

LEVERHULME TRUST

KKMC and YFS Resummation Jérémy Paltrinieri

The Evaluation of the Leading Hadronic Contribution to the Muon g-2: Consolidation of the MUonE Experiment and Recent Developments in Low Energy e^+e^- Data.

Mainz, 06 June 2024

Jérémy PALTRINIERI

KKMC and YFS Resummation

June 6, 2024

Overview - the KKMC code

- Deals with $e^+e^- \rightarrow \mu^+\mu^-, \tau^+\tau^-, \nu^+\nu^-, q\bar{q}$ processes [2204.11949]¹.
- Includes Coherent Exclusive Exponentiation (CEEX) [0006359]², twist on YFS resummation [YFS]³.
- Event Generator and Integrator which produces differential cross-sections.
- First written in F77 [9912214]², now rewritten in C++.

¹S. Jadach, B.F.L. Ward, Z. Wąs, S.A. Yost, A. Siodmok
²S. Jadach, B.F.L. Ward, Z. Wąs
³D.R Yennie, S.C Frautschi, H Suura
Jérémy PALTRINIERI

Resummation of soft photons

- Fixed order computations are notoriously hard.
- Resummation: probing higher-order effects by approximating the amplitude at all-orders.
- Key idea behind KKMC: formalism developped in [YFS]¹.

The Infrared Divergence Phenomena and High-Energy Processes*

D. R. Yennie[†]

School of Physics, University of Minnesota, Minneapolis, Minnesota

S. C. FRAUTSCHI[‡]

Department of Physics, University of California, Berkeley, California

AND

H. SUURA

¹ D.R	Yennie,	S.C	Frautschi,	Н	Suura
------------------	---------	-----	------------	---	-------

Jérémy PALTRINIERI

KKMC and YFS Resummation

June 6, 2024

→

Resummation of soft photons

- Soft real and virtual photons produce divergences in the matrix element, beyond Born level.
- They can be turned into a multiplicative factor at all orders in perturbation theory.
- Infrared safe remnants are obtained through recurrence relations.

Resummation of soft photons

$$\sigma = \sum_{n_{\gamma}=0}^{\infty} \int (dPS)_{Q} \exp\left(2\alpha B + 2\alpha \tilde{B}\right) \left[\prod_{j=1}^{n_{\gamma}} (dPS)_{j} \tilde{S}(k_{j}) \theta(\Omega, k_{j})\right] \tilde{\beta} \quad (1)$$

In this setup:

- the infrared divergences is contained in the YFS form factor $Y = \exp\left(2\alpha B + 2\alpha \tilde{B}\right)$.
- the presence of the $\theta(\Omega, k_j)$ factor excludes the soft phase space of the real photon j.
- $\tilde{\beta}$ corresponds to the IR finite matrix elements which are built upon Feynman diagrams.

KKMC for Strong 2020

- $\bullet\,$ For each scenario, can produce $e^+e^- \to \mu^+\mu^-$ predictions.
- Analysis of the output is made in Python after event generation.
- Added cuts for each scenario to boost event generation: requisite for stats needed.
- Also simplified output file to minimise the storage needed.

Scenario	В	BES3	CMD	KLOE-I	KLOE-II
#ev passing cuts #ev generated	3.1%	32%	54%	1.1%	5.5%

Figure: Efficiency of cut implementation by scenario

- For each scenario and setup: ran 20 million of events.
- Few hours for generation per scenario, \leq 1h for analysis.

Jérémy PALTRINIERI

KKMC and YFS Resummation

One example of scenarios - CMD

Process:
$$e^+e^- \rightarrow \mu^+\mu^-$$
 at $\sqrt{s} = 0.7$ GeV.
Cuts are defined as:

• 1 rad
$$\leq heta_{\mathsf{av}} = (heta^- - heta^+ + \pi)/2 \leq \pi - 1$$
 rad

•
$$p_\pm > 0.45\sqrt{s}/2$$

•
$$\delta \phi = ||\phi^+ - \phi^-| - \pi| < 0.15$$
 rad

•
$$\xi = | heta^+ + heta^- - \pi| <$$
 0.25 rad

Jérémy PALTRINIERI

CMD Scenario

Figure: Differential cross-section $d\sigma/d\cos\theta^-$

Jérémy PALTRINIERI

KKMC and YFS Resummation

June 6, 2024

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

CMD Scenario

Figure: Differential cross-section $d\sigma/d\theta_{av}$

Jérémy PALTRINIERI

KKMC and YFS Resummation

June 6, 2024

Image: A match a ma

<≣⇒

æ

- Main modifications of KKMC: cuts at generation level and less storage needed.
- Finish runs with high statistics for LO, ISR, FSR and both for all scenarios.
- Write up of the KKMC section in the Strong 2020 report.

→