MITP Topical Workshop, June 4-7, 2024

The Evaluation of the Leading Hadronic Contribution to the Muon g-2: Consolidation of the MUonE Experiment and Recent Developments in Low Energy e^+e^- Data

Status of hadronic cross section experiments at low-energy e^+e^- colliders

n Physics, ental Interactions icture of Matter

Achim Denig Institute for Nuclear Physics Johannes Gutenberg University Mainz

Hadronic Cross Section and Hadronic Vacuum Polarization

JGU

Hadronic vacuum polarization -

Anomalous magnetic moment of the muon $(g-2)_{\mu}$

$$a_{\mu}^{HVP} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} ds \ K(s) \ \boldsymbol{\sigma}_{had}(s)$$

Running electromagnetic fine structure constant

$$\alpha_{\rm em}(M_Z^2) = \frac{1}{1 - \Delta \alpha(M_Z^2)};$$
$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) \sim \int_{4\pi^2}^{\infty} ds \; \frac{R_{\rm had}(s)}{s(s - M_Z^2)}$$

$$\sigma_{had}(s) =$$

$$\sigma_{tot}(e^+e^- \rightarrow \text{Hadrons})$$

$$R_{had} = \frac{\sigma_{had}(s)}{\sigma_{ee \rightarrow \mu\mu}(s)}$$

Hadronic Cross Section and Hadronic Vacuum Polarization ^{JG U}

Hadronic vacuum polarization -

Anomalous magnetic moment of the muon $(g-2)_{\mu}$

Running electromagnetic fine structure constant

Measurements on R – Energy Scan vs. Initial State Radiation $^{JG|U}$

4

Measurements on R – Energy Scan vs. Initial State Radiation $^{JG|U}$

5

Measurements on R – Energy Scan vs. Initial State Radiation $^{JG|U}$

6

Status

Measurements on R – Energy Scan vs. Initial State Radiation JGU

7

Hadronic Vacuum Polarization (HVP) for $(g-2)_{\mu}$ from dispersive Analysis $a_{\mu}^{SM} = 11\ 659\ 181.0\ (4.3) \times 10^{-10}$

Estimate of (g-2) Theory Initiative based on dispersive approach (including higher orders): (693.1 ± 4.0) \cdot 10⁻¹⁰ was (\cong 687 ... 694 ± 2.4 ... 4.1) \cdot 10⁻¹⁰

JGU

Optical theorem (unitarity) and analyticity:

low energy contributions especially important!

Status of e^+e^- hadronic cross section experiments

Systematic Uncertainties on $\rho(770)$ peak

- ISR BABAR 0.5%
- ISR KLOE 0.6%
- ISR BESIII 0.9%
- Energy Scan CMD2 0.8%*
 - * limited in addition by statistics

[G|U

- ISR BABAR 0.5%
- ISR KLOE 0.6%
- ISR BESIII 0.9%
- Energy Scan CMD2 0.8%*
 - * limited in addition by statistics

Achim Denig

Most recent evaluations of HVP:

- Davier, Höcker, Malaescu, Zhang (DHMZ)
 - averaging via 2nd ord. polynomial interpolation
 - systematic correlat. propagated via pseudo-data (MC)
- Keshavarzi, Nomura, Teubner (KNT)
 - data subjected to a clustering procedure
 - fit over all data sets taking into account correlations

JGU

Merging of KNT, DHMZ estimates + input from ChPT/dispersive fits: CHHKS for 2π , 3π channels;

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
[3.7,∞) GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\text{DV+QCD}}$	692.8(2.4)	1.2

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
[3.7,∞) GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\text{DV+QCD}}$	692.8(2.4)	1.2

 $→ a_{\mu}^{HVP,LO} = 693.1(2.8)_{exp}(2.8)_{syst}(0.7)_{pQCD} = 693.1(4.0) \times 10^{-10}$ Whitepaper estimate experimental uncertainties: domitated by 2π uncertainty Achim Denig BABAR, respectively BABAR, respectively BABAR, respectively

Merging of KNT, DHN	MZ estim	put from ChPT/disp	ersive fits	: CHHKS	for 2π, 3π channels;
		DHMZ19	KNT19	Difference	
	to 2023:	507.85(0.83)(3.23)(0.55) 46.21(0.40)(1.10)(0.86)	504.23(1.90) 46.63(94)	3.62	>:-(
Big debate up	E OF BABAIL	13.68(0.03)(0.27)(0.14) 18.03(0.06)(0.48)(0.26)	13.99(19) 18.15(74)	-0.31 -0.12	
who is right? NE	The L	23.08(0.20)(0.33)(0.21) 12.82(0.06)(0.18)(0.15)	23.00(22) 13.04(19)	0.08 -0.22	
VV	$\pi^0 \gamma$ of the above	4.41(0.06)(0.04)(0.07) 626.08(0.95)(3.48)(1.47)	4.58(10) 623.62(2.27)	-0.17	
	GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00	
[3.7	¢, ¢(25) 7, ∞) GeV	17.15(31)	16.95(19)	0.20	
Tot	$al a_{\mu}^{\text{HVP, LO}} \qquad 694.0(1)$	$.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\text{DV+QCD}}$	692.8(2.4)	1.2	> reasonable agreement

→ $a_{\mu}^{HVP,LO} = 693.1(2.8)_{exp}(2.8)_{syst}(0.7)_{pQCD} = 693.1(4.0) \times 10^{-10}$ Whitepaper estimate experimental uncertainties: energy region [1.8;3.7] GeV; usage of pQCD by KLOE/BABAR tension: domitated by 2π uncertainty DHMZ, while KNT follows data-driven approach leaving out KLOE or

2024: SM – Theory vs. Experiment: $(g-2)_{\mu}$

Post-2020 Whitepaper:

BMW Lattice QCD HVP

IGIU

CMD-3 data on π+π-

2024: SM – Theory vs. Experiment: $(g-2)_{\mu}$

IGU

arxiv:2302.08834

 $|F_{\pi}|^{2} = \left(\frac{N_{\pi^{+}\pi^{-}}}{N_{e^{+}e^{-}}} - \Delta^{bg}\right) \cdot \frac{\sigma^{0}_{e^{+}e^{-}} \cdot (1 + \delta_{e^{+}e^{-}}) \cdot \varepsilon_{e^{+}e^{-}}}{\sigma^{0}_{+^{-}e^{-}} \cdot (1 + \delta_{\pi^{+}\pi^{-}}) \cdot \varepsilon_{\pi^{+}\pi^{-}}}$

- 17
- New result from CMD-3 collaboration @ VEPP-2000 collider in Novosbirsk
- Energy scan (from threshold up to 1.2 GeV) method, no ISR!
- Form factor extraction via selection of ππ/ee ratio
- Highest statistics data sample of all experiments, systematic uncertainty 0.7% on p peak
- → Significant deviation from previous ISR <u>and</u> energy scan experiments ! Why? No answer !

2023 Shock: CMD-3 @ Novosibirsk $e^+e^- \rightarrow \pi^+\pi^-$

18

Scrutiny of CMD-3 result within the Theory Initiative

- Very open replies by F. Ignatov \rightarrow no major showstopper observed
- Very powerful analysis with many and impressive internal cross checks
- Monte-Carlo generator for energy scan cannot be independently varified
- Unfortunately no (real) blind analysis

Scrutiny of CMD-3 result within the Theory Initiative

- Very open replies by F. Ignatov \rightarrow no major showstopper observed
- Very powerful analysis with many and impressive internal cross checks
- Monte-Carlo generator for energy scan cannot be independently varified
- Unfortunately no (real) blind analysis

BABAR Radiative Correction Studies

- Comparison with PHOKHARA (NLO full correction) and AfkQED (collinear approximation beyond LO) generators
- \rightarrow NNLO radiation observed at 3.5% level (missing in PHOKHARA)
- \rightarrow Phokhara prediction for small angle ISR photons at NLO too high by ~25% (AfkQED better)

(GeV

3.5

Data

GI

arXiv:2312.02053

- **BABAR**: rather inclusive selection and therefore weak dependence from PHOKHARA
 - however: in original BABAR 2π paper 2% correction applied to AfkQED due to claim that PHOKHARA provides better NLO correction \rightarrow only valid for acceptance? \rightarrow claim: small offset on published BABAR result due to PHOKHARA NLO limitations
 - \rightarrow claim: small effect on published BABAR result due to PHOKHARA NLO limitations

KLOE/BESIII: - less inclusive selection regarding NLO

→ claim: possibly large effect due PHOKHARA NLO limitations, BESIII: good agreement data-PHOKHARA in χ^2 distribution (?)

Achim Denig

22

arXiv:2312.02053

- **BABAR**: rather inclusive selection and therefore weak dependence from PHOKHARA
 - however: in original BABAR 2π paper 2% correction applied to AfkQED due to claim that PHOKHARA provides better NLO correction \rightarrow only valid for acceptance?

Possible Consequences from BABAR Findings (?)

 \rightarrow claim: small effect on published BABAR result due to PHOKHARA NLO limitations

KLOE/BESIII: - less inclusive selection regarding NLO

→ claim: possibly large effect due PHOKHARA NLO limitations, BESIII: good agreement data-PHOKHARA in χ^2 distribution (?)

1.02

Hadronic Cross Section Data after 2020 Whitepaper

23

- BESIII $\pi^+\pi^-$ (600 < \sqrt{s} < 900) MeV, update of covariance matrix \rightarrow central value unchanged
- Energy scan measurements above 2 GeV of multi-hadronic channels (spectroscopy)
 - Total hadronic cross section measurement above 2 GeV
- New SND scans of $\pi^+\pi^-4\pi^0$ above 1 GeV (> 3% uncertainty)
 - New SND scan of π⁺π[−] channel, (525 < √s < 883) MeV
 → systematic uncertainty > 600 MeV: 0.8%; after publications issues found
- **F**
- New BABAR ISR data on $\pi^+\pi^-4\pi^0$, $2(\pi^+\pi^-)3\pi^0$, *KK* $\pi\pi\pi$
- New BABAR ISR analysis of $\pi^+\pi^-\pi^0$ channel, (0.62 < \sqrt{s} < 3.5) GeV
 - \rightarrow systematic uncertainty: > 1.3%
 - → fit to $M_{3\pi}$ including $\omega(782)$, $\omega(1420)$, $\omega(1680)$, $\phi(1020)$, $\rho(770)$

- First BELLE-II ISR analysis of hadronic process: $\pi^+\pi^-\pi^0$ channel, (0.62 < \sqrt{s} < 1.8) GeV
 - \rightarrow systematic uncertainty: >2.2%
 - ightarrow integral value higher by 2.5 sigma than BABAR
- Main limitation (~1.2% error): NLO rad. correction → confirmation of BABAR findings

Inclusive R-Measurement via Energy Scan

Phys. Rev. Lett. 128 (2022) 062004

Analysis strategy: select all events with ≥ 2 tracks

- Reject back-to-back 2-prong events (Bhabha, Di-Muons)
- Remaining background from ISR and QED events ($e^+e^- \rightarrow e^+e^-/\mu^+\mu^-$) subtracted from MC

New R_{incl} Measurement from BESIII

After years of developments, tuning, and cross checks two complementary inclusive MC generators (fully theoretical LUARLW, data-driven hybrid MC) have been found to be in agreement on a level of 2.3%

- Energy range covered: $2.2 < \sqrt{s} < 3.7 \text{ GeV}$
- Statistical uncertainty <0.5%
 Systematic uncertainty <2.6% below 3.1 GeV ~3.0% above
- Above 3.4 GeV deviation observed with:
 - KEDR/Novosibirsk on the level of 1.9 σ
 - pQCD theory on the level of 2.7 $\!\sigma$

World's most precise R_{incl} measurement ! Some deviations from pQCD seen ?!

Next step: Analysis of high statistics energy scan in entire range 2.0 – 4.6 GeV

JG

Messages learned from Inclusive R Measurement

Remember: - Selection requires ≥ 2 tracks, which are not back-to-back

- Detector acceptance starts above 21°
- → For low-multiplicity final hadronic states ($\pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^0\pi^0$, ...), the probability to be not selected large relatively large
- \rightarrow Total event efficiency at 60% 70% level

For the determination of the event efficiency, a precise MC generator for $e^+e^- \rightarrow Hadrons$ is needed (possible model dependence difficult to estimate)

Is there a way to increase the detection efficiency?

 $s' = m_{\rm had}^2 = s - 2E_{\gamma}\sqrt{s}$ m Hadrons e

Inclusive R-Measurement via Initial State Radiation

PhD N.J.P. Berger (2006, Stanford) PhD project, Th. Lenz (JGU Mainz)

New Inclusive Approach using ISR

Event selection:

- Select 1 high-energetic photon > 1.2 GeV ≡ ISR photon at large polar angle [cosΘ_{ISR}] < 0.8 → Restricts hadronic mass spectrum < 2.7 GeV
- Require (for time being) ≥ 1 charged track in the event

→ Does currently not include fully neutral states (e.g. $e^+e^- \rightarrow \pi^0 \gamma$)

New Inclusive Approach using ISR

Event selection:

- Select 1 high-energetic photon > 1.2 GeV ≡ ISR photon at large polar angle [cosΘ_{ISR}] < 0.8 → Restricts hadronic mass spectrum < 2.7 GeV
- Require (for time being) \geq 1 charged track in the event \rightarrow Does currently not include fully neutral states (e.g. $e^+e^- \rightarrow \pi^0\gamma$)
- ISR boost confines particles into narrow cone
 → Very high detection efficiency
- Less reliant on description of hadronic MC
 → ISR description in MC under control
- Single measurement down to threshold (does not need scan)
- Measurement fully inclusive for Final State Radiation (FSR) and higher order corrections of ISR
- In principle able to measure fully neutral channels

New Inclusive Approach using ISR: Efficiency

Event selection:

- Select 1 high-energetic photon > 1.2 GeV ≡ ISR photon at large polar angle [cosΘ_{ISR}] < 0.8
 → Restricts hadronic mass spectrum < 2.7 GeV
- Require (for time being) ≥ 1 charged track in the event

ightarrow Does currently not include fully neutral states (e.g. $e^+e^-
ightarrow \pi^0\gamma$)

- ISR boost confines particles into narrow cone
 → Very high detection efficiency
- Less reliant on description of hadronic MC
 → ISR description in MC under control
- Single measurement down to threshold (does not need scan)
- Measurement fully inclusive for Final State Radiation (FSR) and higher order corrections of ISR
- In principle able to measure fully neutral channels

1) Enormous background from QED processes:

2) Background from hadronic events, which are not ISR, i.e. π^0 decays (only relevant for high hadr. masses)

3) Very **limited hadronic mass resolution** due to energy resolution of ISR photon detection $\Delta E_{ISR}/E_{ISR} \approx 3\%/\sqrt{E_{ISR}[GeV]}$ (i.e. 30 *MeV* for $E_{ISR} = 1 \text{ GeV}$)

.... many more, for instance **radiative corrections**

- 1) Enormous background from QED processes:
 - → apply dedicated PID (particle identification) cuts to distinguish hadrons from leptons, especially from electrons

- $e^{+}e^{-} \rightarrow e^{+}e^{-}(\gamma)$ $e^{+}e^{-} \rightarrow \gamma\gamma(\gamma)$ $e^{+}e^{-} \rightarrow \mu^{+}\mu^{-}(\gamma)$ $e^{+}e^{-} \rightarrow \tau^{+}\tau^{-}(\gamma)$
- 2) Background from hadronic events, which are not ISR, i.e. π⁰ decays (only relevant for high hadr. masses)
 → Dedicated cuts to veto meson decays, which mimick ISR photons
- 3) Very **limited hadronic mass resolution** due to energy resolution of ISR photon detection $\Delta E_{ISR}/E_{ISR} \approx 3\%/\sqrt{E_{ISR}[GeV]}$ (i.e. 30 *MeV* for $E_{ISR} = 1 \text{ GeV}$)
 - ightarrow Unfolding of mass resolution using modern methods

.... many more,

for instance **radiative corrections**

Not allowed to show data!

Mass spectrum after application of PID and meson veto

- Plots for $\sqrt{s} = 4.180 \text{ GeV}$ (3.1 / fb)
- No additional cuts using Muon Detector or other selection cuts

- Significant yield of hadronic events over QED background; hadronic non-ISR event yield small < 1.5 GeV
- However ... due to limited energy resolution of ISR photon, huge smearing effects (no ρ , ω , ϕ visible)

Unfolding from Detector Mass Resolution

- Application of unfolding algorithms to arrive at true spectrum
- Requires Monte-Carlo program to construct unfolding matrix
- Systematically testing the bias in the unfolding procedure due to wrong input Monte-Carlo \rightarrow observation: effect on dispersion integral for (g-2)_µ at the level of 0.3%
- With larger data sets also conversion events might be used to improve mass resolution

Improve Mass Resolution by using Photon Conversion Events

- Utilize conversion of ISR photon in detector material, especially the beam pipe
 Reduction of statistics
- Tracks of produced e^+e^- pair to be reconstructed in the MDC
- Improvement of mass resolution by large factors
 → Narrow resonances now separately visible
- High potential for the new high-statistics data sets at BESIII, especially the 20/fb data sample being currently collected
 - \rightarrow allows for cross checks between different analysis approaches

Conclusions

Conclusions

- New Lattice as well as CMD-3 results challenging old e^+e^- data
 - radiative corrections are a key issue
 - difference between CMD-3 and other energy scan expts. to be understood
- Luckily, new e^+e^- data at the horizon
 - BABAR with fit to angular distributions for $\pi/\mu/e$ separation
 - KLOE with full KLOE statistics
 - BESIII with 20/fb data sample (normalization to $\mu\mu$), new ideas R_{incl} via ISR
 - BELLE-II has joined the team of ISR experiments
 - further cross checks by CMD-3 and new SND data from energy scan

Conclusions

rstood

R

- New Lattice as well as CMD-3 results challenging old e^+e^- data
 - radiative corrections are a key issue
 - difference between CMD-3 and other energy scan expt
- Luckily, new e^+e^- data at the horizon
 - It will take some time to clarify - BABAR with fit to angular distributions issues, but not too long given the
 - KLOE with full KLOE statistics
 - BESIII with 20/fb data sample (n
 - BELLE-II has joined the team of I
 - further cross checks by CMD-3 and

My personal guess:

global efforts to cross check things

Thank you !