LEVERHULME TRUST

MCGPJ generator

Fedor Ignatov
University of Liverpool

MITP topical workshop
Mainz, 6 June 2024

MCGPJ

Radiative corrections for pion and kaon production at $e^{+} e^{-}$colliders of energies below 2 GeV

Andrej B. Arbuzov and Eduard A. Kuraev
Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980, Russia
Vadim A. Astakhov and Gennadi V. Fedotovich
Budker Institute for Nuclear Physics, Prospect Nauki, 11, Novosibirsk, 630090, Russia

Andrej V. Fedorov
Laboratory of Computing Techniques and Automation,
JINR, Dubna, 141980, Russia
Nikolay P. Merenkov
Institute of Physics and Technology, Kharkov, 310108, Ukraine

AbSTRACT: Processes of electron-positron annihilation into charged pions and kaons are onsidered. Radiative corrections are taken into account exactly in the first order and within the leading logarithmic approximation in higher orders. A combined approach for ccounting exact calculations and electron structure functions is used. An accuracy of the calculation can be estimated about 0.2%.

Large angle QED processes at $e^{+} e^{-}$colliders at energies below $3 \mathbf{G e V}$

Andrej B. Arbuzov and Eduard A. Kuraev
Bogoliubov Laboratory of Theoretical Physics, JINR Dubna, 141980, Russi

Gennadi V. Fedotovich
Budker Institute for Nuclear Physics,
Prospect Nauki, 11, Novosibirsk, 630090, Russia
Nikolay P. Merenkov
Kharkov Institute of Physics and Technology,
Kharkov, 310108, Ukraine
Vladimir D. Rushai
Laboratory of Computing Techniques and Automation,
JINR, Dubna, 141980, Russia
Luca Trentadue
Dipartimento di Fisica, Università di Parma and INFN
Gruppo Collegato di Parma, 43100 Parma, Italy

Abstract: QED processes at electron-positron colliders are differential cross-sections for large-angle Bhabha scattering, ann photons. Radiative corrections in the first order are taken into a ogarithmic contributions are calculated in all orders by means o method. An accuracy of the calculation can be estimated about PACS: $12.20 .-\mathrm{m}$ Quantum electrodynamics, 12.20.Ds Specific

1 Introduction

Eur. Phys. J. C 46, 689-703 (2006)
Eur. Phys. J. C 46, 689-703 (2006)
Digital Object Identifier (DOI) $10.1140 /$ epjc $/$ s2006-02532-8

The European HYYSICAL JOURNAL C

Monte-Carlo generator for $e^{+} e^{-}$annihilation into lepton and hadron pairs with precise radiative corrections A.B. Arbuzov ${ }^{1}$, G.V. Fedotovich ${ }^{2, \mathrm{a}}$, F.V. Ignatov ${ }^{2}$, E.A. Kuraev 1, A.L. Sibidanov ${ }^{2}$
${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980, Russia
${ }^{2}$ Budker Institute for Nuclear Physics, Prospect Lavrent eva, 11, Novosibirsk, 630090 , Russia

Received: 3 May 2005 /

Published online: 12 April 2006 - © Springer-Verlag / Società Italiana di Fisica 2000
Abstract. Recently, various cross sections of $e^{+} e^{-}$annihilation into hadrons were accurately measured in the energy range from 0.37 to 1.39 GeV with the CMD-2 detector at the VEPP-2M collider. In the
$\pi^{+} \pi^{-}$channel a systematic uncertainty of 0.6% has been achieved. A Monte-Carlo Generator Photon Jets $\pi^{+} \pi^{-}$channel a systematic uncertainty of 0.6% has been achieved. A Monte-Carlo Generator Photon Jets
(MCGPJ) was developed to simulate events of Bhabha scattering as well as production of two charged pi(MCGPJ) was developed to simulate events of Bhabha scattering as well as production of two charged pi-
ons, kaons and muons. Based on the formalism of structure functions, the leading logarithmic contributions related to the emission of photon jets in the collinear region are incorporated into the MC generator. Radiative corrections (RC) in the first order of α are accounted for exactly. The theoretical precision of the cross ections with RC is estimated to be better than 0.2%. Numerous tests of the program as well as a comparison with other MC generators and CMD-2 experimental data are presented

The cross sections of $e^{+} e^{-}$annihilation into hadrons a very important in various problems of particle physics and in particular, they are required for the evaluation of the
hadronic contribution to the anomalous magnetic moment

The MCGPJ generator is based on the papers from 1997 Theoretical support from Andrej Arbuzov and Eduard Kuraev (JINR) From Novosibirsk it was lead by Gennadi Fedotovich
(BINP) The code implementation by Alexey Sibidanov for CMD-2 experiment F.Ignatov: maintenance and etc at CMD-3

MCGPJ

Photons jet from initial/final e+/e-with collinear structure functions + exact NLO photon (pions in pointlike assumption)
VP table by NSK compilation
Declared precision ~ 0.2\% for total cross section

Until now was only one available generator for $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}(\gamma)$ sufficiently precise for the scan measurement

BabaYaga 3.5-doesn't have FSR, PS for ISR only Phokhara - only NLO y without FSR

$$
\begin{aligned}
& e^{+} e^{-} \rightarrow e^{+} e^{-}(\gamma) \\
& e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}(\gamma) \\
& e^{+} e^{-} \rightarrow \pi^{+} \pi^{-}(\gamma) \\
& e^{+} e^{-} \rightarrow T^{+} T^{-}(Y) \\
& e^{+} e^{-} \rightarrow K^{+} K^{-}(\gamma) \\
& e^{+} e^{-} \rightarrow K_{S} K_{L}(Y) \\
& e^{+} e^{-} \rightarrow \gamma Y(Y) \\
& e^{-} e^{-} \rightarrow e^{-} e^{-}(\gamma)
\end{aligned}
$$

Structure functions

Structure Function (SF) formalism based on paper:
E.Kuraev, V. Fadin, "On Radiative Corrections to e+e-Single Photon Annihilation at High-Energy" Sov.J.Nucl.Phys. 41 (1985) 466-472, Yad.Fiz. 41 (1985) 733-742
Used in most of $e+e-\rightarrow$ hadrons experimental measurements to take into account ISR radiative corrections

It consider one photon annihilation as Drell-Yan process with corresponding factorizations, Photon integrated emissions by probability $D(z)$ function with help of DGLAP (...-Altarelli-Parisi-Lipatov)

$$
\begin{aligned}
\mathrm{d} \sigma & =\int \mathrm{d} z_{1} \mathrm{~d} z_{2} \mathcal{D}\left(z_{1}\right) \mathcal{D}\left(z_{2}\right) \frac{\mathrm{d} \tilde{\sigma}_{0}\left(z_{1}, z_{2}\right)}{\left|1-\Pi\left(s z_{1} z_{2}\right)\right|^{2}}, \\
\mathcal{D}(z) & =\delta(1-z)+\frac{\alpha}{2 \pi}(L-1) P^{(1)}(z)+\left(\frac{\alpha}{2 \pi}\right)^{2} \frac{(L-1)^{2}}{2!} P^{(2)}(z)+\ldots, \\
\mathcal{D}(z, s) & =\mathcal{D}^{\gamma}(z, s)+\mathcal{D}^{e^{+} e^{-}}(z, s), \\
\mathcal{D}^{\gamma}(z, s) & =\frac{1}{2} b(1-z)^{\frac{b}{2}-1}\left[1+\frac{3}{8} b+\frac{b^{2}}{16}\left(\frac{9}{8}-\frac{\pi^{2}}{3}\right)\right] \\
& -\frac{1}{4} b(1+z)+\frac{1}{32} b^{2}\left(4(1+z) \ln \frac{1}{1-z}+\frac{1+3 z^{2}}{1-z} \ln \frac{1}{z}-5-z\right), \quad b=\frac{2 \alpha}{\pi}(L-1)
\end{aligned}
$$

Includes next logarithmically enhanced corrections, but $D(z)$ inclusive for photons in any directions Generated as single photon "jet" collinear along lepton: "collinear structure function"

Jets + NLO photon matching

Have separate amplitudes either one-photon or factorized 4-jets
x NLO photon $(\varepsilon>\Delta)$ is simulated upto narrow cone around $e+/ e-$ \times NLO and $D(z)$ are matched by "compensators": subtracting one photon out-of-cone contribution from $D(z)$ $\varepsilon<\Delta$ jets are matched with one-photon soft+virtual corrections

Cones around leptons are helpful to deal with negative weights

Never was supposed to be used for ISR measurements:
With detected ISR photon at large angle - effectively just one-photon NLO amplitude ($D(z)$ - jets parts doesn't pass selections)
With undetected ISR photon at small angle - should be better but not sure how well matched with selection by polar angle of SA photon system
N.B. for pure scan scenario NLO: jets can be switched off, but $\varepsilon<\Delta$ jets vs one-photon matching need to be replaced by other peace of code - need to be checked consistency

Collinear jets limitation

Thanks to high statistics collected by CMD-3

It was observed a discrepancy in momentum distribution of experimental data vs theoretical spectra from MCGPJ
Important only for differential distributions in tails when two-photons kinematic selections play role.
Integrated cross section for scan scenario is unaffected at $\sim 0.06 \%$.
Comes from collinear jets approximation photon jets angular distribution in one photon approximation (+ few other corrections):
$f(c=\cos (\theta), x=\omega / E) \sim \frac{1}{p k}-\frac{x(1-x)}{1+(1-x)^{2}} \frac{m^{2}}{(p k)^{2}}$

$$
\sim \frac{1}{1-\beta c}-\frac{1-x}{1+(1-x)^{2}} * \frac{1-\beta^{2}}{(1-\beta c)^{2}}
$$

MCGPJ Bhabha - jets with angles $\mu+\mu-/ \pi+\pi-$ - in collinear SF approximation

MCGPJ vs BabaYaga Bhabha spectrums

Updated MCGPJ/BabaYaga are inconsistent in tails at ~ 10% level for Bhabha

Can be looked region where no 2π events:
$0.3<P 1<0.4 \& \& 0.75<P 2<0.85$ (Ebeam < 375 MeV to suppress 3π)
data/MC

MCGPJ	$1.038+-0.026$
BabaYaga@NLO $1.006+-0.026$	

It is necessary to have statistic $\sim x 10$ more (or somehow to suppress 3π events) for 2π analysis more crucial spectrum in another part, where pion peaks: P1,P2 ~ $0.9 E_{\text {beam }}$

sQED limitations

Thanks to high statistics collected by CMD-3

It was observed a discrepancy in asymmetry from predictio Integrated cross section for scan scenario is unaffected, but very important for study and control of systematics! 1% effect is disaster if we talk about $\sim 0.1 \%$ precision

Comes from limitations of sQED approach The theoretical model within GVMD was introduced, was confirmed by calculation in dispersive formalism

Implemented as correction to SQED:

$$
\mathrm{d} \sigma / \mathrm{dc}=\mathrm{d} \sigma_{0} / \mathrm{dc} \times\left|\mathrm{F}^{2}{ }_{\pi}\right| \times\left(\delta_{\text {SQED }}+\delta_{\text {FF }}\right)
$$

$\delta_{F F} \sim\left[F_{\pi}^{v M D}\left(q_{1}\right) F_{\pi}^{v M D}\left(q_{2}\right)-F_{\pi}^{v M D}(q)\right] / F_{\pi}^{V M D}(q) X$
$\delta_{\text {FF }}$ - IR finite, can be calculated separately

Summary

Until now my recommendation list of generators for the scan measurements:
$e+e-\rightarrow e+e-(\gamma):$ BabaYaga@NLO (better consistency with data in e+e- asymmetry and momenta spectra)
$\mathrm{e}+\mathrm{e}-\rightarrow \mu+\mu-(\gamma):$ BabaYaga@NLO (differential cross section: parton shower γ with angles, but no m_{μ} in FSR)
MCGPJ (integrated cross section - FSR with m_{μ} term)
$\mathrm{e}+\mathrm{e}-\rightarrow \pi+\pi-(y):$ MCGPJ

Vacuum polarization

x FJ2019: Fred Jegerlehner
http://www-com.physik.hu-berlin.de/~fjeger/software.html
x KNT18(v3.0): A Keshavarzi, D Nomura, T Teubner x FIv2.7(2019): Novosibirsk VP
https://cmd.inp.nsk.su/~ignatov/vpl/

VP consistent at 0.05-0.1\% outside of narrow resonances At phi - statistical inconsistency $\sim 0.5 \%$, FJ up to 1.5-2.\%

Fred is using dressed phi with PDG parameters (should be bare M φ, which shifted by 254 keV)

Vacuum polarization

x FJ2019: Fred Jegerlehner

Other e+e- generators

Differential over angle spectrum comparison

Differential cross section over theta consistent/or inconsistent at level ~0.1-0.2\%

But we are already sensitive to it in the asymmetry study with CMD3 as shown in presentation yesterday

Comparison relative to MCGPJ, VP off

Total cross section

KKMCe v 4.32, Phokhara v10.0, BabaYaga@NLO, MCGPJ KURAEV analytical formula for $e+e-\rightarrow \mu+\mu-(\gamma)$ total cross-section: Phys.Rev.D72:114019,2005(arXiv:hep-ph/0505236)

KKMC was design for LEP energies MCGPJ for $\mu+\mu$ - is still without jets angular distribution Phokhara has limited precision for scanned mode (w/o ISR y)

It is commonly used FSR correction in approx. with $E \gg M \mu$: missed dependency $\delta_{\text {FSR }}$ virtual $\sim 2 \alpha \pi / \beta_{\mu}$ with $\beta_{\mu} \rightarrow 0$
in CMD3 selection cuts

