴ He ground state form factor	± 0.5
$\Delta\Gamma_0$	± 4
Model uncertainties	
BG1-BG2	± 3.2
$\sigma_1 - \sigma_2$	-5.8

The four horsemen of the Apocalypse

- Transition form factor fitted with B-Splines and Polynomial x Exp.
- Dependence of background and resonance models embedded by repeating analysis for all combinations of BG1/BG2 and σ 1/ σ 2
 - → model confidence band
- At MAGIX we can reduced the uncertainties and measure at lower Q²

... precision, perplexities and uncertain

Resonance position

Viviani et al, Phys. Rev. C 102, 034007 (2020)

Interaction	$E_R (MeV)$	$\Gamma (MeV)$
N3LO500	0.126	0.556
N3LO600	0.134	0.588
N3LO500/N2LO500	0.118	0.484
N3LO600/N2LO600	0.130	0.989
N4LO450/N2LO450	0.126	0.400
N4LO500/N2LO500	0.118	0.490
N4LO550/N2LO550	0.130	0.740
Expt.	0.39	0.50

Large dependence on the nuclear Hamiltonian

THE CHRONICLES

tales

... precision, perplexities and uncertain

Resonance position

Viviani et al, Phys. Rev. C **102**, 034007 (2020)

Interaction	$E_R (MeV)$	Γ (MeV)
N3LO500	0.126	0.556
N3LO600	0.134	0.588
N3LO500/N2LO500	0.118	0.484
N3LO600/N2LO600	0.130	0.989
N4LO450/N2LO450	0.126	0.400
N4LO500/N2LO500	0.118	0.490
N4LO550/N2LO550	0.130	0.740
Expt.	0.39	0.50

Large dependence on the nuclear Hamiltonian

However, factor potentially wrong, Peng et al, (privat. comm. - comment submitted to PRL)

THE CHRONICLES

More calculations

Michel et al., PRL **131**, 242502(2023)

tales

... precision, perplexities and uncertain

Resonance position

Viviani et al, Phys. Rev. C **102**, 034007 (2020)

Interaction	$E_R (MeV)$	Γ (MeV)
N3LO500	0.126	0.556
N3LO600	0.134	0.588
N3LO500/N2LO500	0.118	0.484
N3LO600/N2LO600	0.130	0.989
N4LO450/N2LO450	0.126	0.400
N4LO500/N2LO500	0.118	0.490
N4LO550/N2LO550	0.130	0.740
Expt.	0.39	0.50

Large dependence on the nuclear Hamiltonian

However, factor potentially wrong, Peng et al, (privat. comm. - comment submitted to PRL)

However, Fourier transform of transition density is higher than data (tail was modified)

More calculations

Meißner et al., PRL **132**, 062501 (2024)

THE CHRONICLES OF

tales

.. AND UNCERTAIN TALES...

... is it still a tango?

Precision experiments

...get all your errors in order! :-)

MESA is the facility to lead precision 2.0

.. AND UNCERTAIN TALES...

... is it still a tango?

Precision experiments

...get all your errors in order! :-)

MESA is the facility to lead precision 2.0 Challenge to EFT: Propose a (new) observable and make a prediction!

.. AND UNCERTAIN TALES...

... is it still a tango?

Precision experiments

...get all your errors in order! :-)

MESA is the facility to lead precision 2.0 Challenge to EFT: Propose a (new) observable and make a prediction!

...also new data on the proton crisis, search for exotic particles, reactions for astrophysics ...

Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the end of the beginning.

S factor (eV b)

(Winston Churchill)

