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1. The nucleus is a complex many-body system. Exact quantitative 
nuclear models do not exist. 

2. While all models are wrong, models that know when and how they are 
wrong are useful. (after G. Box) 

3. Bayesian methods are particularly useful for assessing uncertainties in 
nuclear physics. Ab initio models have an inferential advantage. 
• M. Schindler and D. Phillips [Ann. Phys. 324 (2009) 682] 

• S. Wesolowski, R. Furnstahl, D. Phillips, J. Melendez, C. Drischler and the Buqeye collaboration 

• A. Ekström, cf, I. Svensson, W. Jiang 

• and many others [see, e.g., M. Piarulli, E. Epelbaum, cf (2023) Editorial: Uncertainty quantification in 
nuclear physics. Front. Phys. 11:1270577] 

• Lecture notes: https://cforssen.gitlab.io/learningfromdata/  

4. Multidisciplinary efforts are being pursued for tackling problems 
involving complex computer models. 
• See, e.g., the ISNET series [https://isnet-series.github.io/]

Setting up for this talk

https://cforssen.gitlab.io/learningfromdata/
https://isnet-series.github.io/


Efforts at several ab initio frontiers

Bayesian 
inference  
of 𝛘EFT 
interactions

Emulators and 
Bayesian 
methods for 
many-body 
modelling and 
predictions

Convergence 
and RG 
invariance of 
𝛘EFT



Precision nuclear theory
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Data and models

Credit W. Nazarewicz,  
INTRANS 2024 

yexp + δyexp = yth(α)



More than one observable

yexp + δyexp = yth(α)



Assessment through UQ

yexp + δyexp = yth(α) + δyth

This is now a statistical model



Correlated errors are important

pr(δy1, δy2) ≠ pr(δy1)pr(δy2) if ρ12 ≠ 0
Many relevant errors in ab initio modelling are correlated

▸ Theory 1 seems accurate, but very imprecise.

▸ Theory 2 is in mild tension with the experiment for observable 1, and in 

strong tension with theory 3.



Physics predictions with (complex) precision models

▸ Searches for BSM physics via high-precision beta decay

▸ Extreme nuclear matter modelling

▸ Predictive modelling of rare isotopes 

Y. Kondo et al., Nature 620, (2023), 965

Z. Sun et al.,  
arXiv 2404.00058

B. Hu et al., Nature Phys, 18 (2022) 1196,
W. Jiang et al., PRC 109  
(2024) L061302

A. Glick-Magid et al., PLB  832 (2022) 137259



▸Model calibration via Bayes’ theorem

Learning from data via Bayes

▸ The prior encodes our knowledge about parameter values before analyzing the data 

▸ The likelihood is the probability of observing the data given a set of parameters 

▸ The marginal likelihood (or model evidence) provides normalization of the posterior. 

▸ The posterior is the inferred probability density for the parameters.

Posterior
Likelihood Prior

Marginal likelihood

pr(α |𝒟, I) =
pr(𝒟 |α, I)pr(α | I)

pr(𝒟 | I)

yexp = ỹ(α) + δyEFT + δymethod + δỹem + δyexp

▸Statistical modeling (for ab initio methods)

▸ Likelihood-free approaches; avoiding full probabilistic modeling. 

▸ Handling of correlated errors; effective data sets and more realistic error quantification. 

▸ Strategic choices of heavy computations; synergies in emulator training.



Bayesian predictive distributions

{y(α) : α ∼ pr(α |𝒟, I)}

▸ Predictions for “future” data, modeled with y(𝜶), are described by the
posterior predictive distribution (ppd)

▸ We will also introduce full ppd:s {y(α) + δy : α ∼ pr(α |𝒟, I), δy ∼ pr(δy)}

{y(α) : α ∼ pr(α | I)}

▸ Prior checking with “historic” (known) data, are described by the prior
predictive distribution (important part of model building)

▸ Prior samples filtered by non-implausibility = History matching
I. Vernon, et al. (Bayesian Analysis, 2010)
I. Vernon, et al. (BMC Systems Biology, 2018)
B. Hu et al. (Nature Phys. 2022); W. Jiang et al. (PRC 2024)



Error modeling
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Low-energy 
constants = 
Parameters

A. Ekström, et al. (2018); W. Jiang, et al. (2020)

parameters inferred from data. 
— parametric uncertainty 

EFT expansion truncated 
— model/truncation error 

many-body solver relies on 
approximations:  
— many-body error

Ab initio modeling of nuclear systems using chiral EFT
EFT promises a connection with QCDχ

Weinberg, van Kolck, Kaiser, Bernard,  
Meißner, Epelbaum, Machleidt, Entem, …

 Ĥ |ψi⟩ = Ei |ψi⟩

Ĥ(α) = ̂T + ̂V(α)

H. Krebs et al. (2007); E. Epelbaum et al. (2008)
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Neff ≈ Ndata /4

Challenge #1: Getting to know your errors
▸ EFT truncation errors 

▸ Approach: study order-by-order results and learn the PDF for expansion 
coefficients  

,                  (see Dick’s talk) 

▸ Challenges: Cutoff dependence, expansion parameter, irregular 
convergence, correlation structure for E(A), rp(A), 𝛔(E,𝞱), etc

yk = yref

k

∑
n=0

cnQn δyk = yref

∞

∑
n=k+1

cnQn

T. Djärv et al (2022)

A=4,6 binding energies

GP modelling for correlated EFT errors in 
J. Melendez et al (2019) and  C. Drischler et al. (2020)

δyk( ⃗x) = yref

∞

∑
n=k+1

cn( ⃗x)Qn



Challenge #1: Getting to know your errors
▸ Many-body errors 

▸ Approach: Convergence studies; Method comparisons;  

▸ Note: We can incorporate “uncertain” extrapolation,  
▸ Challenges: Some approximations might be very difficult to relax; 

Non-variational observables/approaches

𝔼[δyMB] ≠ 0

GP modelling for method 
and model errors in 

W. Jiang et al (2024)Bayesian IR extrapolation for  
Y-NCSM in D. Gazda et al (2022)

Nmax extrapolation for NCSM in 
T. Djärv et al (2022)



Challenge #2: Parametric uncertainty for high-dim models
▸ Likelihood-free methods 

▸ History matching allows model 
exploration without full probabilistic 
specification (linear Bayes). 

▸ Should also explore Approximate 
Bayesian Computation, etc. 

▸ Posterior sampling 

▸ Univariate distributions can often be 
mapped with relatively few (<100) 
samples. 

▸ Make every sample important (HMC 
renders uncorrelated samples) 

▸ Posterior updates with importance 
resampling. 

▸ Full sampling enabled with emulators.
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Emulators
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Emulators
▸ An emulator mimics the simulator output at a reduced 

computational cost:  

 

▸ A useful emulator is fast and accurate; 
▸ … with quantified emulator uncertainty. 

▸ Emulators can be non-intrusive (data based) 
▸ Neural networks, Gaussian processes, etc 

▸ Or intrusive (model based) 
▸ Translating a high-fidelity model to a low-fidelity one 
▸ Vast literature on model-order reduction (MOR); 

see, e.g., Melendez et al. (2203.05528) with many refs.

y(α) ≈ ỹ(α) + δỹ



Eigenvector continuation emulators

continuous parameter

H(α) = H0 + αH1

The key insight is that while an eigenvector resides in a linear 
space with enormous dimensions, the eigenvector trajectory 
generated by smooth changes of the Hamiltonian matrix is well 
approximated by a very low-dimensional manifold. 

D. Frame, et al.  Phys. Rev. Lett. 121, 032501 (2018)
T. Duguet, et al.  arXiv:2310.19419.



▸ Emulator errors 

- Approach: Cross-validation, EC offers rapid convergence with  
- Challenges: Outliers. EC convergence (Sarkar and Lee)

Nsub
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Jiang et al., (2024) 

Kondo et al.,  
(2022)

Djärv et al., (2022)

SPCC (CCSDT-3) 
Speedup: 108

SPCC (CCD k-boxes with 
A=66,132 at 6 densities) 
Speedup: 108

EVC (NCSM M-scheme) 
Speedup: 107

E(24O)E(6Li) Infinite nuclear matter

R42(Ne,Mg)

HF Sun et al., (2024)



Small-batch voting

SPCC

SPCC with 
small-batch voting

|Ψ(α⊚)⟩ = eT(α⊚)) |Φ0⟩ ≈
Nsub

∑
i=1

c⋆
i |Ψi⟩

Physical states are stable  
w.r.t. subspace variations

Create different subspaces from different  
batches of training vectors; 
Compare the spectra and keep the stable states



Emergence of nuclear saturation
Nuclear-matter saturation and symmetry energy within Δ-full  
chiral effective field theory 
by W.G. Jiang, cf, T. Djärv, G. Hagen, 109 (2024) L061302 

Emulating ab initio computations of infinite nucleonic matter 
by W.G. Jiang, cf, T. Djärv, G. Hagen, 109 (2024) 064314
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Emergence of nuclear saturation within Δ − χEFT

▸  with explicit  isobar.  

▸ Extensive error model  
(EFT truncation, method convergence, finite-size errors). 

▸ Iterative history-matching for global parameter search. Study ab 
initio model performance, and provide a large (>106) number of non-
implausible samples. 

- Implausibility criterion involves only  observables. 

▸ Bayesian posterior predictive distributions for nuclear matter 
properties. 

- Importance resampling with two different data sets:  
  and   . 

▸ Relies on sub-space projected coupled cluster (SP-CCD) emulators 
for infinite nuclear matter systems at different densities.

χEFT Δ

A ≤ 4

𝒟A=2,3,4 𝒟A=2,3,4,16



History matching waves
▸ np S- and P-wave phase shifts at  

Tlab=1, 5, 25, 50, 100, 200 MeV 

▸ 2H ( ),  

▸ 3H ( ), 4He ( ) 

▸ Prior for  from a Roy-Steiner  
analysis of 𝜋N data (Siemens 2017)

E, R2
p , Q

E E, R2
p

c1, c2, c3, c4

[wave 1] & [wave 2] & final 

[wave 3] & [wave 4] & final 

[wave 4] & final



Strategic training of NM emulator
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FIG. 4. (Color online) Predicted mean (blue lines) and 95%
confidence interval (light blue regions) for energy per neu-
tron/particle using GP and compared with predictions of
quadratic spline. The hyperparameters of the GP are given
by l = 0.25 fm�3 and � = 100. The black diamonds denote
the training data (SPCC calculations with �NNLOGO(394)
interaction) of the GP.

symmetric nuclear matter around the saturation point.
Ideally one would like to include the density ⇢ parame-
ter in the eigenvector continuation scheme and build an
emulator that works for di↵erent LECs and at arbitrary
densities. However, changing the density leads to di↵er-
ent discretizations of the momentum space lattice and
one would therefore need to work out matrix elements
connecting di↵erent reference states and lattices.

Fortunately, we are not completely ignorant about the
properties of the EOS of nuclear matter. The E(⇢)/N
(E(⇢)/A) should be continuous smooth curve when ⇢

changes. Namely, the energies per nucleon at di↵er-
ent densities are correlated and we do not need many
points to obtain su�cient information about the EOS.
In this work, we construct SPCC emulators for both
PNM and SNM at five di↵erent densities ranging from
0.12 to 0.20 fm�3. We choose to study this density re-
gion simply because the empirical saturation density is
around 0.16 fm�3 [11, 95]. The nuclear matter EOS is
then obtained at di↵erent densities within this range by
using Gaussian processes (GP) [96] as the interpolation
method. We choose the radial basis function (RBF) as
the correlation function to ensure the smoothness of the
EOS. The hyperparameter (correlation length l) of the
GP is learned from a validation data set which contains
50 interaction samples that are generated by the same
history matching process mentioned in Sec. II C. The

PNM and SNM correlation lengths studied from the val-
idation set are 0.297 fm�3 and 0.259 fm�3, respectively.
We take a more conservative value l = 0.25 fm�3 for both
PNM and SNM in this work so that we do not overesti-
mate the correlation between di↵erent densities.
Figure 4 shows the GP predictions for the EOS of PNM

and SNM (using the �NNLOGO(394) interaction [43])
compared to the results obtained using spline interpola-
tion. We observe that the performance of both meth-
ods is equally good within the interpolation region. The
major advantage of using GP instead of simple poly-
nomial interpolation is that it is infinitely di↵erentiable
under the RBF kernel thus observables such as L and
K can easily be evaluated. For a given interaction
that has a saturation point within the density range
⇢ 2 [0.12, 0.20] fm�3 we can thereby extract all satura-
tion properties from the specified Gaussian process and
its derivative (first and second).

E. History matching

In this work we use an iterative history matching ap-
proach [44, 60–62] with selected experimental data to
study and reduce the huge parameter space of our �EFT
interaction model. For each wave of history matching we
need to establish a quantitative criterion that determines
if a parametrization ~↵ yields acceptable (or at least not
implausible) model predictions when confronted with the
selected set of observations Z. We introduce the individ-
ual implausibility measure

I
2

i (~↵) =
|Mi(~↵)� zi|2

Var (Mi(~↵)� zi)
, (7)

which includes the squared di↵erence between the model
prediction Mi(~↵) and the observation zi for observable
i from the target set Z. The total variance in the de-
nominator of Eq. (7) assumes independent errors and is
therefore a sum of variances that in our case includes ex-
perimental, model, method, and emulator errors. Unless
di↵erently specified we use the maximum of the individ-
ual implausibility measures to define the constraint

IM (~↵) ⌘ max
zi2Z

Ii(~↵)  cI , (8)

where the default choice is cI ⌘ 3.0 inspired by Pukel-
heim’s three-sigma rule [97].
History matching proceeds by reducing the parame-

ter space iteratively. In each wave one removes regions
that are deemed implausible by failing the constraint in
Eq. (8) . A visualization of this process is shown in
Fig. 5. We first use a space-filling design such as Latin
Hypercube Sampling to generate well-spaced interaction
samples in the input parameter domain. Then we use
fast modeling or emulation to compute the implausibil-
ity measures and apply the maximum implausibility con-
straint. The remaining non-implausible interaction sam-
ples are kept and defines the non-implausible region for

▸ About 10,000 NI samples. 
▸ Assign likelihood(s). 
▸ Use 64 most important  

samples for emulator construction. 
▸ Decreases errors during 

resampling,



▸ The concept of tension in science relies on statements of uncertainties 

▸ It is natural to strive for accuracy in theoretical modeling; but actual predictive 
power is more associated with quantified precision. 

▸ Ab initio methods + 𝝌EFT + Bayesian statistical methods in combination with fast 
& accurate emulators is enabling precision nuclear theory.  

▸ We have developed a unified ab initio framework to link the physics of NN 
scattering, few-nucleon systems, medium- and heavy-mass nuclei up to 208Pb, 
and the nuclear-matter equation of state near saturation density. 

▸ Challenges / questions:  
▸ Finite sample PPDs conditioned on many outputs. 
▸ Do we understand the convergence of our many-body methods well enough 

to quantify method errors? 
—benchmarks of different methods and truncation schemes are important. 

▸ Do we know the EFT convergence well enough to quantify truncation errors? 
—need to revisit leading (and subleading) orders of 𝝌EFT and RG invariance

Summary and outlook




