Muon g - 2/EDM Experiment at J-PARC

Ce ZHANG (Cedric) University of Liverpool

MITP 2024

Muon g - 2/EDM Experiment at J-PARC

- Experimental principle
- Facilities
 - Muon source
 - Muon accelerator
 - Magnet, storage and detector
- Expected Sensitivity
- Status & Schedule

emittance ~1000π mm · mrad

emittance ~1000π mm · mrad

luon g-2	J-PARC Muon g-2/EDM		
rupole	E = 0, very weak magnetic		
	300 MeV/c		
	7.4 ns		
	66 cm		
	B = 3 T (Solenoidal)		
	50%		

15

Prog. Theor. Exp. Phys. 2019, 053C02

17

detector

Storage

LINAC, 400 MeV proton

Rapid Cycling Synchrotron (RCS) **3 GeV proton**, ~ 1 MW, 25 Hz

LINAC, 400 MeV proton

Rapid Cycling Synchrotron (RCS) **3 GeV proton**, ~ 1 MW, 25 Hz

LINAC, 400 MeV proton

Material and Life Science Facility (MLF)

Rapid Cycling Synchrotron (RCS) **3 GeV proton**, ~ 1 MW, 25 Hz

LINAC, 400 MeV proton

J-PARC Muon *g* – 2/EDM experiment (E34)

Material and Life Science Facility (MLF)

Rapid Cycling Synchrotron (RCS) **3 GeV proton**, ~ 1 MW, 25 Hz

LINAC, 400 MeV proton

J-PARC Muon *g* – 2/EDM experiment (E34)

Material and Life Science Facility (MLF)

COMET

3 GeV proton from RCS $2 \times 10^{15} / s @1MW$

Muon target (graphite, ^t20mm)

3 GeV proton from RCS

$2 \times 10^{15} / s @1 MW$

Repetition rate 25 Hz, double bunches Tandem target: 5% for µ, 95% for n

Muon target (graphite, ^t20mm)

3 GeV proton from RCS $2 \times 10^{15} / s @1 MW$

Muon target (graphite, ^t20mm)

S line

- surface μ^+
- S1 for µSR ٠
- S2 for Mu 1S-2S •
- S3/S4 are planned

3 GeV proton from RCS $2 \times 10^{15} / s @1MW$

Muon target (graphite, ^t20mm)

H line

- surface μ^+ (>10⁸ μ^+/s), cloud μ^+/μ^- , e⁻
- for high intensity & long ٠ **beamtime** experiments
- H1 for DeeMe & MuSEUM
- H2 for g-2/EDM & TµM Under construction

MLF H-line (as of Dec 2023)

Deck for RF power supplies

Laser room

H2 area Ultra slow **µ** production Reacceleration up to 4 MeV

Future extension to accelerate up to 212 MeV Extension building construction ongoing (Budget secured!)

Credit to Takayuki YAMAZAKI

H1 area MUSEUM DeeMe

S2

Laser room

Inne Harley and a second second

Surface muon cooling by laser ionization of muonium (Mu) to thermal muon

Surface muon cooling by laser ionization of muonium (Mu) to thermal muon

31

Surface muon cooling by laser ionization of muonium (Mu) to thermal muon

$rmal muons \longrightarrow$	Re-accelerated muons
20 - 30 meV	212 MeV
2.3 keV/c	300 MeV/c
0.4	4×10^{-4} Re-
μ	

2013	 Muonium emission from silica aerogel [PTEP 103C0
2014	 Laser-ablation on aerogel surface [PTEP 091C01 (2014)]
2020	 Study of muonium emission from laser-ablated silica aerogel [PTEP 123C01 (2020)]

• Two laser options are under development:

122 nm laser

Challenging

High efficiency (73% efficiency at 100 µJ, now only 5 to 10 µJ achieved)

244 nm laser

- Easier for development
- Being used since 2021
- Efficiency under estimation (lower than 122 nm)

Key issues in the thermal muon source

- Thermal muon per injecting surface muon is low (10⁻³) in the TDR estimation.
- What has been achieved now (10-5) is even lower
- <u>Muonium production and laser efficiency</u> are two key weak points

Subsystem	Efficiency	Subsystem
H-line acceptance and transmission	0.16	DAW decay
Mu emission	0.0034	DLS transmission
Laser ionization	0.73	DLS decay
Metal mesh	0.78	Injection transmission
Initial acceleration transmission and decay	0.72	Injection decay
RFQ transmission	0.95	Kicker decay
RFQ decay	0.81	e^+ energy window
IH transmission	0.99	Detector acceptance of
IH decay	0.99	Reconstruction efficie
DAW transmission	1.00	

Table 4. Breakdown of estimated efficiency.

Prog. Theor. Exp. Phys. 2019, 053C02

Nuon Acceleration

The first muon-dedicated linac in the world

Frequency (2-stage) 324MHz, 1296MHz 1×10^{6} /s Intensity Rep rate 25 Hz Pulse width 10 ns Norm. rms emittance $1.5 \,\pi\,\text{mm}\,\text{mrad}$ 0.1 % Momentum spread

Muon LINAC parameters

Muon Acceleration

Muonium- acceleration using RF linac

Frequency (2-stage)	324MHz, 129
Intensity	1×10^6 /s
Rep rate	25 Hz
Pulse width	10 ns
Norm. rms emittance	1.5 π mm m
Momentum spread	0.1 %

Nuon Acceleration

- Fabrication of the real IH-DTL completed
- Fabricating the 1st DAW tank & proton-DLS.

Stem with washer

-	
Frequency (2-stage)	324MHz, 129
Intensity	1×10 ⁶ /s
Rep rate	25 Hz
Pulse width	10 ns
Norm. rms emittance	1.5 π mm m
Momentum spread	0.1 %

Muon LINAC parameters

Disk1

Stem with disk

DAW ready for production

DLS prototype (ready for production soon)

Nuon Acceleration The latest exciting result on April 2024

 The first-ever positive thermal muon RF re-acceleration to 90 keV was demonstrated at the J-PARC MLF S2 area on April 2024.

Press release in English: https://j-parc.jp/c/en/press-release/2024/05/23001341.html

A big milestone for the experiment

Muon Acceleration Next milestone: acceleration to 4 MeV

 the next step is to add IH-DTL to do further acceleration to 4 MeV at H2 area (the final experimental site)

3D Spiral Injection Why to inject the beam 3D spirally? The 3D spiral injection scheme has been invented for small muon orbit

[PRD73, 072003, 2006]

Conventional 2D injection @BNL and FNAL

- Inflector + horizontal kicker
- Efficiency ~3-5%

Novel injection @J-PARC

- 3D spiral injection + vertical kicker
- Efficiency > 80%
- to be adopted for the EDM @ PSI too

3D Spiral Injection

- Prototypes of the kicker were fabricated, and the 3D injection scheme is validated using a low momentum pulsed electron beam at KEK
- Simulation is still ongoing before finalising the design

Storage Magnet

• 3 Tesla MRI-type superconducting solenoid magnet is under design

M. Abe et. al., NIM A 890, 51 (2018)

- height : ± 5 cm
- Field strength : 3T
- Uniformity: 0.1 ppm (Azimuthal integral)
- Injection region : Smooth field for beam injection
- Weak focus field: -5e-4 T/m of Br at maximum

Average magnetic field uniformity is better than 0.1 ppm

25 ppb/line

	Unit	Value
l field	Т	3.0
rent	А	417.5
gy	MJ	14.6
e	Н	166.9
strand	Т	5.4

Storage Magnet Magnetic Field Calibration

- at **1.2 T**; further tests will be carried out at **3 T**.
- In the cross-calibration of FNAL and J-PARC field probes at ANL, ~7 ppb agreement was obtained with 15 ppb uncertainties.

MRI magnet for MuSEUM experiment

Magnetic field after shimming

Local uniformity of 1 ppm was demonstrated by the MUSEUM experiment magnet

Cross calibration at ANL in January 2019

Positron Tracking Detector

- Consists of 40 radial rectangle modules. A quarter vane consists of

Software Development

- framework was developed (named "g2esoft").
- A reconstruction algorithm in high track density is being implemented. Application of Graph Neural Networks (GNN), etc., is ongoing.

Concept of g2esoft

To manage detector simulation and track reconstruction, a new software

Simulated positron hits and reconstructed tracks with 25 positrons

Expected Sensitivity

- The expected intensity of stored muon is $1.3 \times 10^5 \,\mu$ /sec. Cumulative efficiency from thermal muon generation to reconstructed positron is 4.0×10⁻⁴.
- 2-year data taking (2×10⁷ seconds, ~230 days) will give a total positron 5.7×10¹¹ achieving the BNL precision of 0.45 ppm on a_{μ} .

Table 5. Summary of statistics and uncertainties.

Total number of muons in the storage magnetic storage magne Total number of reconstructed e^+ in the end Effective analyzing power Statistical uncertainty on ω_a [ppb] Uncertainties on a_{μ} [ppb]

Uncertainties on EDM [$10^{-21} e \cdot cm$]

Initially, a $3.2 \times 10^8 \mu$ /sec is expected at the entrance of the H2 area at 1 MW proton power.

	Estimation
net	5.2×10^{12}
ergy window [200, 275 MeV]	5.7×10^{11}
	0.42
	450
	450 (stat.)
	< 70 (syst.)
	1.5 (stat.)
	0.36 (syst.)

Expected Sensitivity

the statistical ones.

Table 6. Estimated systmatic uncertainties on a_{μ} .

Anomalous spin precession (ω_a)		Magnetic field (ω_p)		
Source Estimation (ppb)		Source	Estimation (ppb)	
Timing shift	< 36	Absolute calibration	25	
Pitch effect	13	Calibration of mapping probe	20	
Electric field	10	Position of mapping probe	45	
Delayed positrons	0.8	Field decay	< 10	
Diffential decay	1.5	Eddy current from kicker	0.1	
Quadratic sum	< 40	Quadratic sum	56	

• Systematic uncertainties are estimated to be less than 70 ppb - smaller than

δa_{μ} (syst.) < 70 ppb

 \rightarrow the experiment is still statistically limited

Expected Sensitivity

TABLE II. Values and uncertainties of the \mathcal{R}'_{μ} correction terms in Eq. (4), and uncertainties due to the constants in Eq. (2) for a_{μ} . Positive C_i increase a_{μ} and positive B_i decrease a_{μ} .

Quantity	Correction terms (ppb)	Uncertainty (ppb)
ω_a^m (statistical)		434
ω_a^m (systematic)	•••	56 ↦ <36
C_{e}	489	53 → 10
C_p	180	13 → 13
C_{ml}	-11	5 → 2
C_{pa}	-158	75 ↦ 0
$f_{\text{calib}} \langle \omega_p(x, y, \phi) \times M(x, y, \phi) \rangle$		56 ↦ 49
B_k	-27	37
B_q	-17	92
$\mu'_{p}(34.7^{\circ})/\mu_{e}$		10
m_{μ}/m_e		22
$g_e/2$	•••	0
Total systematic		157 → <64
Total fundamental factors		25
Totals	544	462

 δa_{μ} (syst.) < 70 ppb

- : Pileup, (gain, CBO)
- : residual E-fields (no Quads)
- : pitch correction
- : differential decay & (muon losses)
- : transverse muon distribution
- : probe positioning & calibration
- : kicker transients

Schedule & Funding Status

JFY	2022	2023	2024	2025	2026
KEK Budget					
Surface	✓ Beam at H1 are	a	Funding Secured!	Beam at H2 area	L
Bldg. and facility		Final design ★	Funding Requested to	KEK	
Muon source	✓ Ionization test	@S2		★ Ionization tes	t at H2
LINAC			★ 90keV acceler	tion@S2 ★ 4.3 MeV@) H2
Injection and storage			★ Completion of electron injection	test	
Storage magnet				★ B-field probe ready	
Detector	~	Quoter vane prote	otype \star N	lass production re	ady
DAQ and computing		grid service open common c resource usa	tomputing ge start	all DAQ system operation	test Ready
Analysis			*	Fracking software	e ready Analysis sof

- Fundings secured for most critical facilities. Construction is ongoing.
- Data-taking from 2028 and beyond

Funding

15

- FY2023
 - MEXT provided a funding for the H-line extension. (procurement of magnet components) and H2 area including the laser room and the PS platform.
 - KEK provided additional funding to carry out the engineering design of the H-line extension building.
- FY2024
 - KEK requested funding to complete the H-line extension.
 - KEK submitted a funding proposal to JST for subsidiary use of accelerated muon.
 - Decisions will be announced by the end of December.

Summary

- - A thermal muon beam enables a high-quality muon beam.

• J-PARC muon g - 2/EDM experiment will take a different approach than FNAL.

Muon LINAC re-accelerates muon beam, which is 3D injected into the compact storage region. The tracking detector reduces pile-up and measures positron direction in a highly uniform B-field.

• Expecting 0.45 ppm of a_{μ} with 2 years of data taking starting possibly from 2028

Towards the ultimate muon anomaly test

Slides by T. Mibe, inspired by K. Jungmann's slide

52

H-line construction

- Beam commissioning is ongoing at the H1 area.
- Construction of the H2 area is in progress.
- The extension building design is ready to start construction.

Extension building for muon LINAC, kicker and storage ring

H-line construction

- Beam commissioning is ongoing at the H1 area.
- Construction of the H2 area is in progress.
- The extension building design is ready to start construction.

H-line surface muon optics

Simulated beam profile at H2 area entrance

- The beam-line consist of solenoids ("HS"), bending magnets ("HB"), DC separator ("HSEP"), quadruples ("HQ"), etc.
- Beam-line optics was tuned to deliver 1.6×10^8 surface μ /s at the muonium production target under a 1MW proton beam power.

Thermal muon source Muonium (Mu) laser ionization test

muonium from silica aerogel at the J-PARC MLF S2 area

The quick demonstration of thermal muon generation via laser ionization of

Thermal muon source Muonium (Mu) laser ionization test

muonium from silica aerogel at the J-PARC MLF S2 area

The quick demonstration of thermal muon generation via laser ionization of

$$\Delta \nu_{1S2S} \simeq \frac{3\alpha^2}{8h} m_e c^2 (1 + \frac{m_e}{m_{\mu}})^{-1}$$

• With the 244 nm laser, It is also a direct measurement of Mu 1S-2S interval \rightarrow determination of muon mass (Similar to Mu-MASS at PSI)

• Final goal:

- Muon mass: 1 ppb
- ► (1S-2S: 10 kHz, 4 ppt)

Thermal muon source Muonium (Mu) laser ionization test

muonium from silica aerogel at the J-PARC MLF S2 area

The quick demonstration of thermal muon generation via laser ionization of

EDM measurement

No E-field simplifies the measurement for J-PARC.

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right] \qquad \vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$
FNAL E989
(at magic γ)
J-PARC E34
(E = 0 at any γ)

• EDM measurement relies on the tilt of muon precession to the mid plane.

EDM measurement

EDM measurement relies on the tilt of muon precession to the mid plane

- Observed in up-down asymmetry
- $\omega_{\eta}/\omega_{a} \sim (\eta \beta/2a_{\mu})$
- Good detector alignment precision is essential
- aim at 10⁻²¹ e cm sensitivity (10⁻⁵ rad)
- 1 µm detector alignment measurement is developed

60

EDM measurement

- The muon EDM SM expectation is $\sim 2 \times 10^{-38}$ e cm
- The current experimental limit is 1.8×10^{-19} e cm by the BNL E821.

Precision comparison

	BNL-E821	Fermilab-E989	Our Experiment
Muon momentum	$3.09~{ m GeV}/c$		$300 \ { m MeV}/c$
Lorentz γ	29.3		3
Polarization	100%		50%
Storage field	B = 1.45 T		B = 3.0 T
Focusing field	Electric quadrupole		Very weak magnetic
Cyclotron period	149 ns		7.4 ns
Spin precession period	$4.37~\mu s$		$2.11~\mu s$
Number of detected e^+	$5.0 imes 10^9$	1.6×10^{11}	$5.7 imes10^{11}$
Number of detected e^-	$3.6 imes 10^9$		
a_{μ} precision (stat.)	460 ppb	100 ppb	450 ppb (Phase-1
(syst.)	280 ppb	100 ppb	$<\!70$ ppb
EDM precision (stat.)	$0.2 \times 10^{-19} \ e \cdot \mathrm{cm}$		$1.5 \times 10^{-21} \ e \cdot \mathrm{cm}$
(syst.)	$0.9 \times 10^{-19} \ e \cdot \mathrm{cm}$		$0.36 \times 10^{-21} \ e \cdot \mathrm{cm}$

J-PARC E34

Novel design of multi-layer target

Current design (single-layer)

- Mu emission efficiency (0.0034):
 - Muon stopping (0.418)
 - ► Mu formation (0.52)
 - ► Vacuum emission (0.060)
 - Laser spatial constraint (0.269)

Novel multi-layer target design

- Multi-layer targets stop incident muon
- Mu emits from upper and lower surfaces
- Mu confined between targets
- The extraction direction is the same as the incident beam 63

